Cannabinoids and Viral Infections
Abstract
:1. Introduction
2. Discussion
Enzyme primary/secondary | Pathways | Ref. | Role(s) in viral infection-host responses |
---|---|---|---|
cPhospholipase A2 | Arachidonic acid metabolites (prostaglandins, leukotrienes, lipoxins, resolvins) and inflammation | [1,2] | Inflammation and its resolution |
Phospholipase C
- Receptor-mediated tyrosine kinase | Production of Inositol 1,4,5-triphosphate from phosophotidylinositol | [3] | Signal transduction |
Phospholipase D1 | Exocytosis in neuroendocrine cells | [4] | Neurotransmission |
Calcineurin | Activation of NFAT—gene expression | [5,6] | Signal transduction |
Ca2+-Calmodulin
- Nitric oxide synthase-1 - Nitric oxide synthase-3 | Conversion of argenine to NO in neurons and endothelial cells; production of ONOO-, -SNO, -R-NO2 Inhibition of viral infection | [7,8,9,10,11,12] | Anti-viral; NO2-decoration of viral proteins; capillary dilation; inflammation |
Ca2+-Calmodulin dependent protein kinases
- CREB - CaMKK activation of AMPK | Wnt-2-dependent dendrite growth & cardiomyogenesis
Energy, epithelial cell polarity T cell activation | [13,14,15,16,17] | Adaptive immune responses; inflammation |
Calpains [Ca2+-dependent proteases] | Neutral proteases [many tissues]
Cell membrane fusion, synaptic remodeling, activating PKC, remodeling cytoskeleton, transcription factors | [18,19,20] | Cytoskeletal plasticity, cell migration, inflammation |
Matrix metalloproteinases | Extracellular matrix remodeling, inflammation | [21] | Inflammation |
Calpastatin | Cell fusion in fertilization | [22] | Formation of heterokaryons /giant cells |
Transglutaminases | Cross-linking/deamination of proteins –wound healing, tissue repair, apoptosis, cell cycle control, inflammation and fibrosis | [23] | Inflammation, fibrosis, cell cycle and programmed cell death |
Viral pathogen | In vivo In vitro | Agonist / Antagonist | Titer change | Pathogenesis | Inflammation Immunoregu-lation | Comments | Ref. |
---|---|---|---|---|---|---|---|
HSV-2,
L. monocyto-genes | In vivo | Δ9-THC | decreased resistance to LD50 | systemic infection | [29] | ||
HSV-2 | In vivo | Δ9-THC | increased shedding | increased severity of lesions & mortality | delayed onset of DTH response | vaginal model B6C3H F1 mouse | [30] |
HSV-2 | In vivo | Δ9-THC | decreased Type I IFN response | i.v. infection | [31] | ||
HSV-2 | In vivo | Δ9-THC | decreased resistance to infection; increased severity of lesions | vaginal guinea pig model | [32] | ||
HSV-1,-2 | In vitro | Δ9-THC | failed to replicate | antiviral effect in human & monkey cells | [33] | ||
HSV-2 | In vitro | Δ9-THC | 100-fold increase in released virus | Vero cells, increased CPE | [34] | ||
HSV-2 | both | Δ9-THC | decreased T cell proliferation | B6C3H F1 mice immunized then T cells cultured | [35] | ||
HSV | In vitro | Δ9-THC | decreased infectivity in TC | virus incubated with THC | [36] | ||
HSV-1 | both | Δ9-THC | decreased CD8 CTL activity | C3H mice immunized, L929 targets | [37] | ||
EBV, KSHV, HVS, HSV-1, MHV-68 | In vivo | Δ9-THC | Immediate early ORF promoter activity inhibited | reactivation from latency inhibited | latently infected B cells in tissue culture | [38] | |
KSHV | In vivo | Δ9-THC | increased viral load | increased efficiency of infection, activation of lytic switch | increased transformation of endothelial cells | primary human dermal microvascular cells | [39] |
Cowpox | In vivo | Marijuana cigarettes | generalized infection | weak Ab production, no neutralizing Abs | Case report | [40] | |
TMEV | In vitro | Anandamide | decreased release of NO2- and TNF-α | NO is antiviral for TMEV | [41,42] | ||
TMEV | In vitro | Anandamide | increased IL-6 production | astrocyte culture B6 and SJL mice | [43] | ||
TMEV | In vivo | WIN-55,212 | ameliorates progression of autoimmune disease TMEV-IDD | decreased DTH, decreased IL-1, IL-6, IFN-γ , TNF-α, | TMEV-IDD a mouse model of MS | [44] | |
TMEV | In vivo | OMDM1, OMDM2 | ameliorated motor symptoms | decreased MHC II, inhibited NOS-2, reduced proinflammatory cytokines | TMEV-IDD proposed MS therapy with cannabinoids | [45] | |
TMEV | In vitro | JWH-133 SR144558 | role of CB2 receptors in anti-inflammatory actions | reduced IL-12p40, reduced ERK1/2 signaling | [46] | ||
TMEV | In vitro | WIN-55,212 | CB2-dependent COX-2 induction increased vs. TMEV-alone | role of PI3 kinase pathway in CB2 but MAPK for TMEV signaling | proposed role on blood-flow and immune activity | [47] | |
TMEV | In vivo | Palmitoyl-ethanol-amine | reduction in motor disability in TMEV-IDD | anti-inflammatory effect | TMEV-IDD | [48] | |
TMEV | both | WIN-55,212 | inhibited ICAM & VCAM on endothelium; role for PPAR-γ receptors in mechanism | reduced inflammation | TMEV-IDD | [49] | |
Influenza | In vivo | Δ9-THC | HA mRNA increased | inflammation, metaplasia of mucous cell | decreased CD4, CD8, and macrophage recruitment | [50] | |
Influenza | In vivo | Δ9-THC | HA mRNA decreased in CB1/CB2KO mice | THC-mediated airway pathology +/- CB1/CB2 | KO mice had increased CD4 and IFN-γ recruitment | CB1/CB2 KO mice | [51] |
VSV | In vitro | WIN-55,212 | increased viral titers | CB1-dependent; decreased NOS-1 activity | antagonized IFN-γ-mediated antiviral pathway | suggested disease progression likely in neurons/viral encephalitis | [52] |
BDV | In vivo | WIN-55,212 | protected BrdU-positive neural progenitor cells in striatum | suppressed microglial activation | suggested treatment of encephalitis with microglial inflammation and neuro-degeneration | [53] | |
HCV | In vivo | Marijuana cigarettes | progression of liver fibrosis | epidemiological study | [54] | ||
HCV | In vivo | Oral cannabinoids | improved weight | no viral markers or immune markers studied | 7 week clinical trial for anorexia and nausea | [55] | |
HCV | In vivo | Marijuana cigarettes | progression of liver fibrosis; increased disease severity | clinical pathological survey of 204 HCV patients | [56] | ||
HIV-1 | In vitro | Δ9-THC, CP-55,940, WIN-55,212 | increased syn-cytia formation MT-2 cells (CB1 & CB2+) | speculate cannabinoids enhance HIV-1 infection | [57] | ||
HIV-1 | In vitro | anandamide | increased adherence for monocytes | uncoupled NO release, inhibited NO | human saphenous vein or internal thoracic artery; speculate higher titers in vivo | [58] | |
HIV-1 Tat | In vitro | WIN-55,212 | reduced tat-induced cytotoxicity | inhibited NOS-2 activity | C6 rat glioma cell line | [59] | |
HIV-1 | In vivo | Marijuana cigarettes | increased appetite | insufficient numbers of individuals | 3 week trial | [60] | |
HIV-1 | In vivo | Marijuana cigarettes | mRNA unchanged | CD4+ and CD8+ cells unchanged | 3 week trial, placebo-controlled | [61] | |
HIV-1 | WIN-55,212 | inhibited expression | CD4 and microglial cultures | [62] | |||
HIV-1 | In vivo | THC | increased viral replica-tion 50-fold | decreased CD4 IFN-γ-producing cells, increased co-receptor expression | scid-Hu mouse model | [63] | |
HIV-1 Gp120 | In vitro | 2-AG, CP55940 | inhibited Ca+2-flux-induced substance P, decreased permeability | model of BBB, co-culture of Human brain microvascular endothelial cells and astrocytes | [64] | ||
HIV-1 | In vivo | WIN-55,212 | dose-related hypothermia in mouse pre-optic anterior hypothalamus infusion | WIN-55,212 is antagonist for SDF-1a/ CXCL12/ CXCR4 [HIV-1 coReceptor] pathway | mouse model for HIV-thermoreg-ulation by direct injection of WIN-55,212 to brain POAH center | [65] | |
HIV-1 Tat | In vitro | CP55940, Δ9-THC | CB2-dependent inhibition of U937 migration to Tat | possible anti-inflammatory mechanism | U937 cells in culture | [66] |
3. Conclusions
Acknowledgements
References
- Bannenberg, G.L.; Chiang, N.; Ariel, A.; Arita, M.; Tjonahen, E.; Gotlinger, K.H.; Hong, S.; Serhan, C.N. Molecular circuits of resolution: Formation and actions of resolvins and protectins. J. Immunol. 2005, 174, 4345–4355. [Google Scholar]
- Machado, F.S.; Johndrow, J.E.; Esper, L.; Dias, A.; Bafica, A.; Serhan, C.N.; Aliberti, J. Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nat. Med. 2006, 12, 330–334. [Google Scholar]
- Morita, M.; Yoshiki, F.; Nakane, A.; Okubo, Y.; Kudo, Y. Receptor- and calcium-dependent induced inositol 1,4,5-trisphosphate increases in PC12h cells as shown by fluorescence resonance energy transfer imaging. FEBS J. 2007, 274, 5147–5157. [Google Scholar]
- Vitale, N. Synthesis of fusogenic lipids through activation of phospholipase D1 by GTPases and the kinase RSK2 is required for calcium-regulated exocytosis in neuroendocrine cells. Biochem. Soc. Trans. 2010, 38, 167–171. [Google Scholar]
- Oh-hora, M.; Rao, A. The calcium/NFAT pathway: Role in development and function of regulatory T cells. Microbes Infect. 2009, 11, 612–619. [Google Scholar]
- Rao, A. Signaling to gene expression: Calcium, calcineurin and NFAT. Nat. Immunol. 2009, 10, 3–5. [Google Scholar]
- Knowles, R.G.; Moncada, S. Nitric oxide synthases in mammals. Biochem. J. 1994, 298, 249–258. [Google Scholar]
- Lopez-Jaramillo, P.; Teran, E.; Moncada, S. Calcium supplementation prevents pregnancy-induced hypertension by increasing the production of vascular nitric oxide. Med. Hypotheses 1995, 45, 68–72. [Google Scholar]
- Edelstein, C.L.; Yaqoob, M.M.; Schrier, R.W. The role of the calcium-dependent enzymes nitric oxide synthase and calpain in hypoxia-induced proximal tubule injury. Ren Fail. 1996, 18, 501–511. [Google Scholar]
- Reiss, C.S.; Komatsu, T. Does nitric oxide play a critical role in viral infections? J. Virol. 1998, 72, 4547–4551. [Google Scholar] [PubMed]
- Akaike, T.; Maeda, H. Nitric oxide and virus infection. Immunology 2000, 101, 300–308. [Google Scholar]
- Akuta, T.; Zaki, M.H.; Yoshitake, J.; Okamoto, T.; Akaike, T. Nitrative stress through formation of 8-nitroguanosine: Insights into microbial pathogenesis. Nitric. Oxide. 2006, 14, 101–108. [Google Scholar]
- Alvania, R.S.; Chen, X.; Ginty, D.D. Calcium signals control Wnt-dependent dendrite growth. Neuron 2006, 50, 813–815. [Google Scholar]
- Wayman, G.A.; Impey, S.; Marks, D.; Saneyoshi, T.; Grant, W.F.; Derkach, V.; Soderling, T.R. Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 2006, 50, 897–909. [Google Scholar]
- Flaherty, M.P.; Dawn, B. Noncanonical Wnt11 signaling and cardiomyogenic differentiation. Trends Cardiovasc. Med. 2008, 18, 260–268. [Google Scholar]
- Caplan, M.J.; Seo-Mayer, P.; Zhang, L. Epithelial junctions and polarity: Complexes and kinases. Curr. Opin. Nephrol. Hypertens. 2008, 17, 506–512. [Google Scholar]
- Liu, J.O. Calmodulin-dependent phosphatase, kinases, and transcriptional corepressors involved in T-cell activation. Immunol. Rev. 2009, 228, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Pontremoli, S.; Melloni, E. Extralysosomal protein degradation. Annu. Rev Biochem. 1986, 55, 455–481. [Google Scholar]
- Mellgren, R.L. Calcium-dependent proteases: An enzyme system active at cellular membranes? FASEB J. 1987, 1, 110–115. [Google Scholar] [PubMed]
- Dargelos, E.; Poussard, S.; Brule, C.; Daury, L.; Cottin, P. Calcium-dependent proteolytic system and muscle dysfunctions: a possible role of calpains in sarcopenia. Biochimie 2008, 90, 359–368. [Google Scholar]
- Consolo, M.; Amoroso, A.; Spandidos, D.A.; Mazzarino, M.C. Matrix metalloproteinases and their inhibitors as markers of inflammation and fibrosis in chronic liver disease (Review). Int. J. Mol. Med. 2009, 24, 143–152. [Google Scholar]
- Rojas, F.J.; Brush, M.; Moretti-Rojas, I. Calpain-calpastatin: A novel, complete calcium-dependent protease system in human spermatozoa. Mol. Hum. Reprod. 1999, 5, 520–526. [Google Scholar]
- Elli, L.; Bergamini, C.M.; Bardella, M.T.; Schuppan, D. Transglutaminases in inflammation and fibrosis of the gastrointestinal tract and the liver. Dig. Liver Dis. 2009, 41, 541–550. [Google Scholar]
- Reiss, C.S. Innate immunity in viral encephalitis. In Neurotropic Virus Infections.; Cambridge University Press: Cambridge, UK, 2008; pp. 265–291. [Google Scholar]
- Reiss, C.S. VSV infection elicits distinct host responses in the periphery and the brain. In RNA Viruses: Host Gene Responses to Infection; Yang, D., Ed.; World Scientific Publishing: Hackensack, NJ, USA, 2009; pp. 229–246. [Google Scholar]
- Klein, T.W.; Friedman, H.; Specter, S. Marijuana, immunity and infection. J. Neuroimmunol. 1998, 83, 102–115. [Google Scholar]
- Bani, D.; Mannaioni, G.; Passani, M.B.; Masini, E. Role of cannaboboids in the modulation f inflammatory processes. Pharmaceuticals 2010. submitted. [Google Scholar]
- Klein, T.W.; Cabral, G.A. Cannabinoid-induced immune suppression and modulation of antigen-presenting cells. J. Neuroimmune. Pharmacol. 2006, 1, 50–64. [Google Scholar]
- Morahan, P.S.; Klykken, P.C.; Smith, S.H.; Harris, L.S.; Munson, A.E. Effects of cannabinoids on host resistance to Listeria monocytogenes and herpes simplex virus. Infect. Immun. 1979, 23, 670–674. [Google Scholar]
- Mishkin, E.M.; Cabral, G.A. Delta-9-Tetrahydrocannabinol decreases host resistance to herpes simplex virus type 2 vaginal infection in the B6C3F1 mouse. J. Gen. Virol. 1985, 66, 2539–2549. [Google Scholar]
- Cabral, G.A.; Lockmuller, J.C.; Mishkin, E.M. Delta 9-tetrahydrocannabinol decreases alpha/beta interferon response to herpes simplex virus type 2 in the B6C3F1 mouse. Proc. Soc. Exp. Biol. Med. 1986, 181, 305–311. [Google Scholar]
- Cabral, G.A.; Mishkin, E.M.; Marciano-Cabral, F.; Coleman, P.; Harris, L.; Munson, A.E. Effect of delta 9-tetrahydrocannabinol on herpes simplex virus type 2 vaginal infection in the guinea pig. Proc. Soc. Exp. Biol. Med. 1986, 182, 181–186. [Google Scholar]
- Blevins, R.D.; Dumic, M.P. The effect of delta-9-tetrahydrocannabinol on herpes simplex virus replication. J. Gen. Virol. 1980, 49, 427–431. [Google Scholar]
- Cabral, G.A.; McNerney, P.J.; Mishkin, E.M. Delta-9-tetrahydrocannabinol enhances release of herpes simplex virus type 2. J. Gen. Virol. 1986, 67, 2017–2022. [Google Scholar]
- Cabral, G.A.; McNerney, P.J.; Mishkin, E.M. Delta-9-tetrahydrocannabinol inhibits the splenocyte proliferative response to herpes simplex virus type 2. Immunopharmacol. Immunotoxicol. 1987, 9, 361–370. [Google Scholar]
- Lancz, G.; Specter, S.; Brown, H.K. Suppressive effect of delta-9-tetrahydrocannabinol on herpes simplex virus infectivity in vitro. Proc. Soc. Exp. Biol. Med. 1991, 196, 401–404. [Google Scholar] [PubMed]
- Fischer-Stenger, K.; Updegrove, A.W.; Cabral, G.A. Delta 9-tetrahydrocannabinol decreases cytotoxic T lymphocyte activity to herpes simplex virus type 1-infected cells. Proc. Soc. Exp. Biol. Med. 1992, 200, 422–430. [Google Scholar]
- Medveczky, M.M.; Sherwood, T.A.; Klein, T.W.; Friedman, H.; Medveczky, P.G. Delta-9 tetrahydrocannabinol (THC) inhibits lytic replication of gamma oncogenic herpesviruses in vitro. BMC. Med. 2004, 2, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, J.F.; Kunos, G.; Groopman, J.E. Cannabinoid modulation of Kaposi's sarcoma-associated herpesvirus infection and transformation. Cancer Res. 2007, 67, 7230–7237. [Google Scholar]
- Huemer, H.P.; Himmelreich, A.; Honlinger, B.; Pavlic, M.; Eisendle, K.; Hopfl, R.; Rabl, W.; Czerny, C.P. "Recreational" drug abuse associated with failure to mount a proper antibody response after a generalised orthopoxvirus infection. Infection 2007, 35, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Molina-Holgado, F.; Lledo, A.; Guaza, C. Anandamide suppresses nitric oxide and TNF-alpha responses to Theiler's virus or endotoxin in astrocytes. Neuroreport 1997, 8, 1929–1933. [Google Scholar]
- Oleszak, E.L.; Katsetos, C.D.; Kuzmak, J.; Varadhachary, A. Inducible nitric oxide synthase in Theiler's murine encephalomyelitis virus infection. J. Virol. 1997, 71, 3228–3235. [Google Scholar]
- Molina-Holgado, F.; Molina-Holgado, E.; Guaza, C. The endogenous cannabinoid anandamide potentiates interleukin-6 production by astrocytes infected with Theiler's murine encephalomyelitis virus by a receptor-mediated pathway. FEBS Lett. 1998, 433, 139–142. [Google Scholar]
- Croxford, J.L.; Miller, S.D. Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R(+)WIN55,212. J. Clin. Invest. 2003, 111, 1231–1240. [Google Scholar]
- Mestre, L.; Correa, F.; Arevalo-Martin, A.; Molina-Holgado, E.; Valenti, M.; Ortar, G.; Di Marzo, V.; Guaza, C. Pharmacological modulation of the endocannabinoid system in a viral model of multiple sclerosis. J. Neurochem. 2005, 92, 1327–1339. [Google Scholar]
- Correa, F.; Mestre, L.; Docagne, F.; Guaza, C. Activation of cannabinoid CB2 receptor negatively regulates IL-12p40 production in murine macrophages: Role of IL-10 and ERK1/2 kinase signaling. Br. J. Pharmacol. 2005, 145, 441–448. [Google Scholar]
- Mestre, L.; Correa, F.; Docagne, F.; Clemente, D.; Guaza, C. The synthetic cannabinoid WIN 55,212-2 increases COX-2 expression and PGE2 release in murine brain-derived endothelial cells following Theiler's virus infection. Biochem. Pharmacol. 2006, 72, 869–880. [Google Scholar]
- Loria, F.; Petrosino, S.; Mestre, L.; Spagnolo, A.; Correa, F.; Hernangomez, M.; Guaza, C.; Di Marzo, V.; Docagne, F. Study of the regulation of the endocannabinoid system in a virus model of multiple sclerosis reveals a therapeutic effect of palmitoylethanolamide. Eur. J. Neurosci 2008, 28, 633–641. [Google Scholar]
- Mestre, L.; Docagne, F.; Correa, F.; Loria, F.; Hernangomez, M.; Borrell, J.; Guaza, C. A cannabinoid agonist interferes with the progression of a chronic model of multiple sclerosis by downregulating adhesion molecules. Mol. Cell. Neurosci. 2009, 40, 258–266. [Google Scholar]
- Buchweitz, J.P.; Karmaus, P.W.; Harkema, J.R.; Williams, K.J.; Kaminski, N.E. Modulation of airway responses to influenza A/PR/8/34 by Delta9-tetrahydrocannabinol in C57BL/6 mice. J. Pharmacol. Exp. Ther. 2007, 323, 675–683. [Google Scholar]
- Buchweitz, J.P.; Karmaus, P.W.; Williams, K.J.; Harkema, J.R.; Kaminski, N.E. Targeted deletion of cannabinoid receptors CB1 and CB2 produced enhanced inflammatory responses to influenza A/PR/8/34 in the absence and presence of Delta9-tetrahydrocannabinol. J. Leukoc. Biol. 2008, 83, 785–796. [Google Scholar]
- Herrera, R.A.; Oved, J.H.; Reiss, C.S. Disruption of the IFN-g-mediated antiviral activity in neurons: The role of Cannabinoids. Viral Immunol. 2008, 21, 141–152. [Google Scholar]
- Solbrig, M.V.; Hermanowicz, N. Cannabinoid rescue of striatal progenitor cells in chronic Borna disease viral encephalitis in rats. J. Neurovirol. 2008, 14, 252–260. [Google Scholar]
- Hezode, C.; Roudot-Thoraval, F.; Nguyen, S.; Grenard, P.; Julien, B.; Zafrani, E.S.; Pawlotsky, J.M.; Dhumeaux, D.; Lotersztajn, S.; Mallat, A. Daily cannabis smoking as a risk factor for progression of fibrosis in chronic hepatitis C. Hepatology 2005, 42, 63–71. [Google Scholar]
- Costiniuk, C.T.; Mills, E.; Cooper, C.L. Evaluation of oral cannabinoid-containing medications for the management of interferon and ribavirin-induced anorexia, nausea and weight loss in patients treated for chronic hepatitis C virus. Can. J. Gastroenterol. 2008, 22, 376–380. [Google Scholar]
- Ishida, J.H.; Peters, M.G.; Jin, C.; Louie, K.; Tan, V.; Bacchetti, P.; Terrault, N.A. Influence of cannabis use on severity of hepatitis C disease. Clin Gastroenterol. Hepatol. 2008, 6, 69–75. [Google Scholar]
- Noe, S.N.; Nyland, S.B.; Ugen, K.; Friedman, H.; Klein, T.W. Cannabinoid receptor agonists enhance syncytia formation in MT-2 cells infected with cell free HIV-1MN. Adv. Exp. Med. Biol. 1998, 437, 223–229. [Google Scholar]
- Stefano, G.B.; Salzet, M.; Bilfinger, T.V. Long-term exposure of human blood vessels to HIV gp120, morphine, and anandamide increases endothelial adhesion of monocytes: Uncoupling of nitric oxide release. J. Cardiovasc. Pharmacol. 1998, 31, 862–868. [Google Scholar] [CrossRef]
- Esposito, G.; Ligresti, A.; Izzo, A.A.; Bisogno, T.; Ruvo, M.; Di Rosa, M.; Di Marzo, V.; Iuvone, T. The endocannabinoid system protects rat glioma cells against HIV-1 Tat protein-induced cytotoxicity: Mechanism and regulation. J. Biol. Chem. 2002, 277, 50348–50354. [Google Scholar]
- Bredt, B.M.; Higuera-Alhino, D.; Shade, S.B.; Hebert, S.J.; McCune, J.M.; Abrams, D.I. Short-term effects of cannabinoids on immune phenotype and function in HIV-1-infected patients. J. Clin. Pharmacol. 2002, 42, 82S–89S. [Google Scholar]
- Abrams, D.I.; Hilton, J.F.; Leiser, R.J.; Shade, S.B.; Elbeik, T.A.; Aweeka, F.T.; Benowitz, N.L.; Bredt, B.M.; Kosel, B.; Aberg, J.A.; et al. Short-term effects of cannabinoids in patients with HIV-1 infection: A randomized, placebo-controlled clinical trial. Ann. Intern. Med. 2003, 139, 258–266. [Google Scholar] [PubMed]
- Peterson, P.K.; Gekker, G.; Hu, S.; Cabral, G.; Lokensgard, J.R. Cannabinoids and morphine differentially affect HIV-1 expression in CD4(+) lymphocyte and microglial cell cultures. J. Neuroimmunol. 2004, 147, 123–126. [Google Scholar]
- Roth, M.D.; Tashkin, D.P.; Whittaker, K.M.; Choi, R.; Baldwin, G.C. Tetrahydrocannabinol suppresses immune function and enhances HIV replication in the huPBL-SCID mouse. Life Sci. 2005, 77, 1711–1722. [Google Scholar]
- Lu, T.S.; Avraham, H.K.; Seng, S.; Tachado, S.D.; Koziel, H.; Makriyannis, A.; Avraham, S. Cannabinoids inhibit HIV-1 Gp120-mediated insults in brain microvascular endothelial cells. J. Immunol. 2008, 181, 6406–6416. [Google Scholar]
- Benamar, K.; Yondorf, M.; Meissler, J.J.; Geller, E.B.; Tallarida, R.J.; Eisenstein, T.K.; Adler, M.W. A novel role of cannabinoids: Implication in the fever induced by bacterial lipopolysaccharide. J. Pharmacol. Exp. Ther. 2007, 320, 1127–1133. [Google Scholar]
- Raborn, E.S.; Cabral, G.A. Cannabinoid inhibition of macrophage migration to the TAT protein of HIV-1 is linked to the CB2 cannabinoid receptor. J. Pharmacol. Exp. Ther. 2010. [Google Scholar] [CrossRef]
- Jakob, J.; Roos, R.P. Molecular determinants of Theiler's murine encephalomyelitis-induced disease. J. Neurovirol. 1996, 2, 70–77. [Google Scholar]
- Olson, J.K.; Miller, S.D. The innate immune response affects the development of the autoimmune response in Theiler's virus-induced demyelinating disease. J. Immunol. 2009, 182, 5712–5722. [Google Scholar]
- Villarreal, D.; Young, C.R.; Storts, R.; Ting, J.W.; Welsh, C.J. A comparison of the neurotropism of Theiler's virus and poliovirus in CBA mice. Microb. Pathog. 2006, 41, 149–156. [Google Scholar]
- Dietzschold, B.; Morimoto, K. Signaling pathways in virus-induced CNS inflammation. J. Neurovirol. 1997, 3 (Suppl. 1), S58–S59. [Google Scholar] [PubMed]
- Gosztonyi, G.; Ludwig, H. Borna disease--neuropathology and pathogenesis. Curr. Top. Microbiol. Immunol. 1995, 190, 39–73. [Google Scholar]
- Hooper, D.C.; Kean, R.B.; Scott, G.S.; Spitsin, S.V.; Mikheeva, T.; Morimoto, K.; Bette, M.; Rohrenbeck, A.M.; Dietzschold, B.; Weihe, E. The central nervous system inflammatory response to neurotropic virus infection is peroxynitrite dependent. J. Immunol. 2001, 167, 3470–3477. [Google Scholar]
- Rohrenbeck, A.M.; Bette, M.; Hooper, D.C.; Nyberg, F.; Eiden, L.E.; Dietzschold, B.; Weihe, E. Upregulation of COX-2 and CGRP expression in resident cells of the Borna disease virus-infected brain is dependent upon inflammation. Neurobiol. Dis. 1999, 6, 15–34. [Google Scholar]
- Cabral, G.A.; Dove Pettit, D.A. Drugs and immunity: Cannabinoids and their role in decreased resistance to infectious disease. J. Neuroimmunol. 1998, 83, 116–123. [Google Scholar]
- Munckhof, W.J.; Konstantinos, A.; Wamsley, M.; Mortlock, M.; Gilpin, C. A cluster of tuberculosis associated with use of a marijuana water pipe. Int. J Tuberc. Lung Dis. 2003, 7, 860–865. [Google Scholar]
- Han, B.; Gfroerer, J.C.; Colliver, J.D. Associations between duration of illicit drug use and health conditions: Results from the 2005-2007 national surveys on drug use and health. Ann. Epidemiol. 2010, 20, 289–297. [Google Scholar]
- Holtz, T.H.; Lancaster, J.; Laserson, K.F.; Wells, C.D.; Thorpe, L.; Weyer, K. Risk factors associated with default from multidrug-resistant tuberculosis treatment, South Africa, 1999–2001. Int. J. Tuberc. Lung Dis. 2006, 10, 649–655. [Google Scholar] [PubMed]
- Cabral, G.A.; Marciano-Cabral, F. Cannabinoid-mediated exacerbation of brain infection by opportunistic amebae. J. Neuroimmunol. 2004, 147, 127–130. [Google Scholar]
- Marciano-Cabral, F.; Raborn, E.S.; Martin, B.R.; Cabral, G.A. Delta-9-tetrahydrocannabinol, the major psychoactive component in marijuana, inhibits macrophage chemotaxis to Acanthamoeba. J. Eukaryot. Microbiol. 2006, 53 (Suppl. 1), S15–S17. [Google Scholar] [CrossRef] [PubMed]
- Benamar, K.; Yondorf, M.; Geller, E.B.; Eisenstein, T.K.; Adler, M.W. Physiological evidence for interaction between the HIV-1 co-receptor CXCR4 and the cannabinoid system in the brain. Br. J. Pharmacol. 2009, 157, 1225–1231. [Google Scholar]
- Smith, S.R.; Terminelli, C.; Denhardt, G. Modulation of cytokine responses in Corynebacterium parvum-primed endotoxemic mice by centrally administered cannabinoid ligands. Eur. J. Pharmacol. 2001, 425, 73–83. [Google Scholar]
- Bass, R.; Engelhard, D.; Trembovler, V.; Shohami, E. A novel nonpsychotropic cannabinoid, HU-211, in the treatment of experimental pneumococcal meningitis. J. Infect. Dis. 1996, 173, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Storr, M.A.; Yuce, B.; Andrews, C.N.; Sharkey, K.A. The role of the endocannabinoid system in the pathophysiology and treatment of irritable bowel syndrome. Neurogastroenterol. Motil. 2008, 20, 857–868. [Google Scholar]
- Storr, M.A.; Keenan, C.M.; Emmerdinger, D.; Zhang, H.; Yuce, B.; Sibaev, A.; Massa, F.; Buckley, N.E.; Lutz, B.; Goke, B.; et al. Targeting endocannabinoid degradation protects against experimental colitis in mice: Involvement of CB1 and CB2 receptors. J. Mol. Med. 2008, 86, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Elikkottil, J.; Gupta, P.; Gupta, K. The analgesic potential of cannabinoids. J. Opioid. Manag. 2009, 5, 341–357. [Google Scholar]
- Aggarwal, S.K.; Carter, G.T.; Sullivan, M.D.; ZumBrunnen, C.; Morrill, R.; Mayer, J.D. Medicinal use of cannabis in the United States: Historical perspectives, current trends, and future directions. J. Opioid. Manag. 2009, 5, 153–168. [Google Scholar] [PubMed]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Reiss, C.S. Cannabinoids and Viral Infections. Pharmaceuticals 2010, 3, 1873-1886. https://doi.org/10.3390/ph3061873
Reiss CS. Cannabinoids and Viral Infections. Pharmaceuticals. 2010; 3(6):1873-1886. https://doi.org/10.3390/ph3061873
Chicago/Turabian StyleReiss, Carol Shoshkes. 2010. "Cannabinoids and Viral Infections" Pharmaceuticals 3, no. 6: 1873-1886. https://doi.org/10.3390/ph3061873
APA StyleReiss, C. S. (2010). Cannabinoids and Viral Infections. Pharmaceuticals, 3(6), 1873-1886. https://doi.org/10.3390/ph3061873