Radiolabelled FAPI Radiotracers in Oncology: A Comprehensive Review of Current Diagnostic and Emerging Therapeutic Applications
Abstract
1. Introduction
1.1. Biology and Function of CAFs
1.2. Fibroblast Activation Protein Overexpression and Cancerous Tumours
2. Results
2.1. FAP-Targeting Radiopharmaceuticals
2.2. Development of FAP Inhibitors and Usefulness of Radiolabeled FAPI
2.3. Diagnostic Performance of [68Ga]Ga-FAPI vs. [18F]FDG
2.4. Application of Radiolabeled FAPI and [18F]FDG in Multi-Cancer Studies
2.5. The Impact of FAP Imaging on Lung Cancer
2.6. Diagnostic Value of [68Ga]Ga-FAPI-PET/CT vs. [18F]FDG -PET in Gynaecological Tumours and Breast Cancer
2.7. PET/CT Imaging with [68Ga]Ga-FAPI and [18F]FDG in Glioma
2.8. The Role of [68Ga]Ga-FAPI PET/CT in Renal Cell Carcinoma
2.9. [68Ga]Ga-FAPI-04 PET/CT as a Diagnostic Biomarker in Well-Differentiated Neuroendocrine Tumours
2.10. Advantages and Disadvantages of [18F]FDG and [68Ga]Ga-FAPI Due to the Method of Production and Use in Patients
2.11. Theranostic Use of Radiolabeled FAPI
3. Materials and Methods
4. Discussion and Conclusions
- Integrates newly emerging data on soluble FAP (sFAP) and its implications for FAPI biodistribution and therapeutic efficacy.
- Compares the performance of both gallium-68 and fluorine-18 FAPI radiotracers in relation to generator-based vs. cyclotron-based production constraints.
- Summarises early therapeutic studies involving multimeric and albumin-binding FAPI constructs; and
- Discusses current challenges associated with heterogeneous stromal composition and fibroblast-related tumour biology.
- Optimising FAPI structure, particularly studying novel multimeric forms to enhance avidity and selectivity while minimising background interference;
- Determining dose thresholds, especially in the context of targeted therapy, and evaluating the long-term safety and efficacy of these doses;
- Investigating the causes of heterogeneous FAP expression in tumours and its impact on the effectiveness of FAPI radiopharmaceuticals;
- Analysing the effects of high FAPI doses on healthy tissues during repeated therapeutic cycles;
- Testing FAPI in combination with chemotherapy, immunotherapy, or signalling pathway inhibitors to evaluate synergy in treating resistant cancers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Białas, M.; Dyduch, G.; Adamek, D. The Tumour and Its Microenvironment—A Complicated Interplay. Współczesna Onkol. 2011, 5, 305–308. [Google Scholar] [CrossRef]
- Borgonje, P.E.; Andrews, L.M.; Herder, G.J.M.; de Klerk, J.M.H. Performance and Prospects of [68Ga]Ga-FAPI PET/CT Scans in Lung Cancer. Cancers 2022, 14, 5566. [Google Scholar] [CrossRef] [PubMed]
- Calais, J. FAP: The Next Billion Dollar Nuclear Theranostics Target? J. Nucl. Med. 2020, 61, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Xing, F. Cancer-Associated Fibroblasts (CAFs) in Tumour Microenvironment. Front. Biosci. 2010, 15, 166. [Google Scholar] [CrossRef] [PubMed]
- Ballal, S.; Yadav, M.P.; Moon, E.S.; Kramer, V.S.; Roesch, F.; Kumari, S.; Bal, C. First-In-Human Results on the Biodistribution, Pharmacokinetics, and Dosimetry of [177Lu]Lu-DOTA.SA.FAPi and [177Lu]Lu-DOTAGA.(SA.FAPi)2. Pharmaceuticals 2021, 14, 1212. [Google Scholar] [CrossRef]
- Keane, F.M.; Nadvi, N.A.; Yao, T.; Gorrell, M.D. Neuropeptide Y, B-type Natriuretic Peptide, Substance P, and Peptide YY Are Novel Substrates of Fibroblast Activation Protein-α. FEBS J. 2011, 278, 1316–1332. [Google Scholar] [CrossRef]
- Öhlund, D.; Elyada, E.; Tuveson, D. Fibroblast Heterogeneity in the Cancer Wound. J. Exp. Med. 2014, 211, 1503–1523. [Google Scholar] [CrossRef]
- Glabman, R.A.; Choyke, P.L.; Sato, N. Cancer-Associated Fibroblasts: Tumorigenicity and Targeting for Cancer Therapy. Cancers 2022, 14, 3906. [Google Scholar] [CrossRef]
- Guido, C.; Whitaker-Menezes, D.; Capparelli, C.; Balliet, R.; Lin, Z.; Pestell, R.G.; Howell, A.; Aquila, S.; Andò, S.; Martinez-Outschoorn, U.; et al. Metabolic Reprogramming of Cancer-Associated Fibroblasts by TGF-β Drives Tumor Growth: Connecting TGF-β Signaling with “Warburg-like” Cancer Metabolism and L-Lactate Production. Cell Cycle 2012, 11, 3019–3035. [Google Scholar] [CrossRef]
- Joshi, R.S.; Kanugula, S.S.; Sudhir, S.; Pereira, M.P.; Jain, S.; Aghi, M.K. The Role of Cancer-Associated Fibroblasts in Tumour Progression. Cancers 2021, 13, 1399. [Google Scholar] [CrossRef]
- Sun, H.; Wang, X.; Wang, X.; Xu, M.; Sheng, W. The Role of Cancer-Associated Fibroblasts in Tumorigenesis of Gastric Cancer. Cell Death Dis. 2022, 13, 874. [Google Scholar] [CrossRef]
- Peña, C.; Céspedes, M.V.; Lindh, M.B.; Kiflemariam, S.; Mezheyeuski, A.; Edqvist, P.-H.; Hägglöf, C.; Birgisson, H.; Bojmar, L.; Jirström, K.; et al. STC1 Expression By Cancer-Associated Fibroblasts Drives Metastasis of Colorectal Cancer. Cancer Res. 2013, 73, 1287–1297. [Google Scholar] [CrossRef] [PubMed]
- Jena, B.C.; Das, C.K.; Bharadwaj, D.; Mandal, M. Cancer Associated Fibroblast Mediated Chemoresistance: A Paradigm Shift in Understanding the Mechanism of Tumor Progression. Biochim. Biophys. Acta-Rev. Cancer 2020, 1874, 188416. [Google Scholar] [CrossRef]
- Lindner, T.; Loktev, A.; Giesel, F.; Kratochwil, C.; Altmann, A.; Haberkorn, U. Targeting of Activated Fibroblasts for Imaging and Therapy. EJNMMI Radiopharm. Chem. 2019, 4, 16. [Google Scholar] [CrossRef]
- Park, J.E.; Lester, M.C.; Zimmermann, R.N.; Garin-Chesa, P.; Old, L.J.; Rettig, W.J. Fibroblast Activation Protein, a Dual Specificity Serine Protease Expressed in Reactive Human Tumor Stromal Fibroblasts. J. Biol. Chem. 1999, 274, 36505–36512. [Google Scholar] [CrossRef]
- Garin-Chesa, P.; Old, L.J.; Rettig, W.J. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers. Proc. Natl. Acad. Sci. USA 1990, 87, 7235–7239. [Google Scholar] [CrossRef]
- Piscopo, L.; Volpe, F. PET/CT Imaging with Radiolabeled FAPI: New Opportunities for Diagnosis and Treatment of Thyroid Cancer. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 800–802. [Google Scholar] [CrossRef]
- Loktev, A.; Lindner, T.; Mier, W.; Debus, J.; Altmann, A.; Jäger, D.; Giesel, F.; Kratochwil, C.; Barthe, P.; Roumestand, C.; et al. A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts. J. Nucl. Med. 2018, 59, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Qi, L.; Liu, B.; Liu, J.; Zhang, H.; Che, D.; Cao, J.; Shen, J.; Geng, J.; Bi, Y.; et al. Fibroblast Activation Protein Overexpression and Clinical Implications in Solid Tumors: A Meta-Analysis. PLoS ONE 2015, 10, e0116683. [Google Scholar] [CrossRef] [PubMed]
- Gascard, P.; Tlsty, T.D. Carcinoma-Associated Fibroblasts: Orchestrating the Composition of Malignancy. Genes Dev. 2016, 30, 1002–1019. [Google Scholar] [CrossRef]
- Ballal, S.; Yadav, M.P.; Kramer, V.; Moon, E.S.; Roesch, F.; Tripathi, M.; Mallick, S.; ArunRaj, S.T.; Bal, C. A Theranostic Approach of [68Ga]Ga-DOTA.SA.FAPi PET/CT-Guided [177Lu]Lu-DOTA.SA.FAPi Radionuclide Therapy in an End-Stage Breast Cancer Patient: New Frontier in Targeted Radionuclide Therapy. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 942–944. [Google Scholar] [CrossRef]
- García Megías, I.; Almeida, L.S.; Calapaquí Terán, A.K.; Pabst, K.M.; Herrmann, K.; Giammarile, F.; Delgado Bolton, R.C. FAPI radiopharmaceuticals in nuclear oncology and theranostics of solid tumours: Are we nearer to surrounding the hallmarks of cancer? Ann. Nucl. Med. 2025, 39, 407–423. [Google Scholar] [CrossRef]
- Ballal, S.; Yadav, M.P.; Moon, E.S.; Kramer, V.S.; Roesch, F.; Kumari, S.; Tripathi, M.; ArunRaj, S.T.; Sarswat, S.; Bal, C. Biodistribution, Pharmacokinetics, Dosimetry of [68Ga]Ga-DOTA.SA.FAPi, and the Head-to-Head Comparison with [18F]F-FDG PET/CT in Patients with Various Cancers. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1915–1931. [Google Scholar] [CrossRef] [PubMed]
- Lindner, T.; Loktev, A.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Jäger, D.; Mier, W.; Haberkorn, U. Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. J. Nucl. Med. 2018, 59, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Younis, M.H.; Zhang, Y.; Cai, W.; Lan, X. Clinical Summary of Fibroblast Activation Protein Inhibitor-Based Radiopharmaceuticals: Cancer and Beyond. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2844–2868. [Google Scholar] [CrossRef] [PubMed]
- Lindner, T.; Altmann, A.; Krämer, S.; Kleist, C.; Loktev, A.; Kratochwil, C.; Giesel, F.; Mier, W.; Marme, F.; Debus, J.; et al. Design and Development of 99m Tc-Labelled FAPI Tracers for SPECT Imaging and 188 Re Therapy. J. Nucl. Med. 2020, 61, 1507–1513. [Google Scholar] [CrossRef]
- Lee, K.N.; Jackson, K.W.; Christiansen, V.J.; Lee, C.S.; Chun, J.G.; McKee, P.A. Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood 2006, 107, 1397–1404. [Google Scholar] [CrossRef]
- Bilinska, A.; Ballal, S.; Bal, C.; Läppchen, T.; Pilatis, E.; Menéndez, E.; Moon, E.S.; Martin, M.; Rösch, F.; Rominger, A.; et al. Improved FAPI-radiopharmaceutical pharmacokinetics from the perspectives of a dose escalation study. Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 3238–3251. [Google Scholar] [CrossRef]
- Kratochwil, C.; Giesel, F.L.; Rathke, H.; Fink, R.; Dendl, K.; Debus, J.; Mier, W.; Jäger, D.; Lindner, T.; Haberkorn, U. [153Sm] Samarium-Labelled FAPI-46 Radioligand Therapy in a Patient with Lung Metastases of a Sarcoma. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3011–3013. [Google Scholar] [CrossRef]
- Ferdinandus, J.; Fragoso Costa, P.; Kessler, L.; Weber, M.; Hirmas, N.; Kostbade, K.; Bauer, S.; Schuler, M.; Ahrens, M.; Schildhaus, H.-U.; et al. Initial Clinical Experience with 90Y-FAPI-46 Radioligand Therapy for Advanced Stage Solid Tumors: A Case Series of Nine Patients. J. Nucl. Med. 2021, 63, 727–734. [Google Scholar] [CrossRef]
- Watabe, T.; Liu, Y.; Kaneda-Nakashima, K.; Shirakami, Y.; Lindner, T.; Ooe, K.; Toyoshima, A.; Nagata, K.; Shimosegawa, E.; Haberkorn, U.; et al. Theranostics Targeting Fibroblast Activation Protein in the Tumor Stroma: 64Cu- and 225Ac-Labelled FAPI-04 in Pancreatic Cancer Xenograft Mouse Models. J. Nucl. Med. 2020, 61, 563–569. [Google Scholar] [CrossRef]
- ClinicalTrials.gov ID NCT05814835. First in Human Study of 68Ga/64Cu-FAPI-XT117 PET/CT in Patients With Malignant Solid Tumors. Available online: https://clinicaltrials.gov/study/NCT05814835 (accessed on 20 July 2025).
- Roustaei, H.; Kiamanesh, Z.; Askari, E.; Sadeghi, R.; Aryana, K.; Treglia, G. Could Fibroblast Activation Protein (FAP)-Specific Radioligands Be Considered as Pan-Tumor Agents? Contrast Media Mol. Imaging 2022, 2022, 3948873. [Google Scholar] [CrossRef]
- Dendl, K.; Schlittenhardt, J.; Staudinger, F.; Kratochwil, C.; Altmann, A.; Haberkorn, U.; Giesel, F.L. The Role of Fibroblast Activation Protein Ligands in Oncologic PET Imaging. PET Clin. 2021, 16, 341–351. [Google Scholar] [CrossRef]
- Giesel, F.L.; Kratochwil, C.; Schlittenhardt, J.; Dendl, K.; Eiber, M.; Staudinger, F.; Kessler, L.; Fendler, W.P.; Lindner, T.; Koerber, S.A.; et al. Head-to-Head Intra-Individual Comparison of Biodistribution and Tumor Uptake of 68Ga-FAPI and 18F-FDG PET/CT in Cancer Patients. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4377–4385. [Google Scholar] [CrossRef] [PubMed]
- Loktev, A.; Lindner, T.; Burger, E.-M.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Marmé, F.; Jäger, D.; Mier, W.; et al. Development of Fibroblast Activation Protein–Targeted Radiotracers with Improved Tumor Retention. J. Nucl. Med. 2019, 60, 1421–1429. [Google Scholar] [CrossRef]
- Baum, R.P.; Schuchardt, C.; Singh, A.; Chantadisai, M.; Robiller, F.C.; Zhang, J.; Mueller, D.; Eismant, A.; Almaguel, F.; Zboralski, D.; et al. Feasibility, Biodistribution, and Preliminary Dosimetry in Peptide-Targeted Radionuclide Therapy of Diverse Adenocarcinomas Using 177Lu-FAP-2286: First-in-Humans Results. J. Nucl. Med. 2022, 63, 415–423. [Google Scholar] [CrossRef]
- Giesel, F.L.; Kratochwil, C.; Lindner, T.; Marschalek, M.M.; Loktev, A.; Lehnert, W.; Debus, J.; Jäger, D.; Flechsig, P.; Altmann, A.; et al. 68 Ga-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2 DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers. J. Nucl. Med. 2019, 60, 386–392. [Google Scholar] [CrossRef]
- Jansen, K.; Heirbaut, L.; Verkerk, R.; Cheng, J.D.; Joossens, J.; Cos, P.; Maes, L.; Lambeir, A.-M.; De Meester, I.; Augustyns, K.; et al. Extended Structure–Activity Relationship and Pharmacokinetic Investigation of (4-Quinolinoyl)Glycyl-2-Cyanopyrrolidine Inhibitors of Fibroblast Activation Protein (FAP). J. Med. Chem. 2014, 57, 3053–3074. [Google Scholar] [CrossRef]
- Kratochwil, C.; Flechsig, P.; Lindner, T.; Abderrahim, L.; Altmann, A.; Mier, W.; Adeberg, S.; Rathke, H.; Röhrich, M.; Winter, H.; et al. 68Ga-FAPI PET/CT: Tracer Uptake in 28 Different Types of Cancer. J. Nucl. Med. 2019, 60, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Pang, Y.; Wu, J.; Zhao, L.; Hao, B.; Wu, J.; Wei, J.; Wu, S.; Zhao, L.; Luo, Z.; et al. Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the Diagnosis of Primary and Metastatic Lesions in Patients with Various Types of Cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1820–1832. [Google Scholar] [CrossRef] [PubMed]
- Ballal, S.; Yadav, M.P.; Roesch, F.; Satapathy, S.; Moon, E.S.; Martin, M.; Wakade, N.; Sheokand, P.; Tripathi, M.; Chandekar, K.R.; et al. Head-to-Head Comparison of [68Ga]Ga-DOTA.SA.FAPi with [18F]F-FDG PET/CT in Radioiodine-Resistant Follicular-Cell Derived Thyroid Cancers. Eur. J. Nucl. Med. Mol. Imaging 2023, 51, 233–244. [Google Scholar] [CrossRef]
- Yang, L.; Xu, S.; Cheng, L.; Gao, C.; Cao, S.; Chang, Z.; Wang, K. [18F] AlF-NOTA-FAPI-04 PET/CT as a Promising Tool for Imaging Fibroblast Activation Protein in Gastrointestinal System Cancers: A Prospective Investigation of Comparative Analysis with 18F-FDG. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 4051–4063. [Google Scholar] [CrossRef]
- Xi, Y.; Sun, L.; Che, X.; Huang, X.; Liu, H.; Wang, Q.; Meng, H.; Miao, Y.; Qu, Q.; Hai, W.; et al. A Comparative Study of [68Ga]Ga-FAPI-04 PET/MR and [18F]FDG PET/CT in the Diagnostic Accuracy and Resectability Prediction of Ovarian Cancer. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2885–2898. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Liu, H.; Wang, Y.; Deng, J.; Peng, D.; Feng, Y.; Wang, L.; Chen, Y.; Qiu, L. The Potential Utility of [68 Ga]Ga-DOTA-FAPI-04 as a Novel Broad-Spectrum Oncological and Non-Oncological Imaging Agent—Comparison with [18F]FDG. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 963–979. [Google Scholar] [CrossRef]
- Mankoff, D.A.; Eary, J.F.; Link, J.M.; Muzi, M.; Rajendran, J.G.; Spence, A.M.; Krohn, K.A. Tumor-Specific Positron Emission Tomography Imaging in Patients: [18F] Fluorodeoxyglucose and Beyond. Clin. Cancer Res. 2007, 13, 3460–3469. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, S.; Tang, W.; Liu, L.; Chen, Y. 68Ga-DOTA-FAPI-04 PET/CT as a promising tool for differentiating ovarian physiological uptake: Preliminary experience of comparative analysis with 18F-FDG. Front. Med. 2021, 8, 748683. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, X.; Xu, X.; Ding, J.; Liu, T.; Jiang, J.; Li, N.; Zhu, H.; Yang, Z. Dynamic PET/CT Imaging of 68Ga-FAPI-04 in Chinese Subjects. Front. Oncol. 2021, 11, 651005. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, W.; Ren, S.; Kong, Y.; Huang, Q.; Zhao, J.; Guan, Y.; Jia, H.; Chen, J.; Lu, L.; et al. 68Ga-FAPI-04 Versus 18F-FDG PET/CT in the Detection of Hepatocellular Carcinoma. Front. Oncol. 2021, 11, 693640. [Google Scholar] [CrossRef] [PubMed]
- Civan, C.; Kuyumcu, S.; Has Simsek, D.; Sanli, O.; Isik, E.G.; Ozkan, Z.G.; Hurdogan, O.; Sanli, Y. The Role of [68 Ga]Ga-FAPI-04 PET/CT in Renal Cell Carcinoma: A Preliminary Study. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 852–861. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, L.; Ruan, D.; Pang, Y.; Hao, B.; Dai, Y.; Wu, X.; Guo, W.; Fan, C.; Wu, J.; et al. The usefulness of [68Ga]Ga-DOTA-FAPI-04 PET/CT in Patients Presenting with Inconclusive [18F]FDG PET/CT Findings. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 73–86. [Google Scholar] [CrossRef]
- Xi, Y.; Sun, Y.; Gu, B.; Bian, L.; Song, S. Evaluation of 68Ga-FAPI PET/CT and 18F-FDG PET/CT for diagnosing Recurrent Colorectal Cancers. Clin. Transl. Radiat. Oncol. 2024, 49, 100848. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Wang, L.; Zhou, W.; Zhang, Y.; Tian, Y.; Tan, J.; Dong, Y.; Fu, L.; Wu, H. Expression of Fibroblast Activation Protein in Lung Cancer and Its Correlation with Tumor Glucose Metabolism and Histopathology. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2938–2948. [Google Scholar] [CrossRef]
- Wei, Y.; Cheng, K.; Fu, Z.; Zheng, J.; Mu, Z.; Zhao, C.; Liu, X.; Wang, S.; Yu, J.; Yuan, S. [18F]AlF-NOTA-FAPI-04 PET/CT Uptake in Metastatic Lesions on PET/CT Imaging Might Distinguish Different Pathological Types of Lung Cancer. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1671–1681. [Google Scholar] [CrossRef]
- Dendl, K.; Koerber, S.A.; Finck, R.; Mokoala, K.M.G.; Staudinger, F.; Schillings, L.; Heger, U.; Röhrich, M.; Kratochwil, C.; Sathekge, M.; et al. 68Ga-FAPI-PET/CT in Patients with Various Gynecological Malignancies. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4089–4100. [Google Scholar] [CrossRef]
- Sahin, E.; Kus, T.; Aytekin, A.; Uzun, E.; Elboga, U.; Yilmaz, L.; Cayirli, Y.B.; Okuyan, M.; Cimen, V.; Cimen, U. 68Ga-FAPI PET/CT as an Alternative to 18F-FDG PET/CT in the Imaging of Invasive Lobular Breast Carcinoma. J. Nucl. Med. 2024, 65, 512–519. [Google Scholar] [CrossRef]
- Röhrich, M.; Floca, R.; Loi, L.; Adeberg, S.; Windisch, P.; Giesel, F.L.; Kratochwil, C.; Flechsig, P.; Rathke, H.; Lindner, T.; et al. FAP-Specific PET Signaling Shows a Moderately Positive Correlation with Relative CBV and No Correlation with ADC in 13 IDH Wildtype Glioblastomas. Eur. J. Radiol. 2020, 127, 109021. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.; Öberg, K.; Falconi, M.; Krenning, E.P.; Sundin, A.; Perren, A.; Berruti, A. Gastroenteropancreatic Neuroendocrine Neoplasms: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2020, 31, 844–860. [Google Scholar] [CrossRef] [PubMed]
- Fortunati, E.; Argalia, G.; Zanoni, L.; Fanti, S.; Ambrosini, V. New PET Radiotracers for the Imaging of Neuroendocrine Neoplasms. Curr. Treat. Options Oncol. 2022, 23, 703–720. [Google Scholar] [CrossRef]
- Has Simsek, D.; Guzel, Y.; Denizmen, D.; Sanli, Y.; Buyukkaya, F.; Kovan, B.; Komek, H.; Isik, E.G.; Ozkan, Z.G.; Kuyumcu, S. The Inferior Performance of [68Ga]Ga-FAPI-04 PET/CT as a Diagnostic and Theranostic Biomarker in [177Lu]Lu-DOTATATE Refractory Well-Differentiated Neuroendocrine Tumors. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 828–840. [Google Scholar] [CrossRef] [PubMed]
- Harini, K.; Jayanthi, M.R.; Hari, K.S.V.; Batchu, S. A Rare Presentation of Extrahepatic Biliary Neuroendocrine Tumor Diagnosed Using 68Ga-DOTA-TOC Imaging, But Undetectable on 68Ga-FAPI Imaging. Indian J. Nucl. Med. 2024, 39, 155–157. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM Procedure Guidelines for Tumour Imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Shetty, D.; Lee, Y.-S.; Jeong, J.M. 68Ga-Labeled Radiopharmaceuticals for Positron Emission Tomography. Nucl. Med. Mol. Imaging 2010, 44, 233–240. [Google Scholar] [CrossRef]
- Lindner, T.; Altmann, A.; Giesel, F.; Kratochwil, C.; Kleist, C.; Krämer, S.; Mier, W.; Cardinale, J.; Kauczor, H.-U.; Jäger, D.; et al. 18F-labeled tracers targeting fibroblast activation protein. EJNMMI Radiopharm. Chem. 2021, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Giesel, F.L.; Adeberg, S.; Syed, M.; Lindner, T.; Jiménez-Franco, L.D.; Mavriopoulou, E.; Staudinger, F.; Tonndorf-Martini, E.; Regnery, S.; Rieken, S.; et al. FAPI-74 PET/CT Using Either 18 F-AlF or Cold-Kit 68 Ga Labeling: Biodistribution, Radiation Dosimetry, and Tumor Delineation in Lung Cancer Patients. J. Nucl. Med. 2021, 62, 201–207. [Google Scholar] [CrossRef]
- Watabe, T.; Naka, S.; Tatsumi, M.; Kamiya, T.; Kimura, T.; Shintani, Y.; Abe, K.; Miyake, T.; Shimazu, K.; Kobayashi, S.; et al. Initial Evaluation of [18 F]FAPI-74 PET for Various Histopathologically Confirmed Cancers and Benign Lesions. J. Nucl. Med. 2023, 64, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Krasnovskaya, O.O.; Abramchuck, D.; Erofeev, A.; Gorelkin, P.; Kuznetsov, A.; Shemukhin, A.; Beloglazkina, E.K. Recent Advances in 64Cu/67Cu-Based Radiopharmaceuticals. Int. J. Mol. Sci. 2023, 24, 9154. [Google Scholar] [CrossRef] [PubMed]
- Privé, B.M.; Boussihmad, M.A.; Timmermans, B.; van Gemert, W.A.; Peters, S.M.B.; Derks, Y.H.W.; van Lith, S.A.M.; Mehra, N.; Nagarajah, J.; Heskamp, S.; et al. Fibroblast Activation Protein-Targeted Radionuclide Therapy: Background, Opportunities, and Challenges of First (Pre)Clinical Studies. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1906–1918. [Google Scholar] [CrossRef]
- Pashazadeh, A.; de Paiva, E.; Mahmoodian, N.; Friebe, M. Calculation of Beta Radiation Dose of a Circular Y-90 Skin Patch: Analytical and Simulation Methods. Radiat. Phys. Chem. 2020, 166, 108491. [Google Scholar] [CrossRef]
- Ling, S.W.; de Blois, E.; Hooijman, E.; van der Veldt, A.; Brabander, T. Advances in 177Lu-PSMA and 225Ac-PSMA Radionuclide Therapy for Metastatic Castration-Resistant Prostate Cancer. Pharmaceutics 2022, 14, 2166. [Google Scholar] [CrossRef]
- Moon, E.S.; Ballal, S.; Yadav, M.P.; Bal, C.; Van Rymenant, Y.; Stephan, S.; Bracke, A.; Van der Veken, P.; De Meester, I.; Roesch, F. Fibroblast Activation Protein (FAP) Targeting Homodimeric FAP Inhibitor Radiotheranostics: A Step to Improve Tumor Uptake and Retention Time. Am. J. Nucl. Med. Mol. Imaging 2021, 11, 476–491. [Google Scholar]
- ClinicalTrials.gov. Imaging of Solid Tumors Using FAP-2286. Available online: https://clinicaltrials.gov/study/NCT04621435 (accessed on 23 October 2024).
- ClinicalTrials.gov. A Study of 177Lu-FAP-2286 in Advanced Solid Tumors (Lumiere). Available online: https://clinicaltrials.gov/study/NCT04939610 (accessed on 23 October 2024).


| Ligand | Structural Features | Tumour Retention | Clearance Pathway | Lipophilicity | Main Clinical Implication |
|---|---|---|---|---|---|
| FAPI-04 [24,35,36] | Monomeric quinoline-based FAP inhibitor. | Rapid tumour uptake with relatively fast washout. High tumour-to-background contrast. | Predominantly renal | Low | Excellent diagnostic imaging, limited therapeutic retention |
| FAPI-46 [3,30,34] | Modified monomer with increased plasma stability. | Improved tumour retention compared to FAPI-04. Higher tumour uptake and lower uptake in normal organs compared to FAPI-04. | Renal with slower clearance | Moderate | Balanced diagnostic performance with improved theranostic potential |
| FAPI-2286 [33,37] | Peptide-based FAP-targeting ligand | Prolonged tumour retention. | Renal and hepatobiliary. | Higher | Optimised for radionuclide therapy and theranostic applications |
| Site | Radiopharmaceutical | [68Ga]FAPI Tumour Uptake (SUV-Based Metrics) | [18F]FDG Tumour Uptake (SUV-Based Metrics) | No. of Patients | Age/Sex | Ref. |
|---|---|---|---|---|---|---|
| Gastrointestinal and Hepatobiliary Tumours | ||||||
| Colorectal and pancreatic cancer (P) | [68Ga]Ga-DOTA-FAPI-02 | 7.3 | 7.4 | 1 | 55/M and 31/M | [38] |
| Gastric cancer (P) | [68Ga]Ga-FAPI-04 | 9.7 | 4.6 | 44 | 61; 3 M/34 F | [43] |
| Pancreatic cancer (P) | [68Ga]Ga-FAPI-04 | 10.4 | 5.1 | 18 | [43] | |
| Hepatocellular carcinoma (P) | [68Ga]Ga-FAPI-04 | 5.9 ± 3.4 | 6.9 ± 5.0 | 35 | 59.4 ± 6.9; 24 M/1 F | [49] |
| Liver cancer | [68Ga]Ga-FAPI-04 | 12.3 | 3.5 | 6 | - | [51] |
| Thoracic Malignancies | ||||||
| Lung cancer (P) | [68Ga]Ga-FAPI-04 | 11.9 | 4.5 | 8 | 61.5; 47 M/28 F | [40] |
| Lung cancer (P) | [68Ga]Ga-FAPI-04 | 9.7 | 9.8 | 123 | 56.1 ± 11.9; 69 M/54 F | [45] |
| Head and Neck Tumours | ||||||
| Nasopharyngeal carcinoma (P) | [68Ga]Ga-FAPI-04 | 15.8 | 8.9 | 6 | 61.5; 47 M/28 F | [40] |
| Laryngeal cancer (P) | [68Ga]Ga-FAPI-04 | 14.2 | 6.6 | 123 | 56.1 ± 11.9; 69 M/54 F | [45] |
| Breast and Gynaecological Tumours | ||||||
| Breast cancer (P) | [68Ga]Ga-DOTA.SA.FAPI | 6.5 ± 3.3 | 6.2 ± 1.6 | 20 | 46; 20 F | [23] |
| Ovarian cancer (P) | [68Ga]Ga-DOTA-FAPI-04 | 8.9 ± 0.8 | 6.7 ± 1.5 | 2 | 49; 2 F | [23] |
| Cervical cancer (P) | [68Ga]Ga-FAPI-04 | 11.3 | 8.2 | 3 | 61.5; 47 M/28 F | [40] |
| Neuroendocrine and CNS Tumours | ||||||
| Neuroendocrine tumours (P) | [68Ga]Ga-FAPI-04 | 7.8 | 5.7 | 3 | 61.5; 47 M/28 F | [40] |
| Glioma (P) | [68Ga]Ga-FAPI-04 | 3.6 | 5.9 | 4 | 61.5; 47 M/28 F | [40] |
| Intracranial tumours (P) | [68Ga]Ga-FAPI-04 | 5.2 | 17.4 | 123 | 56.1 ± 11.9; 69 M/54 F | [45] |
| Genitourinary Tumours | ||||||
| Renal cell carcinoma (P) | [68Ga]Ga-FAPI-04 | 7.3 | 6.3 | 6 | 62; 7 F/13 M | [50] |
| Prostate cancer (P) | [68Ga]Ga-FAPI-04 | 3.4 | 7.5 | 123 | 56.1 ± 11.9; 69 M/54 F | [45] |
| Metastatic Lesions (All Sites) | ||||||
| Lymph node metastases (M) | [68Ga]Ga-DOTA-FAPI-02 n = 6 [68Ga]Ga-DOTA-FAPI-04 n = 32 [68Ga]Ga-DOTA-FAPI-46 n = 32 [68Ga]Ga-DOTA-FAPI-74 n = 1 | 7.9 | 11.2 | 71 patients (164 metastatic lesions were found in 43 patients) | 60/- | [35] |
| Liver metastases (M) | 9.8 | 8.8 | ||||
| Bone metastases (M) | 7.8 | 7.5 | ||||
| Lung metastases (M) | 6.7 | 11.5 | ||||
| Other M (plural, peritoneal, soft tissue M) | 10.7 | 8.2 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Czuczejko, J.; Małkowski, B.; Nuszkiewicz, J.; Hołyńska-Iwan, I.; Waśniowski, P.; Mądra-Gackowska, K.; Dróżdż, W.; Szewczyk-Golec, K. Radiolabelled FAPI Radiotracers in Oncology: A Comprehensive Review of Current Diagnostic and Emerging Therapeutic Applications. Pharmaceuticals 2026, 19, 89. https://doi.org/10.3390/ph19010089
Czuczejko J, Małkowski B, Nuszkiewicz J, Hołyńska-Iwan I, Waśniowski P, Mądra-Gackowska K, Dróżdż W, Szewczyk-Golec K. Radiolabelled FAPI Radiotracers in Oncology: A Comprehensive Review of Current Diagnostic and Emerging Therapeutic Applications. Pharmaceuticals. 2026; 19(1):89. https://doi.org/10.3390/ph19010089
Chicago/Turabian StyleCzuczejko, Jolanta, Bogdan Małkowski, Jarosław Nuszkiewicz, Iga Hołyńska-Iwan, Paweł Waśniowski, Katarzyna Mądra-Gackowska, Wiktor Dróżdż, and Karolina Szewczyk-Golec. 2026. "Radiolabelled FAPI Radiotracers in Oncology: A Comprehensive Review of Current Diagnostic and Emerging Therapeutic Applications" Pharmaceuticals 19, no. 1: 89. https://doi.org/10.3390/ph19010089
APA StyleCzuczejko, J., Małkowski, B., Nuszkiewicz, J., Hołyńska-Iwan, I., Waśniowski, P., Mądra-Gackowska, K., Dróżdż, W., & Szewczyk-Golec, K. (2026). Radiolabelled FAPI Radiotracers in Oncology: A Comprehensive Review of Current Diagnostic and Emerging Therapeutic Applications. Pharmaceuticals, 19(1), 89. https://doi.org/10.3390/ph19010089

