Impact of Adding GLP-1 Receptor Agonists to Insulin Therapy on Cardiovascular and Microvascular Outcomes in Type 2 Diabetes: A Nationwide Cohort Study from Taiwan
Abstract
1. Introduction
2. Results
2.1. Study Subjects
2.2. Key Findings
2.2.1. GLP-1 RA Versus DPP-4 Inhibitor Use
2.2.2. GLP-1 RA Versus Sulfonylurea Use
2.3. Subgroup Analyses
2.3.1. GLP-1 RA Versus DPP-4 Inhibitor Use
2.3.2. GLP-1 RA Versus Sulfonylurea Use
3. Discussion
3.1. Perspectives for Clinical Practice
3.2. Limitations
4. Materials and Methods
4.1. Study Population and Data Source
4.2. Study Design and Procedures
4.3. Demographics and Related Variables of the Participants
4.4. Main Outcomes
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
T2D | Type 2 diabetes |
GLP-1 RA | Glucagon-like peptide-1 receptor agonist |
NHIRD | National Health Insurance Research Database |
CCI | Charlson Comorbidity Index |
DCSI | Diabetes Complications Severity Index |
CAD | Coronary artery disease |
COPD | Chronic obstructive pulmonary disease |
ESKD | End-stage kidney disease |
MACE | Major adverse cardiovascular events |
HF | Heart failure |
OADs | Oral antidiabetic drugs |
SMD | Standard mean difference |
SD | Standard deviation |
HRs | Hazard ratios |
CIs | Confidence intervals |
SGLT-2 | Sodium glucose cotransporter-2 |
ACEI | Angiotensin-converting enzyme inhibitor |
ARB | Angiotensin receptor blocker |
PY | Person-Year |
IR | Incidence rate |
RR | Relative risk |
References
- Kahn, S.E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 2003, 46, 3–19. [Google Scholar] [CrossRef]
- Gao, Z.; Yan, W.; Fang, Z.; Zhang, Z.; Yuan, L.; Wang, X.; Jia, Z.; Zhu, Y.; Miller, J.D.; Yuan, X.; et al. Annual decline in β-cell function in patients with type 2 diabetes in China. Diabetes Metab. Res. Rev. 2021, 37, e3364. [Google Scholar] [CrossRef]
- Wysham, C.; Shubrook, J. Beta-cell failure in type 2 diabetes: Mechanisms, markers, and clinical implications. Postgrad. Med. 2020, 132, 676–686. [Google Scholar] [CrossRef]
- Elder, D.A.; Hornung, L.N.; Khoury, J.C.; D’Alessio, D.A. β-Cell Function Over Time in Adolescents With New Type 2 Diabetes and Obese Adolescents Without Diabetes. J. Adolesc. Health 2017, 61, 703–708. [Google Scholar] [CrossRef]
- Dabelea, D.; Mayer-Davis, E.J.; Andrews, J.S.; Dolan, L.M.; Pihoker, C.; Hamman, R.F.; Greenbaum, C.; Marcovina, S.; Fujimoto, W.; Linder, B.; et al. Clinical evolution of beta cell function in youth with diabetes: The SEARCH for Diabetes in Youth study. Diabetologia 2012, 55, 3359–3368. [Google Scholar] [CrossRef]
- Diabetes Control and Complications Trial Research Group; Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 2008, 359, 1577–1589. [Google Scholar] [CrossRef] [PubMed]
- Ohkubo, Y.; Kishikawa, H.; Araki, E.; Miyata, T.; Isami, S.; Motoyoshi, S.; Kojima, Y.; Furuyoshi, N.; Shichiri, M. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: A randomized prospective 6-year study. Diabetes Res. Clin. Pract. 1995, 28, 103–117. [Google Scholar] [CrossRef]
- Stark Casagrande, S.; Fradkin, J.E.; Saydah, S.H.; Rust, K.F.; Cowie, C.C. The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988–2010. Diabetes Care 2013, 36, 2271–2279. [Google Scholar] [CrossRef]
- Yoon, J.H.; Min, S.H.; Ahn, C.H.; Cho, Y.M.; Hahn, S. Comparison of non-insulin antidiabetic agents as an add-on drug to insulin therapy in type 2 diabetes: A network meta-analysis. Sci. Rep. 2018, 8, 4095. [Google Scholar] [CrossRef] [PubMed]
- Maiorino, M.I.; Chiodini, P.; Bellastella, G.; Capuano, A.; Esposito, K.; Giugliano, D. Insulin and Glucagon-Like Peptide 1 Receptor Agonist Combination Therapy in Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Care 2017, 40, 614–624. [Google Scholar] [CrossRef]
- Riddle, M.C.; Rosenstock, J.; Gerich, J.; Insulin Glargine 4002 Study Investigators. The treat-to-target trial: Randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care 2003, 26, 3080–3086. [Google Scholar] [CrossRef]
- McFarland, M.S.; Knight, T.N.; Brown, A.; Thomas, J. The continuation of oral medications with the initiation of insulin therapy in type 2 diabetes: A review of the evidence. South Med. J. 2010, 103, 58–65. [Google Scholar] [CrossRef]
- Yki-Järvinen, H. Combination therapies with insulin in type 2 diabetes. Diabetes Care 2001, 24, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Yen, F.S.; Chiang, J.H.; Pan, C.W.; Lin, B.J.; Wei, J.C.; Hsu, C.C. Cardiovascular outcomes of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes on insulin therapy. Diabetes Res. Clin. Pract. 2018, 140, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, U.M.; Andersson, C.; Fosbøl, E.L.; Schramm, T.K.; Vaag, A.; Scheller, N.M.; Torp-Pedersen, C.; Gislason, G.; Køber, L. Sulfonylurea in combination with insulin is associated with increased mortality compared with a combination of insulin and metformin in a retrospective Danish nationwide study. Diabetologia 2015, 58, 50–58. [Google Scholar] [CrossRef][Green Version]
- Balena, R.; Hensley, I.E.; Miller, S.; Barnett, A.H. Combination therapy with GLP-1 receptor agonists and basal insulin: A systematic review of the literature. Diabetes Obes. Metab. 2013, 15, 485–502. [Google Scholar] [CrossRef]
- Holden, S.E.; Jenkins-Jones, S.; Morgan, C.L.; Schernthaner, G.; Currie, C.J. Glucose-lowering with exogenous insulin monotherapy in type 2 diabetes: Dose association with all-cause mortality, cardiovascular events and cancer. Diabetes Obes. Metab. 2015, 17, 350–362. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee, and American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes. Diabetes Care 2022, 45, S125–S143. [Google Scholar] [CrossRef]
- Sattar, N.; Lee, M.M.Y.; Kristensen, S.L.; Branch, K.R.H.; Del Prato, S.; Khurmi, N.S.; Lam, C.S.P.; Lopes, R.D.; McMurray, J.J.V.; Pratley, R.E.; et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021, 9, 653–662. [Google Scholar] [CrossRef]
- Barkas, F.; Elisaf, M.; Milionis, H. Protection against stroke with glucagon-like peptide 1 receptor agonists: A systematic review and meta-analysis. Eur. J. Neurol. 2019, 26, 559–565. [Google Scholar] [CrossRef]
- Talha, K.M.; Green, J.; Filippatos, G.; Pocock, S.; Zannad, F.; Brueckmann, M.; Schueler, E.; Ofstad, A.P.; Ferreira, J.P.; Anker, S.D.; et al. Impact of empagliflozin on insulin needs in patients with heart failure and diabetes: An EMPEROR-Pooled analysis. Diabetes Obes. Metab. 2024, 26, 2578–2587. [Google Scholar] [CrossRef]
- Staszewsky, L.; Baviera, M.; Tettamanti, M.; Colacioppo, P.; Robusto, F.; D’Ettorre, A.; Lepore, V.; Fortino, I.; Bisceglia, L.; Attolini, E.; et al. Insulin treatment in patients with diabetes mellitus and heart failure in the era of new antidiabetic medications. BMJ Open Diabetes Res. Care 2022, 10, e002708. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.E.; Bakris, G.; Baeres, F.M.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef]
- Henricsson, M.; Berntorp, K.; Berntorp, E.; Fernlund, P.; Sundkvist, G. Progression of retinopathy after improved metabolic control in type 2 diabetic patients. Relation to IGF-1 and hemostatic variables. Diabetes Care 1999, 22, 1944–1949. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Yen, F.S.; Wei, J.C.; Shih, Y.H.; Hung, Y.T.; Hsu, T.J.; Hsu, C.C.; Hwu, C.M. Glucagon-like peptide-1 receptor agonists and risk of sight-threatening retinopathy in Taiwanese population: A propensity based cohort study. Diabetes Metab. Syndr. 2024, 18, 103099. [Google Scholar] [CrossRef] [PubMed]
- Peters, E.J.; Childs, M.R.; Wunderlich, R.P.; Harkless, L.B.; Armstrong, D.G.; Lavery, L.A. Functional status of persons with diabetes-related lower-extremity amputations. Diabetes Care 2001, 24, 1799–1804. [Google Scholar] [CrossRef]
- Lin, D.S.; Lee, J.K.; Chen, W.J. Major adverse cardiovascular and limb events in patients with diabetes treated with GLP-1 receptor agonists vs DPP-4 inhibitors. Diabetologia 2021, 64, 1949–1962. [Google Scholar] [CrossRef]
- Yen, F.S.; Chiang, J.H.; Hwu, C.M.; Yen, Y.H.; Lin, B.J.; Wei, J.C.; Hsu, C.C. All-cause mortality of insulin plus dipeptidyl peptidase-4 inhibitors in persons with type 2 diabetes. BMC Endocr. Disord. 2019, 19, 3. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, H.S.; Al-Jabri, B.; Verma, S. Glucagon-like peptide-1 receptor agonists and cardiovascular protection in type 2 diabetes: A pathophysiology-based review of clinical implications. Curr. Opin. Cardiol. 2018, 33, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Yen, F.S.; Wang, H.C.; Pan, C.W.; Wei, J.C.; Hsu, C.C.; Hwu, C.M. Pioglitazone Exposure Reduced the Risk of All-Cause Mortality in Insulin-Treated Patients with Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2020, 105, e401–e409. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Weiner, J.P.; Richards, T.M.; Bleich, S.N.; Segal, J.B. Validating the adapted Diabetes Complications Severity Index in claims data. Am. J. Manag. Care 2012, 18, 721–726. [Google Scholar]
- Sung, S.F.; Hsieh, C.Y.; Lin, H.J.; Chen, Y.W.; Yang, Y.H.; Li, C.Y. Validation of algorithms to identify stroke risk factors in patients with acute ischemic stroke, transient ischemic attack, or intracerebral hemorrhage in an administrative claims database. Int. J. Cardiol. 2016, 215, 277–282. [Google Scholar] [CrossRef] [PubMed]
Variable | DPP-4 Inhibitor Users | GLP-1 RA Users | SMD * | p-Value | ||
---|---|---|---|---|---|---|
(N = 6779) | (N = 6779) | |||||
n | % | n | % | |||
Gender | 0.007 | 0.705 | ||||
Female | 3175 | 46.84 | 3153 | 46.51 | ||
Male | 3604 | 53.16 | 3626 | 53.49 | ||
Age, years | 0.202 | |||||
20–40 | 1479 | 21.82 | 1528 | 22.54 | 0.017 | |
41–60 | 3600 | 53.11 | 3549 | 52.35 | 0.015 | |
61–80 | 1656 | 24.43 | 1639 | 24.18 | 0.006 | |
81–100 | 44 | 0.65 | 63 | 0.93 | 0.032 | |
Mean ± SD | 51.27 | 12.48 | 51.21 | 12.87 | 0.004 | 0.804 |
Comorbidities | ||||||
Obesity | 721 | 10.64 | 774 | 11.42 | 0.025 | 0.146 |
Smoking | 437 | 6.45 | 407 | 6.00 | 0.018 | 0.286 |
Alcohol-related disorders | 216 | 3.19 | 209 | 3.08 | 0.006 | 0.73 |
Hypertension | 4475 | 66.01 | 4489 | 66.22 | 0.004 | 0.799 |
Dyslipidemia | 5769 | 85.10 | 5727 | 84.48 | 0.017 | 0.315 |
Coronary artery disease | 952 | 14.04 | 980 | 14.46 | 0.012 | 0.492 |
Stroke | 401 | 5.92 | 408 | 6.02 | 0.004 | 0.8 |
Heart failure | 110 | 1.62 | 133 | 1.96 | 0.026 | 0.137 |
Atrial fibrillation | 425 | 6.27 | 436 | 6.43 | 0.007 | 0.698 |
Peripheral artery disease | 238 | 3.51 | 232 | 3.42 | 0.005 | 0.778 |
COPD | 564 | 8.32 | 582 | 8.59 | 0.010 | 0.578 |
Cirrhosis | 134 | 1.98 | 120 | 1.77 | 0.015 | 0.375 |
Chronic kidney disease | 721 | 10.64 | 736 | 10.86 | 0.007 | 0.677 |
Retinopathy | 1701 | 25.09 | 1677 | 24.74 | 0.008 | 0.634 |
Cancers | 269 | 3.97 | 288 | 4.25 | 0.014 | 0.411 |
Charlson Comorbidity Index | 0.011 | 0.516 | ||||
≤1 | 5464 | 80.60 | 5434 | 80.16 | ||
>1 | 1315 | 19.40 | 1345 | 19.84 | ||
Diabetes Complications Severity Index | 0.011 | 0.535 | ||||
≤1 | 3708 | 54.70 | 3672 | 54.17 | ||
>1 | 3071 | 45.30 | 3107 | 45.83 | ||
Medications | ||||||
Sulfonylurea | 5591 | 82.48 | 5609 | 82.74 | 0.007 | 0.683 |
SGLT2 inhibitor | 1994 | 29.41 | 2236 | 32.98 | 0.077 | <0.001 |
Thiazolidinedione | 3081 | 45.45 | 3062 | 45.17 | 0.006 | 0.743 |
Alpha-glucosidase inhibitor | 2732 | 40.30 | 2798 | 41.27 | 0.020 | 0.249 |
Metformin | 6544 | 96.53 | 6555 | 96.70 | 0.009 | 0.601 |
Premix insulin | 2082 | 30.71 | 2022 | 29.83 | 0.019 | 0.262 |
Short-acting insulin | 3177 | 46.87 | 3192 | 47.09 | 0.004 | 0.796 |
Basal insulin | 5771 | 85.13 | 5775 | 85.19 | 0.002 | 0.923 |
ACEI | 2005 | 29.58 | 2002 | 29.53 | 0.001 | 0.955 |
ARB | 4010 | 59.15 | 3971 | 58.58 | 0.012 | 0.496 |
α-blocker | 597 | 8.81 | 578 | 8.53 | 0.010 | 0.562 |
β-blocker | 3285 | 48.46 | 3299 | 48.66 | 0.004 | 0.81 |
Calcium-channel blocker | 3735 | 55.10 | 3770 | 55.61 | 0.010 | 0.545 |
Diuretic | 2480 | 36.58 | 2446 | 36.08 | 0.010 | 0.544 |
Statin | 5212 | 76.88 | 5134 | 75.73 | 0.027 | 0.115 |
Aspirin | 2892 | 42.66 | 2905 | 42.85 | 0.004 | 0.821 |
Number of oral antidiabetic drugs | 0.004 | 0.838 | ||||
0–3 | 1539 | 22.70 | 1549 | 22.85 | ||
>3 | 5240 | 77.30 | 5230 | 77.15 | ||
Duration of T2D, years | 0.005 | 0.778 | ||||
≤5 | 2035 | 30.02 | 2020 | 29.80 | ||
>5 | 4744 | 69.98 | 4759 | 70.20 | ||
Mean ± SD | 7.20 | 3.77 | 7.13 | 3.65 | 0.019 | 0.271 |
Outcome | DPP-4 Inhibitor Users | GLP-1 RA Users | cHR | (95% CI) | aHR † | (95% CI) | ||||
---|---|---|---|---|---|---|---|---|---|---|
n | PY | IR | n | PY | IR | |||||
Primary outcomes | ||||||||||
Major adverse cardiovascular events a | 777 | 21,421 | 36.27 | 467 | 23,647 | 19.75 | 0.54 | (0.48, 0.61) *** | 0.52 | (0.46, 0.58) *** |
Major microvascular outcomes b | 385 | 22,248 | 17.30 | 165 | 24,283 | 6.79 | 0.40 | (0.33, 0.48) *** | 0.42 | (0.35, 0.50) *** |
Secondary outcomes | ||||||||||
Hospitalization for coronary artery disease | 359 | 22,317 | 16.09 | 258 | 24,087 | 10.71 | 0.66 | (0.56, 0.78) *** | 0.64 | (0.54, 0.75) *** |
Hospitalization for stroke | 400 | 22,311 | 17.93 | 212 | 24,221 | 8.75 | 0.49 | (0.41, 0.58) *** | 0.48 | (0.40, 0.56) *** |
Hospitalization for heart failure | 231 | 22,656 | 10.20 | 81 | 24,508 | 3.31 | 0.33 | (0.25, 0.42) *** | 0.33 | (0.25, 0.42) *** |
End-stage kidney disease | 158 | 22,826 | 6.92 | 12 | 24,635 | 0.49 | 0.07 | (0.04, 0.13) *** | 0.08 | (0.04, 0.14) *** |
Sight-threatening retinopathy | 234 | 22,538 | 10.38 | 150 | 24,308 | 6.17 | 0.60 | (0.49, 0.73) *** | 0.62 | (0.50, 0.76) *** |
Leg amputation | 20 | 23,114 | 0.87 | 3 | 24,641 | 0.12 | 0.15 | (0.05, 0.52) ** | 0.16 | (0.05, 0.57) ** |
All-cause mortality | 519 | 23,136 | 22.43 | 225 | 24,650 | 9.13 | 0.41 | (0.35, 0.48) *** | 0.38 | (0.32, 0.44) *** |
Outcome | Sulfonylurea Users | GLP-1 RA Users | cHR | (95% CI) | aHR † | (95% CI) | ||||
---|---|---|---|---|---|---|---|---|---|---|
n | PY | IR | n | PY | IR | |||||
Primary outcomes | ||||||||||
Major adverse cardiovascular events a | 595 | 16,482 | 36.10 | 441 | 18,184 | 24.25 | 0.68 | (0.60, 0.77) *** | 0.66 | (0.58, 0.75) *** |
Major microvascular outcomes b | 242 | 17,124 | 14.13 | 177 | 18,631 | 9.50 | 0.69 | (0.57, 0.83) *** | 0.68 | (0.56, 0.82) *** |
Secondary outcomes | ||||||||||
Hospitalization for coronary artery disease | 264 | 17,101 | 15.44 | 216 | 18,630 | 11.59 | 0.76 | (0.64, 0.91) ** | 0.74 | (0.61, 0.88) ** |
Hospitalization for stroke | 325 | 17,060 | 19.05 | 225 | 18,598 | 12.10 | 0.64 | (0.54, 0.76) *** | 0.64 | (0.54, 0.76) *** |
Hospitalization for heart failure | 160 | 17,399 | 9.20 | 92 | 18,904 | 4.87 | 0.54 | (0.41, 0.69) *** | 0.54 | (0.42, 0.70) *** |
End-stage kidney disease | 100 | 17,478 | 5.72 | 39 | 18,988 | 2.05 | 0.37 | (0.26, 0.54) *** | 0.39 | (0.27, 0.57) *** |
Sight-threatening retinopathy | 148 | 17,332 | 8.54 | 137 | 18,696 | 7.33 | 0.87 | (0.69, 1.09) | 0.85 | (0.67, 1.08) |
Leg amputation | 16 | 17,664 | 0.91 | 4 | 19,045 | 0.21 | 0.26 | (0.09, 0.79) * | 0.29 | (0.09, 0.91) * |
All-cause mortality | 431 | 17,695 | 24.36 | 210 | 19,052 | 11.02 | 0.46 | (0.39, 0.54) *** | 0.46 | (0.39, 0.54) *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, F.-S.; Wei, J.C.-C.; Sung, C.-Y.; Li, P.-Y.; Tsai, F.-J.; Hsu, C.-C.; Hwu, C.-M. Impact of Adding GLP-1 Receptor Agonists to Insulin Therapy on Cardiovascular and Microvascular Outcomes in Type 2 Diabetes: A Nationwide Cohort Study from Taiwan. Pharmaceuticals 2025, 18, 1368. https://doi.org/10.3390/ph18091368
Yen F-S, Wei JC-C, Sung C-Y, Li P-Y, Tsai F-J, Hsu C-C, Hwu C-M. Impact of Adding GLP-1 Receptor Agonists to Insulin Therapy on Cardiovascular and Microvascular Outcomes in Type 2 Diabetes: A Nationwide Cohort Study from Taiwan. Pharmaceuticals. 2025; 18(9):1368. https://doi.org/10.3390/ph18091368
Chicago/Turabian StyleYen, Fu-Shun, James Cheng-Chung Wei, Chen-Yu Sung, Pei-Yun Li, Fuu-Jen Tsai, Chih-Cheng Hsu, and Chii-Min Hwu. 2025. "Impact of Adding GLP-1 Receptor Agonists to Insulin Therapy on Cardiovascular and Microvascular Outcomes in Type 2 Diabetes: A Nationwide Cohort Study from Taiwan" Pharmaceuticals 18, no. 9: 1368. https://doi.org/10.3390/ph18091368
APA StyleYen, F.-S., Wei, J. C.-C., Sung, C.-Y., Li, P.-Y., Tsai, F.-J., Hsu, C.-C., & Hwu, C.-M. (2025). Impact of Adding GLP-1 Receptor Agonists to Insulin Therapy on Cardiovascular and Microvascular Outcomes in Type 2 Diabetes: A Nationwide Cohort Study from Taiwan. Pharmaceuticals, 18(9), 1368. https://doi.org/10.3390/ph18091368