Pharmacogenetics and the Response to Antidepressants in Major Depressive Disorder
Abstract
1. Introduction
2. Methodology
3. Genetic Influence on Major Depressive Disorder and Antidepressant Treatment
4. Major Depressive Disorder and Pharmacogenetics Related to Neurotransmitters, Their Receptors, and Neurotransmitter Transporters
Antidepressant | Relevant Genotype | Gene or Enzyme | Metabolism Alteration | Clinical Implications | Ethnicity | Reference |
---|---|---|---|---|---|---|
Citalopram | 5-HTTLPR L/L | SLC6A4 (SERT) | Higher remission rate | L/L genotype shows a higher remission rate (80%) compared to other genotypes (47%) | They do not provide data to determine ethnicity | [26] |
Paroxetine | C/C at SNP 102 T/C | 5-HT2A | Elevated side effects | Higher incidence of side effects; no effects found with mirtazapine treatment | They do not provide data to determine ethnicity | [29] |
Fluvoxamine | L allele | SLC6A4 (SERT) | More favorable response | Individuals with the L allele have a better response to SSRIs compared to individuals with the S/S genotype | Chinese Han | [30] |
Escitalopram | 5-HTTLPR L/L | SLC6A4 (SERT) | Ethnicity-dependent response | L/L genotype shows a more significant reduction in depressive symptoms in whites compared to Koreans | Chinese Han | [31] |
Dopamine D4 | rs1800544 | DRD4 | Positive response to SSRIs | Polymorphisms associated with positive response to SSRIs after six weeks of treatment | Caucasians | [36] |
NET | rs5569, rs2242446 C/C | NET | Protection against depressive episodes | C/C genotype associated with lower risk of depressive episodes; variability found between populations | They do not provide data to determine ethnicity | [37] |
GNB3 | C825T T/T | GNB3 | Improved response and side effects | T/T genotype associated with more effective response and less insomnia; increased weight gain | They do not provide data to determine ethnicity | [40] |
β-arrestin 2 | rs452246 GG/GT | ARRB2 | Inferior antidepressant response | GG/GT genotypes show inferior antidepressant response compared to other genotypes | They do not provide data to determine ethnicity | [41] |
5. Pharmacogenetics Related to Neuroplasticity and Growth Factors
Gene or Enzyme | Relevant Genotype | Pathway or Function | Effect on Antidepressant Response | Clinical Implications | Ethnicity | References |
---|---|---|---|---|---|---|
MAPK1 | rs6928 | MAPK pathway, neuroplasticity | Positive effect on response and remission with venlafaxine and escitalopram | Enhances the effectiveness of antidepressants by influencing neuroplasticity | They do not provide data to determine ethnicity | [43] |
BDNF | rs12273539, rs11030103, rs6265, rs28722151, rs41282918, rs11030101 | Neurogenesis, brain plasticity | Associated with MDD diagnosis; rs61888800 contributes to better antidepressant effects with desipramine and fluoxetine | Variations may impact emotional vulnerability and recovery; treatment effects are genotype-dependent | Mixed-race (Mexican American) and Hispanic | [19,45,46] |
TrkB | rs2289657, rs56142442 | BDNF receptor, neuroplasticity | Positive response to desipramine treatment in depressed patients | Genetic variations may enhance antidepressant efficacy by influencing neuroplasticity | Mixed-race (Mexican American) | [19] |
6. Pharmacogenetics Related to the Inflammatory Response
Gene or Enzyme | Relevant Genotype | Pathway or Function | Effect on Antidepressant Response | Clinical Implications | Ethnicity | References |
---|---|---|---|---|---|---|
TNF-α | Not specified | Inflammatory response, serotonin transport | Increased TNF-α levels are associated with a lack of response to escitalopram; LTA is also a biomarker for escitalopram response | Variants may influence response to SSRIs; TNF-α impacts antidepressant effectiveness | They do not provide data to determine ethnicity | [56,60] |
IL-6 | rs2066992, rs10242595 | Inflammatory response, gene regulation | Carriers of the T allele of rs2066992 show better response to duloxetine | Variants in IL-6 may help predict response to duloxetine | Caucasians | [2] |
CRHR1 | rs28364032 | HPA axis, stress response | Associated with antidepressant remission; the A allele reduces CRHR1 protein expression | Genetic variation may enhance antidepressant response by influencing stress response pathways | They do not provide data to determine ethnicity | [55] |
Various genes (e.g., METTL3, PSMD13, TYK2) | Not specified | Inflammatory and neuropsychiatric processes | Identified in rare-variant analysis related to antidepressant remission | Suggests the interaction of inflammatory factors in antidepressant response | Caucasians | [61] |
7. Pharmacogenetics Related to CYP450 and Antidepressant Metabolism
Gene or Enzyme | Function or Pathway | Impact on Response | Clinical Implications | Ethnicity | References |
---|---|---|---|---|---|
CYP2D6 (Poor metabolizer) | Metabolism of various antidepressants | Variable drug effect: increased/decreased | Risk of treatment resistance and adverse effects; pharmacogenetic testing recommended | Caucasians | [62,63,65] |
CYP2C19 (Poor metabolizer) | Metabolism of drugs like escitalopram | Increased drug exposure | Elevated risk of adverse effects; personalized dosing necessary | African ancestry | [68] |
CYP3A4 and CYP1A2 | Metabolism of antidepressants like nortriptyline | Affects drug release and elimination | Requires dosing adjustments based on genotype | Caucasians | [66] |
CYP2B6 (6/6 genotype) | Metabolism of mirtazapine | Reduced enzyme function; increased effect | Greater reduction in depressive symptoms; dosage adjustments may be needed | They do not provide data to determine ethnicity | [67] |
CYP2B6 (6/6 genotype) | Metabolism of mirtazapine | Reduced enzyme function; increased effect | More significant reduction in depressive symptoms; dosage adjustments may be needed | They do not provide data to determine ethnicity | [67] |
8. Final Considerations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Winner, J.G.; Carhart, J.M.; Altar, C.A.; Allen, J.D.; Dechairo, B.M. A prospective, randomized, double-blind study assessing the clinical impact of integrated pharmacogenomic testing for major depressive disorder. Discov. Med. 2013, 16, 219–227. [Google Scholar] [PubMed]
- Maciukiewicz, M.; Marshe, V.S.; Tiwari, A.K.; Fonseka, T.M.; Freeman, N.; Rotzinger, S.; Foster, J.A.; Kennedy, J.L.; Kennedy, S.H.; Müller, D.J. Genetic variation in IL-1β, IL-2, IL-6, TSPO and BDNF and response to duloxetine or placebo treatment in major depressive disorder. Pharmacogenomics 2015, 16, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Verkhratsky, A.; Parpura, V.; Scuderi, C.; Li, B. Astroglial Serotonin Receptors as the Central Target of Classic Antidepressants. In Astrocytes in Psychiatric Disorders; Li, B., Parpura, V., Verkhratsky, A., Scuderi, C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 317–347. [Google Scholar]
- Popova, V.; Daly, E.J.; Trivedi, M.; Cooper, K.; Lane, R.; Lim, P.; Mazzucco, C.; Hough, D.; Thase, M.E.; Shelton, R.C.; et al. Efficacy and Safety of Flexibly Dosed Esketamine Nasal Spray Combined with a Newly Initiated Oral Antidepressant in Treatment-Resistant Depression: A Randomized Double-Blind Active-Controlled Study. Am. J. Psychiatry 2019, 176, 428–438, Correction in Am. J. Psychiatry 2019, 176, 669. [Google Scholar] [CrossRef]
- Perlis, R.H. A clinical risk stratification tool for predicting treatment resistance in major depressive disorder. Biol. Psychiatry 2013, 74, 7–14. [Google Scholar] [CrossRef]
- Tunnard, C.; Rane, L.J.; Wooderson, S.C.; Markopoulou, K.; Poon, L.; Fekadu, A.; Juruena, M.; Cleare, A.J. The impact of childhood adversity on suicidality and clinical course in treatment-resistant depression. J. Affect. Disord. 2014, 152–154, 122–130. [Google Scholar] [CrossRef]
- Serretti, A. Genetics and pharmacogenetics of mood disorders. Psychiatr. Pol. 2017, 51, 197–203. [Google Scholar] [CrossRef]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Radosavljevic, M.; Svob Strac, D.; Jancic, J.; Samardzic, J. The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy. Genes 2023, 14, 1095. [Google Scholar] [CrossRef]
- Grant, C.W.; Delaney, K.; Jackson, L.E.; Bobo, J.; Hassett, L.C.; Wang, L.; Weinshilboum, R.M.; Croarkin, P.E.; Gentry, M.T.; Moyer, A.M.; et al. Comprehensive Characterization of Antidepressant Pharmacogenetics: A Systematic Review of Studies in Major Depressive Disorder. Clin. Transl. Sci. 2025, 18, e70255. [Google Scholar] [CrossRef]
- Fabbri, C.; Serretti, A. Pharmacogenetics of Major Depressive Disorder: Top Genes and Pathways Toward Clinical Applications. Curr. Psychiatry Rep. 2015, 17, 50. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, S.; Drago, A.; Fabbri, C.; Gibiino, S.; Calati, R.; Serretti, A. Pharmacogenetics of antidepressant response. J. Psychiatry Neurosci. 2011, 36, 87–113. [Google Scholar] [CrossRef] [PubMed]
- Keers, R.; Aitchison, K.J. Pharmacogenetics of antidepressant response. Expert Rev. Neurother. 2011, 11, 101–125. [Google Scholar] [CrossRef]
- Emslie, G.J.; Mayes, T.L.; Kennard, B.D.; Chahal, Z.; Nakonezny, P.A.; Moorehead, A. Predictors and Moderators of Relapse in Children and Adolescents with Major Depressive Disorder. J. Clin. Psychiatry 2018, 79, 15m10330. [Google Scholar] [CrossRef] [PubMed]
- Howard, D.M.; Adams, M.J.; Clarke, T.-K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019, 22, 343–352. [Google Scholar] [CrossRef]
- Knowles, E.E.M.; Huynh, K.; Meikle, P.J.; Göring, H.H.H.; Olvera, R.L.; Mathias, S.R.; Duggirala, R.; Almasy, L.; Blangero, J.; Curran, J.E.; et al. The lipidome in major depressive disorder: Shared genetic influence for ether-phosphatidylcholines, a plasma-based phenotype related to inflammation, and disease risk. Eur. Psychiatry 2017, 43, 44–50. [Google Scholar] [CrossRef]
- Menezes, I.C.; Von Werne Baes, C.; Fígaro-Drumond, F.V.; Dias Macedo, B.B.; Bueno, A.C.; Lacchini, R.; Feijó de Mello, M.; de Castro, M.; Juruena, M.F. Differential Diagnosis of Major Depressive Disorder and Bipolar Disorder: Genetic and Hormonal Assessment and the Influence of Early-Life Stress. Brain Sci. 2022, 12, 1476. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, L.; Wang, D.; Guan, S.; Lu, P.; Xu, X.; Xu, H. Influence of early life stress on depression: From the perspective of neuroendocrine to the participation of gut microbiota. Aging 2021, 13, 25588–25601. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Wong, M.-L.; Licinio, J. Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: Association with major depression and antidepressant response in Mexican-Americans. Mol. Psychiatry 2009, 14, 1105–1118. [Google Scholar] [CrossRef]
- Breitenstein, B.; Scheuer, S.; Brückl, T.M.; Meyer, J.; Ising, M.; Uhr, M.; Holsboer, F. Association of ABCB1 gene variants, plasma antidepressant concentration, and treatment response: Results from a randomized clinical study. J. Psychiatr. Res. 2016, 73, 86–95. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Jiang, M.-Y.; Kan, Z.-M.; Chu, Y. Influence of 5-HTR2A genetic polymorphisms on the efficacy of antidepressants in the treatment of major depressive disorder: A meta-analysis. J. Affect. Disord. 2014, 168, 430–438. [Google Scholar] [CrossRef]
- Ignácio, Z.M.; Réus, G.Z.; Abelaira, H.M.; Quevedo, J. Epigenetic and epistatic interactions between serotonin transporter and brain-derived neurotrophic factor genetic polymorphism: Insights in depression. Neuroscience 2014, 275, 455–468. [Google Scholar] [CrossRef]
- Tanabe, A.; Nomura, S. Pathophysiology of depression. Nihon. Rinsho Jpn. J. Clin. Med. 2007, 65, 1585–1590. [Google Scholar] [PubMed]
- Arias, B.; Catalán, R.; Gastó, C.; Gutiérrez, B.; Fañanás, L. 5-HTTLPR Polymorphism of the Serotonin Transporter Gene Predicts Non-Remission in Major Depression Patients Treated with Citalopram in a 12-Weeks Follow Up Study. J. Clin. Psychopharmacol. 2003, 23, 563–567. [Google Scholar] [CrossRef]
- Serretti, A.; Cusin, C.; Rossini, D.; Artioli, P.; Dotoli, D.; Zanardi, R. Further evidence of a combined effect of SERTPR and TPH on SSRIs response in mood disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2004, 129B, 36–40. [Google Scholar] [CrossRef]
- Shiroma, P.R.; Drews, M.S.; Geske, J.R.; Mrazek, D.A. SLC6A4 Polymorphisms and Age of Onset in Late-life Depression on Treatment Outcomes with Citalopram: A Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Report. Am. J. Geriatr. Psychiatry 2014, 22, 1140–1148. [Google Scholar] [CrossRef]
- Umene-Nakano, W.; Yoshimura, R.; Ueda, N.; Suzuki, A.; Ikenouchi-Sugita, A.; Hori, H.; Otani, K.; Nakamura, J. Predictive factors for responding to sertraline treatment: Views from plasma catecholamine metabolites and serotonin transporter polymorphism. J. Psychopharmacol. 2010, 24, 1764–1771. [Google Scholar] [CrossRef]
- Hu, X.-Z.; Rush, A.J.; Charney, D.; Wilson, A.F.; Sorant, A.J.M.; Papanicolaou, G.J.; Fava, M.; Trivedi, M.H.; Wisniewski, S.R.; Laje, G.; et al. Association Between a Functional Serotonin Transporter Promoter Polymorphism and Citalopram Treatment in Adult Outpatients with Major Depression. Arch. Gen. Psychiatry 2007, 64, 783–792. [Google Scholar] [CrossRef]
- Murphy, G.M.; Kremer, C.; Rodrigues, H.E.; Schatzberg, A.F. Pharmacogenetics of Antidepressant Medication Intolerance. Am. J. Psychiatry 2003, 160, 1830–1835. [Google Scholar] [CrossRef]
- Kato, M.; Ikenaga, Y.; Wakeno, M.; Okugawa, G.; Nobuhara, K.; Fukuda, T.; Fukuda, K.; Azuma, J.; Kinoshita, T. Controlled clinical comparison of paroxetine and fluvoxamine considering the serotonin transporter promoter polymorphism. Int. Clin. Psychopharmacol. 2005, 20, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Bousman, C.A.; Sarris, J.; Won, E.-S.; Chang, H.S.; Singh, A.; Lee, H.Y.; Ham, B.J.; Tan, C.H.; Lee, M.S.; Ng, C.H. Escitalopram Efficacy in Depression: A Cross-Ethnicity Examination of the Serotonin Transporter Promoter Polymorphism. J. Clin. Psychopharmacol. 2014, 34, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Walderhaug, E.; Magnusson, A.; Neumeister, A.; Lappalainen, J.; Lunde, H.; Refsum, H.; Landrø, N.I. Interactive Effects of Sex and 5-HTTLPR on Mood and Impulsivity During Tryptophan Depletion in Healthy People. Biol. Psychiatry 2007, 62, 593–599. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Carracedo, A.; Amigo, O.M.; Pellicer, A.L.; Talib, L.; Carvalho, A.F.; Lotufo, P.A.; Benseñor, I.M.; Gattaz, W.; Cappi, C. Association of BDNF, HTR2A, TPH1, SLC6A4, and COMT polymorphisms with tDCS and escitalopram efficacy: Ancillary analysis of a double-blind, placebo-controlled trial. Braz. J. Psychiatry 2020, 42, 128–135. [Google Scholar] [CrossRef]
- Gressier, F.; Bouaziz, E.; Verstuyft, C.; Hardy, P.; Becquemont, L.; Corruble, E. 5-HTTLPR modulates antidepressant efficacy in depressed women. Psychiatr. Genet. 2009, 19, 195–200. [Google Scholar] [CrossRef]
- Lewis, G.; Mulligan, J.; Wiles, N.; Cowen, P.; Craddock, N.; Ikeda, M.; Grozeva, D.; Mason, V.; Nutt, D.; Sharp, D.; et al. Polymorphism of the 5-HT transporter and response to antidepressants: Randomised controlled trial. Br. J. Psychiatry 2011, 198, 464–471. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, Y.; Zhang, X.; Yu, T.; He, G.; Sun, X.L. TPH, SLC6A2, SLC6A3, DRD2 and DRD4 Polymorphisms and Neuroendocrine Factors Predict SSRIs Treatment Outcome in the Chinese Population with Major Depression. Pharmacopsychiatry 2015, 48, 95–103. [Google Scholar] [CrossRef]
- Pan, Y.; Cheng, Q.; Shan, M.-S.; Yan, J. Association between polymorphism of the norepinephrine transporter gene rs2242446 and rs5669 loci and depression disorders. Int. J. Clin. Exp. Med. 2015, 8, 18837–18842. [Google Scholar] [PubMed]
- Ryu, S.H.; Lee, S.H.; Lee, H.J.; Cha, J.H.; Ham, B.J.; Han, C.S.; Choi, M.J.; Lee, M.S. Association between norepinephrine transporter gene polymorphism and major depression. Neuropsychobiology. 2004, 49, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.-X.; Li, H.-F.; Zhao, X.-F.; Pang, J.Y.; Liu, Q.; Xie, G.R. Association between T-182C, G1287A polymorphism in NET gene and suicidality in major depressive disorder in Chinese patients. Int. J. Psychiatry Clin. Pract. 2018, 22, 304–309. [Google Scholar] [CrossRef]
- Keers, R.; Bonvicini, C.; Scassellati, C.; Uher, R.; Placentino, A.; Giovannini, C.; Rietschel, M.; Henigsberg, N.; Kozel, D.; Mors, O.; et al. Variation in GNB3 predicts response and adverse reactions to antidepressants. J. Psychopharmacol. 2011, 25, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Petit, A.-C.; El Asmar, K.; David, D.J.; Gardier, A.M.; Becquemont, L.; Fève, B.; Verstuyft, C.; Corruble, E. The association of β-arrestin2 polymorphisms with response to antidepressant treatment in depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 81, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Mikoteit, T.; Beck, J.; Eckert, A.; Hemmeter, U.; Brand, S.; Bischof, R.; Holsboer-Trachsler, E.; Delini-Stula, A. High baseline BDNF serum levels and early psychopathological improvement are predictive of treatment outcome in major depression. Psychopharmacology 2014, 231, 2955–2965. [Google Scholar] [CrossRef]
- Fabbri, C.; Crisafulli, C.; Calati, R.; Albani, D.; Forloni, G.; Calabrò, M.; Martines, R.; Kasper, S.; Zohar, J.; Juven-Wetzler, A.; et al. Neuroplasticity and second messenger pathways in antidepressant efficacy: Pharmacogenetic results from a prospective trial investigating treatment resistance. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 723–735. [Google Scholar] [CrossRef]
- Molteni, R.; Ying, Z.; Gómez-Pinilla, F. Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur. J. Neurosci. 2002, 16, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Schneider, E.; Doll, J.P.K.; Schweinfurth, N.; Kettelhack, C.; Schaub, A.C.; Yamanbaeva, G.; Varghese, N.; Mählmann, L.; Brand, S.; Eckert, A.; et al. Effect of short-term, high-dose probiotic supplementation on cognition, related brain functions and BDNF in patients with depression: A secondary analysis of a randomized controlled trial. J. Psychiatry Neurosci. 2023, 48, E23–E33. [Google Scholar] [CrossRef]
- Szuhany, K.L.; Otto, M.W. Assessing BDNF as a mediator of the effects of exercise on depression. J. Psychiatr. Res. 2020, 123, 114–118. [Google Scholar] [CrossRef]
- Rawson, K.S.; Dixon, D.; Nowotny, P.; Ricci, W.M.; Binder, E.F.; Rodebaugh, T.L.; Wendleton, L.; Doré, P.; Lenze, E.J. Association of functional polymorphisms from brain-derived neurotrophic factor and serotonin-related genes with depressive symptoms after a medical stressor in older adults. PLoS ONE 2015, 10, e0120685. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yao, W.; Hashimoto, K. Brain-derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-related Depression and Potential Therapeutic Targets. Curr. Neuropharmacol. 2016, 14, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Pain, O.; Hodgson, K.; Trubetskoy, V.; Ripke, S.; Marshe, V.S.; Adams, M.J.; Byrne, E.M.; Campos, A.I.; Carrillo-Roa, T.; Cattaneo, A.; et al. Identifying the Common Genetic Basis of Antidepressant Response. Biol. Psychiatry Glob. Open Sci. 2022, 2, 115–126. [Google Scholar] [CrossRef]
- McGrory, C.L.; Ryan, K.M.; Gallagher, B.; McLoughlin, D.M. Vascular endothelial growth factor and pigment epithelial-derived factor in the peripheral response to ketamine. J. Affect. Disord. 2020, 273, 380–383. [Google Scholar] [CrossRef]
- Tsai, S.-J.; Hong, C.-J.; Liou, Y.-J.; Chen, T.J.; Chen, M.L.; Hou, S.J.; Yen, F.C.; Yu, Y.W. Haplotype analysis of single nucleotide polymorphisms in the vascular endothelial growth factor (VEGFA) gene and antidepressant treatment response in major depressive disorder. Psychiatry Res. 2009, 169, 113–117. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, M.; Hao, W.; Wang, Y.; Zhang, T.; Liu, C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl. Psychiatry 2023, 13, 5. [Google Scholar] [CrossRef]
- Li, W.; Ali, T.; He, K.; Liu, Z.; Shah, F.A.; Ren, Q.; Liu, Y.; Jiang, A.; Li, S. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression. Brain Behav. Immun. 2021, 92, 10–24. [Google Scholar] [CrossRef]
- Won, E.; Na, K.-S.; Kim, Y.-K. Associations between Melatonin, Neuroinflammation, and Brain Alterations in Depression. Int. J. Mol. Sci. 2021, 23, 305. [Google Scholar] [CrossRef]
- Geng, L.; Ye, D.; Shi, Y.; Xu, Z.; Pu, M.J.; Li, Z.Y.; Li, X.L.; Li, Y.; Zhang, Z.J. Influence of Genetic Polymorphisms Involved in the Hypothalamic–Pituitary–Adrenal Axis and their Interactions with Environmental Factors on Antidepressant Response. CNS Neurosci. Ther. 2014, 20, 237–243. [Google Scholar] [CrossRef]
- Powell, T.R.; Schalkwyk, L.C.; Heffernan, A.L.; Breen, G.; Lawrence, T.; Price, T.; Farmer, A.E.; Aitchison, K.J.; Craig, I.W.; Danese, A.; et al. Tumor necrosis factor and its targets in the inflammatory cytokine pathway are identified as putative transcriptomic biomarkers for escitalopram response. Eur. Neuropsychopharmacol. 2013, 23, 1105–1114. [Google Scholar] [CrossRef]
- Zwicker, A.; Fabbri, C.; Rietschel, M.; Hauser, J.; Mors, O.; Maier, W.; Zobel, A.; Farmer, A.; Aitchison, K.J.; McGuffin, P.; et al. Genetic disposition to inflammation and response to antidepressants in major depressive disorder. J. Psychiatr. Res. 2018, 105, 17–22. [Google Scholar] [CrossRef]
- Bortolato, B.; Carvalho, A.F.; Soczynska, J.K.; Perini, G.I.; McIntyre, R.S. The Involvement of TNF-α in Cognitive Dysfunction Associated with Major Depressive Disorder: An Opportunity for Domain Specific Treatments. Curr. Neuropharmacol. 2015, 13, 558–576. [Google Scholar] [CrossRef]
- Caldito, N.G. Role of tumor necrosis factor-alpha in the central nervous system: A focus on autoimmune disorders. Front. Immunol. 2023, 14, 1213448. [Google Scholar] [CrossRef] [PubMed]
- Schiepers, O.J.G.; Wichers, M.C.; Maes, M. Cytokines and major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2005, 29, 201–217. [Google Scholar] [CrossRef]
- Wong, M.-L.; Arcos-Burgos, M.; Liu, S.; Licinio, A.W.; Yu, C.; Chin, E.W.M.; Yao, W.D.; Lu, X.Y.; Bornstein, S.R.; Licinio, J. Rare Functional Variants Associated with Antidepressant Remission in Mexican-Americans. J. Affect. Disord. 2021, 279, 491–500. [Google Scholar] [CrossRef]
- Hodgson, K.; Tansey, K.; Dernovšek, M.Z.; Hauser, J.; Henigsberg, N.; Maier, W.; Mors, O.; Placentino, A.; Rietschel, M.; Souery, D.; et al. Genetic differences in cytochrome P450 enzymes and antidepressant treatment response. J. Psychopharmacol. 2014, 28, 133–141. [Google Scholar] [CrossRef]
- Tornio, A.; Backman, J.T. Cytochrome P450 in Pharmacogenetics: An Update. In Advances in Pharmacology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–32. [Google Scholar]
- Shah, R.R.; Gaedigk, A.; LLerena, A.; Eichelbaum, M.; Stingl, J.; Smith, R.L. CYP450 genotype and pharmacogenetic association studies: A critical appraisal. Pharmacogenomics 2016, 17, 259–275. [Google Scholar] [CrossRef]
- Baumann, P.; Nil, R.; Souche, A.; Montaldi, S.; Baettig, D.; Lambert, S.; Uehlinger, C.; Kasas, A.; Amey, M.; Jonzier-Perey, M. A Double-Blind, Placebo-Controlled Study of Citalopram With and Without Lithium in the Treatment of Therapy-Resistant Depressive Patients: A Clinical, Pharmacokinetic, and Pharmacogenetic Investigation. J. Clin. Psychopharmacol. 1996, 16, 307–314. [Google Scholar] [CrossRef]
- Kvist, E.E.; Al-Shurbaji, A.; Dahl, M.-L.; Nordin, C.; Alván, G.; Ståhle, L. Quantitative Pharmacogenetics of Nortriptyline: A Novel Approach. Clin. Pharmacokinet. 2001, 40, 869–877. [Google Scholar] [CrossRef]
- Sirot, E.J.; Harenberg, S.; Vandel, P.; Lima, C.A.M.; Perrenoud, P.; Kemmerling, K.; Zullino, D.F.; Hilleret, H.; Crettol, S.; Jonzier-Perey, M.; et al. Multicenter Study on the Clinical Effectiveness, Pharmacokinetics, and Pharmacogenetics of Mirtazapine in Depression. J. Clin. Psychopharmacol. 2012, 32, 622–629. [Google Scholar] [CrossRef]
- Milosavljevic, F.; Bukvic, N.; Pavlovic, Z.; Miljevic, C.; Pešic, V.; Molden, E.; Ingelman-Sundberg, M.; Leucht, S.; Jukic, M.M. Association of CYP2C19 and CYP2D6 Poor and Intermediate Metabolizer Status with Antidepressant and Antipsychotic Exposure: A Systematic Review and Meta-analysis. JAMA Psychiatry 2021, 78, 270–280. [Google Scholar] [CrossRef]
- Kee, P.S.; Maggo, S.D.S.; Kennedy, M.A.; Chin, P.K.L. The pharmacogenetics of CYP2D6 and CYP2C19 in a case series of antidepressant responses. Front. Pharmacol. 2023, 14, 1080117. [Google Scholar] [CrossRef]
- Rajman, I.; Knapp, L.; Morgan, T.; Masimirembwa, C. African Genetic Diversity: Implications for Cytochrome P450-mediated Drug Metabolism and Drug Development. EBioMedicine 2017, 17, 67–74. [Google Scholar] [CrossRef]
- Bradford, L.D. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2002, 3, 229–243. [Google Scholar] [CrossRef]
- Lee, K.Y.; Jeong, S.H.; Kim, S.H.; Ahn, Y.M.; Kim, Y.S.; Jung, H.Y.; Bang, Y.W.; Joo, E.J. Genetic Role of BDNF Val66Met and 5-HTTLPR Polymorphisms on Depressive Disorder. Psychiatry Investig. 2014, 11, 192–199. [Google Scholar] [CrossRef][Green Version]
- Perlis, R.H.; Fijal, B.; Dharia, S.; Heinloth, A.N.; Houston, J.P. Failure to Replicate Genetic Associations with Antidepressant Treatment Response in Duloxetine-Treated Patients. Biol. Psychiatry 2010, 67, 1110–1113. [Google Scholar] [CrossRef]
- Jethwa, S.; Almomani, H.; Donyai, P. 459 Clinical Utility of Pharmacogenetic Tests When Prescribing Antidepressant Therapy for Depression, A Systematic Review and Meta-analysis of Randomised Controlled Trials. Int. J. Pharm. Pract. 2023, 31, i15. [Google Scholar] [CrossRef]
- Lorvellec, M.-A.; Sipahimalani, G.; Lahutte, B.; Delacour, H.; Baldacci, A.; Saguin, E. Pharmacogenetics testing for poor response to antidepressants: A transnosographic case series. Front. Pharmacol. 2024, 15, 1440523. [Google Scholar] [CrossRef]
- Hatano, M.; Ikeda, M.; Saito, T.; Miyata, M.; Iwata, N.; Yamada, S. Estimating the incidence of actionable drug-gene interactions in Japanese patients with major depressive disorder. Front. Psychiatry 2025, 16, 1542000. [Google Scholar] [CrossRef]
- Ren, F.; Ma, Y.; Zhu, X.; Guo, R.; Wang, J.; He, L. Pharmacogenetic association of bi- and triallelic polymorphisms of SLC6A4 with antidepressant response in major depressive disorder. J. Affect. Disord. 2020, 273, 254–264. [Google Scholar] [CrossRef]
- Marshe, V.S.; Islam, F.; Maciukiewicz, M.; Bousman, C.; Eyre, H.A.; Lavretsky, H.; Mulsant, B.H.; Reynolds, C.F., III; Lenze, E.J.; Müller, D.J. Pharmacogenetic Implications for Antidepressant Pharmacotherapy in Late-Life Depression: A Systematic Review of the Literature for Response, Pharmacokinetics and Adverse Drug Reactions. Am. J. Geriatr. Psychiatry 2020, 28, 609–629. [Google Scholar] [CrossRef]
- Bousman, C.A.; Stevenson, J.M.; Ramsey, L.B.; Sangkuhl, K.; Hicks, J.K.; Strawn, J.R.; Singh, A.B.; Ruaño, G.; Mueller, D.J.; Tsermpini, E.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A Genotypes and Serotonin Reuptake Inhibitor Antidepressants. Clin. Pharmacol. Ther. 2023, 114, 51–68. [Google Scholar] [CrossRef]
- Amitai, M.; Kronenberg, S.; Carmel, M.; Michaelovsky, E.; Frisch, A.; Brent, D.; Apter, A.; Chen, A.; Weizman, A.; Fennig, S. Pharmacogenetics of citalopram-related side effects in children with depression and/or anxiety disorders. J. Neural Transm. 2016, 123, 1347–1354. [Google Scholar] [CrossRef]
- Laje, G.; Perlis, R.H.; Rush, A.J.; McMahon, F.J. Pharmacogenetics Studies in STAR*D: Strengths, Limitations, and Results. Psychiatr. Serv. 2009, 60, 1446–1457. [Google Scholar] [CrossRef]
- Shams, M.E.E.; Arneth, B.; Hiemke, C.; Dragicevic, A.; Müller, M.J.; Kaiser, R.; Lackner, K.; Härtter, S. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J. Clin. Pharm. Ther. 2006, 31, 493–502. [Google Scholar] [CrossRef]
- Vos, C.F.; Ter Hark, S.E.; Schellekens, A.F.A.; Spijker, J.; van der Meij, A.; Grotenhuis, A.J.; Mihaescu, R.; Kievit, W.; Donders, R.; Aarnoutse, R.E.; et al. Effectiveness of Genotype-Specific Tricyclic Antidepressant Dosing in Patients with Major Depressive Disorder: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2312443. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, B.; Bellón, J.Á.; Rivera, M.; Molina, E.; King, M.; Marston, L.; Torres-González, F.; Moreno-Küstner, B.; Moreno-Peral, P.; Motrico, E.; et al. The risk for major depression conferred by childhood maltreatment is multiplied by BDNF and SERT genetic vulnerability: A replication study. J. Psychiatry Neurosci. 2015, 40, 187–196. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertollo, A.G.; Mocelin, R.; Ignácio, Z.M. Pharmacogenetics and the Response to Antidepressants in Major Depressive Disorder. Pharmaceuticals 2025, 18, 1360. https://doi.org/10.3390/ph18091360
Bertollo AG, Mocelin R, Ignácio ZM. Pharmacogenetics and the Response to Antidepressants in Major Depressive Disorder. Pharmaceuticals. 2025; 18(9):1360. https://doi.org/10.3390/ph18091360
Chicago/Turabian StyleBertollo, Amanda Gollo, Ricieri Mocelin, and Zuleide Maria Ignácio. 2025. "Pharmacogenetics and the Response to Antidepressants in Major Depressive Disorder" Pharmaceuticals 18, no. 9: 1360. https://doi.org/10.3390/ph18091360
APA StyleBertollo, A. G., Mocelin, R., & Ignácio, Z. M. (2025). Pharmacogenetics and the Response to Antidepressants in Major Depressive Disorder. Pharmaceuticals, 18(9), 1360. https://doi.org/10.3390/ph18091360