Dietary Modulation of CYP3A4 and Its Impact on Statins and Antidiabetic Drugs: A Narrative Review
Abstract
1. Introduction
2. Methods
3. Overview of CYP3A4
4. Diet-CYP3A4 Interactions: Molecular Mechanisms
4.1. Inhibition Mechanisms
4.2. Induction Mechanisms
4.3. Epigenetic and Microbiota Modulation
4.3.1. Epigenetic Regulation of CYP3A4
4.3.2. Microbiota-Derived Epigenetic Modulators
5. Dietary and Pharmacological Modulators of CYP3A4: Clinical Relevance for Statins and Antidiabetic Drugs
5.1. Lipid-Lowering Drugs and CYP3A4
5.1.1. Simvastatin
5.1.2. Atorvastatin
5.1.3. Lovastatin
5.1.4. Cerivastatin
5.2. Antidiabetic Drugs and CYP3A4
5.2.1. Repaglinide
5.2.2. Nateglinide
5.2.3. Saxagliptin
5.2.4. Canagliflozin
5.2.5. Pioglitazone
6. Evidence from Clinical and Preclinical Studies
6.1. Citrus Compounds and Furanocoumarins
6.2. Polyphenols and Flavonoids
6.3. Herbal Supplements
6.3.1. St. John’s Wort
6.3.2. Schisandra chinensis
6.3.3. Ginkgo biloba
6.3.4. Ginseng
7. Clinical Implications and Practical Recommendations Derived from CYP3A4 Genetic Variability
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AhR | Aryl hydrocarbon Receptor |
AUC | Area Under the Curve |
CAR | Constitutive Androstane Receptor |
Cmax | Maximum Plasma Concentration |
CYP3A4 | Cytochrome P450 Family 3 Subfamily A Member 4 |
CYP450 | Cytochrome P450 Enzyme Family |
DPP-4 | Dipeptidyl Peptidase-4 |
EGCG | Epigallocatechin Gallate |
EOs | Essential Oils |
GFJ | Grapefruit Juice |
GIP | Glucose-dependent Insulinotropic Polypeptide |
GLP-1 | Glucagon-like Peptide-1 |
HDAC | Histone Deacetylase |
IPA | Indole-3-propionic Acid |
LDL-C | Low-Density Lipoprotein Cholesterol |
LPS | Lipopolysaccharides |
miRNA | MicroRNA |
NIADs | Non-Insulin Antidiabetic Drugs |
PPARγ | Peroxisome Proliferator-Activated Receptor Gamma |
PPREs | Peroxisome Proliferator Response Elements |
PXR | Pregnane X Receptor |
RXR | Retinoid X Receptor |
SAM | S-adenosylmethionine |
SGLT-2 | Sodium–Glucose Cotransporter 2 |
SJW | St. John’s Wort |
SRC-1 | Steroid Receptor Coactivator-1 |
SUR1 | Sulfonylurea Receptor 1 |
T2D | Type 2 Diabetes |
VDR | Vitamin D Receptor |
References
- Guengerich, F.P. Cytochrome P450 and Chemical Toxicology. Chem. Res. Toxicol. 2008, 21, 70–83. [Google Scholar] [CrossRef]
- Wilkinson, G.R. Drug Metabolism and Variability among Patients in Drug Response. N. Engl. J. Med. 2005, 352, 2211–2221. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.K.; Rettie, A.E.; Fowler, D.M.; Miners, J.O. Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. J. Pers. Med. 2018, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Niemi, M.; Backman, J.T.; Neuvonen, M.; Neuvonen, P.J. Effect of Rifampicin on the Pharmacokinetics and Pharmacodynamics of Nateglinide in Healthy Subjects. Br. J. Clin. Pharmacol. 2003, 56, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Prueksaritanont, T.; Vega, J.M.; Zhao, J.; Gagliano, K.; Kuznetsova, O.; Musser, B.; Amin, R.D.; Liu, L.; Roadcap, B.A.; Dilzer, S.; et al. Interactions between Simvastatin and Troglitazone or Pioglitazone in Healthy Subjects. J. Clin. Pharmacol. 2001, 41, 573–581. [Google Scholar] [CrossRef]
- Dayyih, W.A.; Ani, I.A.-; Hailat, M.; Alarman, S.M.; Zakaraya, Z.; Assab, M.A.; Alkhader, E. Review of Grapefruit Juice-Drugs Interactions Mediated by Intestinal CYP3A4 Inhibition. J. Appl. Pharm. Sci. 2014, 14, 59–68. [Google Scholar] [CrossRef]
- Lown, K.S.; Bailey, D.G.; Fontana, R.J.; Janardan, S.K.; Adair, C.H.; Fortlage, L.A.; Brown, M.B.; Guo, W.; Watkins, P.B. Grapefruit Juice Increases Felodipine Oral Availability in Humans by Decreasing Intestinal CYP3A Protein Expression. J. Clin. Investig. 1997, 99, 2545–2553. [Google Scholar] [CrossRef]
- Paine, M.F.; Hart, H.L.; Ludington, S.S.; Haining, R.L.; Rettie, A.E.; Zeldin, D.C. The human intestinal cytochrome P450 “pie”. Drug Metab. Dispos. 2006, 34, 880–886. [Google Scholar] [CrossRef]
- Markowitz, J.S.; Donovan, J.L.; DeVane, C.L.; Taylor, R.M.; Ruan, Y.; Wang, J.S.; Chavin, K.D. Effect of St John’s Wort on Drug Metabolism by Induction of Cytochrome P450 3A4 Enzyme. JAMA 2003, 290, 1500–1504. [Google Scholar] [CrossRef]
- Sugimoto, K. Different Effects of St John’s Wort on the Pharmacokinetics of Simvastatin and Pravastatin. Clin. Pharmacol. Ther. 2001, 70, 518–524. [Google Scholar] [CrossRef]
- Wang, Z.; Gorski, J.C.; Hamman, M.A.; Huang, S.-M.; Lesko, L.J.; Hall, S.D. The Effects of St John’s Wort (Hypericum perforatum) on Human Cytochrome P450 Activity. Clin. Pharmacol. Ther. 2001, 70, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Bae, S.; Lee, H.S.; Han, H.-K.; Choi, C.-I. Effect of Betanin, the Major Pigment of Red Beetroot (Beta vulgaris L.), on the Activity of Recombinant Human Cytochrome P450 Enzymes. Pharmaceuticals 2023, 16, 1224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Qiu, Z. The Impact of Freeze-Dried Baiyedancong-Oolong Tea Aqueous Extract Containing Bioactive Compounds on the Activities of CYP450 Enzymes, the Transport Capabilities of P-Gp and OATs, and Transcription Levels in Mice. Food Nutr. Res. 2024, 68, 10605. [Google Scholar] [CrossRef] [PubMed]
- Basheer, L.; Kerem, Z. Interactions between CYP3A4 and Dietary Polyphenols. Oxid. Med. Cell. Longev. 2015, 2015, 854015. [Google Scholar] [CrossRef]
- Sadeghi, S.J.; Nardo, G.D.; Gilardi, G. Chimeric Cytochrome P450 3A4 Used for In Vitro Prediction of Food–Drug Interactions. Biotechnol. Appl. Biochem. 2020, 67, 541–548. [Google Scholar] [CrossRef]
- Fujino, C.; Sanoh, S.; Katsura, T. Variation in Expression of Cytochrome P450 3A Isoforms and Toxicological Effects: Endo- and Exogenous Substances as Regulatory Factors and Substrates. Biol. Pharm. Bull. 2021, 44, 1617–1634. [Google Scholar] [CrossRef]
- Burk, O.; Wojnowski, L. Cytochrome P450 3A and Their Regulation. Naunyn. Schmiedebergs Arch. Pharmacol. 2004, 369, 105–124. [Google Scholar] [CrossRef]
- Thummel, K.E. Gut Instincts: CYP3A4 and Intestinal Drug Metabolism. J. Clin. Investig. 2007, 117, 3173–3176. [Google Scholar] [CrossRef]
- Guengerich, F.P. Cytochrome P450 Research and The Journal of Biological Chemistry. J. Biol. Chem. 2019, 294, 1671–1680. [Google Scholar] [CrossRef]
- Neuvonen, P.J.; Niemi, M.; Backman, J.T. Drug Interactions with Lipid-Lowering Drugs: Mechanisms and Clinical Relevance. Clin. Pharmacol. Ther. 2006, 80, 565–581. [Google Scholar] [CrossRef]
- Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; et al. Sequence Diversity in CYP3A Promoters and Characterization of the Genetic Basis of Polymorphic CYP3A5 Expression. Nat. Genet. 2001, 27, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Kantola, T.; Kivistö, K.T.; Neuvonen, P.J. Grapefruit Juice Greatly Increases Serum Concentrations of Lovastatin and Lovastatin Acid. Clin. Pharmacol. Ther. 1998, 63, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.-F. Drugs Behave as Substrates, Inhibitors and Inducers of Human Cytochrome P450 3A4. Curr. Drug Metab. 2008, 9, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Pesaresi, A. Mixed and Non-Competitive Enzyme Inhibition: Underlying Mechanisms and Mechanistic Irrelevance of the Formal Two-Site Model. J. Enzyme Inhib. Med. Chem. 2023, 38, 2245168. [Google Scholar] [CrossRef]
- Guengerich, F.P. Inhibition of Drug Metabolizing Enzymes. In Handbook of Drug Metabolism, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-19031-5. [Google Scholar]
- Kamel, A.; Harriman, S. Inhibition of Cytochrome P450 Enzymes and Biochemical Aspects of Mechanism-Based Inactivation (MBI). Drug Discov. Today Technol. 2013, 10, e177–e189. [Google Scholar] [CrossRef]
- Zhou, S.; Yung Chan, S.; Cher Goh, B.; Chan, E.; Duan, W.; Huang, M.; McLeod, H.L. Mechanism-Based Inhibition of Cytochrome P450 3A4 by Therapeutic Drugs. Clin. Pharmacokinet. 2005, 44, 279–304. [Google Scholar] [CrossRef]
- Ogg, M.S.; Gray, T.J.; Gibson, G.G. Development of an In Vitro Reporter Gene Assay to Assess Xenobiotic Induction of the Human CYP3A4 Gene. Eur. J. Drug Metab. Pharmacokinet. 1997, 22, 311–313. [Google Scholar] [CrossRef]
- Seden, K.; Dickinson, L.; Khoo, S.; Back, D. Grapefruit-Drug Interactions. Drugs 2010, 70, 2373–2407. [Google Scholar] [CrossRef]
- Yan, J.; Hirao, H. QM/MM Study of the Metabolic Oxidation of 6′,7′-Dihydroxybergamottin Catalyzed by Human CYP3A4: Preferential Formation of the γ-Ketoenal Product in Mechanism-Based Inactivation. J. Chem. Inf. Model. 2025, 65, 4620–4629. [Google Scholar] [CrossRef]
- Shalaby, A.S.; Eid, H.H.; El-Shiekh, R.A.; Mohamed, O.G.; Tripathi, A.; Al-Karmalawy, A.A.; Sleem, A.A.; Morsy, F.A.; Ibrahim, K.M.; Tadros, S.H.; et al. Taming Food-Drug Interaction Risk: Potential Inhibitory Effects of Citrus Juices on Cytochrome Liver Enzymes Can Safeguard the Liver from Overdose Paracetamol-Induced Hepatotoxicity. ACS Omega 2023, 8, 26444–26457. [Google Scholar] [CrossRef]
- Fuhr, L.M.; Marok, F.Z.; Fuhr, U.; Selzer, D.; Lehr, T. Physiologically Based Pharmacokinetic Modeling of Bergamottin and 6,7-Dihydroxybergamottin to Describe CYP3A4 Mediated Grapefruit-Drug Interactions. Clin. Pharmacol. Ther. 2023, 114, 470–482. [Google Scholar] [CrossRef]
- Paine, M.F.; Criss, A.B.; Watkins, P.B. Two Major Grapefruit Juice Components Differ in Intestinal CYP3A4 Inhibition Kinetic and Binding Properties. Drug Metab. Dispos. 2004, 32, 1146–1153. [Google Scholar] [CrossRef]
- Paine, M.F.; Criss, A.B.; Watkins, P.B. Two Major Grapefruit Juice Components Differ in Time to Onset of Intestinal CYP3A4 Inhibition. J. Pharmacol. Exp. Ther. 2005, 312, 1151–1160. [Google Scholar] [CrossRef]
- Schmiedlin-Ren, P.; Edwards, D.J.; Fitzsimmons, M.E.; He, K.; Lown, K.S.; Woster, P.M.; Rahman, A.; Thummel, K.E.; Fisher, J.M.; Hollenberg, P.F.; et al. Mechanisms of Enhanced Oral Availability of CYP3A4 Substrates by Grapefruit Constituents: Decreased Enterocyte CYP3A4 Concentration and Mechanism-Based Inactivation by Furanocoumarins. Drug Metab. Dispos. 1997, 25, 1228–1233. [Google Scholar]
- Lilja, J.J.; Kivistö, K.T.; Neuvonen, P.J. Duration of Effect of Grapefruit Juice on the Pharmacokinetics of the CYP3A4 Substrate Simvastatin. Clin. Pharmacol. Ther. 2000, 68, 384–390. [Google Scholar] [CrossRef]
- Takanaga, H.; Ohnishi, A.; Matsuo, H.; Murakami, H.; Sata, H.; Kuroda, K.; Urae, A.; Higuchi, S.; Sawada, Y. Pharmacokinetic Analysis of Felodipine–Grapefruit Juice Interaction Based on an Irreversible Enzyme Inhibition Model. Br. J. Clin. Pharmacol. 2000, 49, 49–58. [Google Scholar] [CrossRef]
- Greenblatt, D.J.; von Moltke, L.L.; Harmatz, J.S.; Chen, G.; Weemhoff, J.L.; Jen, C.; Kelley, C.J.; LeDuc, B.W.; Zinny, M.A. Time Course of Recovery of Cytochrome P450 3A Function after Single Doses of Grapefruit Juice. Clin. Pharmacol. Ther. 2003, 74, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Melough, M.M.; Vance, T.M.; Lee, S.G.; Provatas, A.A.; Perkins, C.; Qureshi, A.; Cho, E.; Chun, O.K. Furocoumarin Kinetics in Plasma and Urine of Healthy Adults Following Consumption of Grapefruit (Citrus paradisi Macf.) and Grapefruit Juice. J. Agric. Food Chem. 2017, 65, 3006–3012. [Google Scholar] [CrossRef] [PubMed]
- Lundahl, J.; Regårdh, C.G.; Edgar, B.; Johnsson, G. Effects of Grapefruit Juice Ingestion—Pharmacokinetics and Haemodynamics of Intravenously and Orally Administered Felodipine in Healthy Men. Eur. J. Clin. Pharmacol. 1997, 52, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Veronese, M.L.; Gillen, L.P.; Burke, J.P.; Dorval, E.P.; Hauck, W.W.; Pequignot, E.; Waldman, S.A.; Greenberg, H.E. Exposure-Dependent Inhibition of Intestinal and Hepatic CYP3A4 In Vivo by Grapefruit Juice. J. Clin. Pharmacol. 2003, 43, 831–839. [Google Scholar] [CrossRef]
- Edgar, B.; Bailey, D.; Bergstrand, R.; Johnsson, G.; Regårdh, C.G. Acute Effects of Drinking Grapefruit Juice on the Pharmacokinetics and Dynamics of Felodipine—And Its Potential Clinical Relevance. Eur. J. Clin. Pharmacol. 1992, 42, 313–317. [Google Scholar] [CrossRef]
- Wojtyniak, J.-G.; Selzer, D.; Schwab, M.; Lehr, T. Physiologically Based Precision Dosing Approach for Drug-Drug-Gene Interactions: A Simvastatin Network Analysis. Clin. Pharmacol. Ther. 2021, 109, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.G.; Dresser, G.K.; Bend, J.R. Bergamottin, Lime Juice, and Red Wine as Inhibitors of Cytochrome P450 3A4 Activity: Comparison with Grapefruit Juice. Clin. Pharmacol. Ther. 2003, 73, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Maneesai, P.; Jan-O, B.; Poasakate, A.; Rattanakanokchai, S.; Tong-Un, T.; Phuthong, S.; Pakdeechote, P. Limonin Mitigates Cardiometabolic Complications in Rats with Metabolic Syndrome through Regulation of the IRS-1/GLUT4 Signalling Pathway. Biomed. Pharmacother. Biomed. Pharmacother. 2023, 161, 114448. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Yang, J.; Ma, L.; Song, M.; Liu, G. Limonin Isolated From Pomelo Seed Antagonizes Aβ25-35-Mediated Neuron Injury via PI3K/AKT Signaling Pathway by Regulating Cell Apoptosis. Front. Nutr. 2022, 9, 879028. [Google Scholar] [CrossRef]
- Chidambara Murthy, K.N.; Jayaprakasha, G.K.; Kumar, V.; Rathore, K.S.; Patil, B.S. Citrus Limonin and Its Glucoside Inhibit Colon Adenocarcinoma Cell Proliferation through Apoptosis. J. Agric. Food Chem. 2011, 59, 2314–2323. [Google Scholar] [CrossRef]
- Han, Y.-L.; Yu, H.-L.; Li, D.; Meng, X.-L.; Zhou, Z.-Y.; Yu, Q.; Zhang, X.-Y.; Wang, F.-J.; Guo, C. Inhibitory Effects of Limonin on Six Human Cytochrome P450 Enzymes and P-Glycoprotein In Vitro. Toxicol. Vitro Int. J. Publ. Assoc. BIBRA 2011, 25, 1828–1833. [Google Scholar] [CrossRef]
- Paine, M.F.; Widmer, W.W.; Hart, H.L.; Pusek, S.N.; Beavers, K.L.; Criss, A.B.; Brown, S.S.; Thomas, B.F.; Watkins, P.B. A Furanocoumarin-Free Grapefruit Juice Establishes Furanocoumarins as the Mediators of the Grapefruit Juice–Felodipine Interaction. Am. J. Clin. Nutr. 2006, 83, 1097–1105. [Google Scholar] [CrossRef]
- Tresserra-Rimbau, A.; Lamuela-Raventos, R.M.; Moreno, J.J. Polyphenols, Food and Pharma. Current Knowledge and Directions for Future Research. Biochem. Pharmacol. 2018, 156, 186–195. [Google Scholar] [CrossRef]
- Kimura, Y.; Ito, H.; Ohnishi, R.; Hatano, T. Inhibitory Effects of Polyphenols on Human Cytochrome P450 3A4 and 2C9 Activity. Food Chem. Toxicol. 2010, 48, 429–435. [Google Scholar] [CrossRef]
- Vieira, C.S.P.; Freitas, M.; Palmeira, A.; Fernandes, E.; Araújo, A.N. How Plant Polyhydroxy Flavonoids Can Hinder the Metabolism of Cytochrome 3A4. Biomedicines 2025, 13, 655. [Google Scholar] [CrossRef] [PubMed]
- Basheer, L.; Schultz, K.; Kerem, Z. Inhibition of Cytochrome P450 3A by Acetoxylated Analogues of Resveratrol in In Vitro and in Silico Models. Sci. Rep. 2016, 6, 31557. [Google Scholar] [CrossRef] [PubMed]
- Sergent, T.; Dupont, I.; Heiden, E.V.D.; Scippo, M.L.; Pussemier, L.; Larondelle, Y.; Schneider, Y.J. CYP1A1 and CYP3A4 Modulation by Dietary Flavonoids in Human Intestinal Caco-2 Cells. Toxicol. Lett. 2009, 191, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, M.; Okumura, M.; Fujita, K.-I.; Ogikubo, T.; Yamasaki, K.; Iwakiri, T.; Setoguchi, N.; Arimori, K. Effects of Pomegranate Juice on Human Cytochrome P450 3A (CYP3A) and Carbamazepine Pharmacokinetics in Rats. Drug Metab. Dispos. Biol. Fate Chem. 2005, 33, 644–648. [Google Scholar] [CrossRef]
- Patil, P.H.; Birangal, S.; Shenoy, G.G.; Rao, M.; Kadari, S.; Wankhede, A.; Rastogi, H.; Sharma, T.; Pinjari, J.; Channabasavaiah, J.P. Molecular Dynamics Simulation and In Vitro Evaluation of Herb–Drug Interactions Involving Dietary Polyphenols and CDK Inhibitors in Breast Cancer Chemotherapy. Phytother. Res. 2022, 36, 3988–4001. [Google Scholar] [CrossRef]
- Tang, H.; Kuang, Y.; Wu, W.; Peng, B.; Fu, Q. Quercetin Inhibits the Metabolism of Arachidonic Acid by Inhibiting the Activity of CYP3A4, Thereby Inhibiting the Progression of Breast Cancer. Mol. Med. Camb. Mass 2023, 29, 127. [Google Scholar] [CrossRef]
- Jimenez-Lopez, J.M.; Cederbaum, A.I. Green Tea Polyphenol Epigallocatechin-3-Gallate Protects HepG2 Cells against CYP2E1-Dependent Toxicity. Free Radic. Biol. Med. 2004, 36, 359–370. [Google Scholar] [CrossRef]
- Ji, S.-B.; Park, S.-Y.; Bae, S.; Seo, H.-J.; Kim, S.-E.; Lee, G.-M.; Wu, Z.; Liu, K.-H. Comprehensive Investigation of Stereoselective Food Drug Interaction Potential of Resveratrol on Nine P450 and Six UGT Isoforms in Human Liver Microsomes. Pharmaceutics 2021, 13, 1419. [Google Scholar] [CrossRef]
- Tsujimoto, M.; Agawa, C.; Ueda, S.; Yamane, T.; Kitayama, H.; Terao, A.; Fukuda, T.; Minegaki, T.; Nishiguchi, K. Inhibitory Effects of Juices Prepared from Individual Vegetables on CYP3A4 Activity in Recombinant CYP3A4 and LS180 Cells. Biol. Pharm. Bull. 2017, 40, 1561–1565. [Google Scholar] [CrossRef]
- Guthrie, A.R.; Chow, H.-H.S.; Martinez, J.A. Effects of Resveratrol on Drug- and Carcinogen-Metabolizing Enzymes, Implications for Cancer Prevention. Pharmacol. Res. Perspect. 2017, 5, e00294. [Google Scholar] [CrossRef]
- Dresser, G.K.; Spence, J.D.; Bailey, D.G. Pharmacokinetic-Pharmacodynamic Consequences and Clinical Relevance of Cytochrome P450 3A4 Inhibition. Clin. Pharmacokinet. 2000, 38, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Sang, R.; Jiang, W.; Zhang, C.; Yin, R.; Ouyang, Z.; Wei, Y. Effect of Food Components on Cytochrome P450 Expression and Activity. Hum. Nutr. Metab. 2025, 40, 200304. [Google Scholar] [CrossRef]
- Deng, R.; Xu, C.; Chen, X.; Chen, P.; Wang, Y.; Zhou, X.; Jin, J.; Niu, L.; Ying, M.; Huang, M.; et al. Resveratrol Suppresses the Inducible Expression of CYP3A4 through the Pregnane X Receptor. J. Pharmacol. Sci. 2014, 126, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Pannu, N.; Bhatnagar, A. Resveratrol: From Enhanced Biosynthesis and Bioavailability to Multitargeting Chronic Diseases. Biomed. Pharmacother. Biomed. Pharmacother. 2019, 109, 2237–2251. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023, 28, 2536. [Google Scholar] [CrossRef]
- Li, Y.; Ning, J.; Wang, Y.; Wang, C.; Sun, C.; Huo, X.; Yu, Z.; Feng, L.; Zhang, B.; Tian, X.; et al. Drug Interaction Study of Flavonoids toward CYP3A4 and Their Quantitative Structure Activity Relationship (QSAR) Analysis for Predicting Potential Effects. Toxicol. Lett. 2018, 294, 27–36. [Google Scholar] [CrossRef]
- Bhardwaj, R.K.; Glaeser, H.; Becquemont, L.; Klotz, U.; Gupta, S.K.; Fromm, M.F. Piperine, a Major Constituent of Black Pepper, Inhibits Human P-Glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 2002, 302, 645–650. [Google Scholar] [CrossRef]
- Poudel, S.; Huber, A.D.; Chen, T. Regulation of Nuclear Receptors PXR and CAR by Small Molecules and Signal Crosstalk: Roles in Drug Metabolism and Beyond. Drug Metab. Dispos. 2023, 51, 228–236. [Google Scholar] [CrossRef]
- Buchman, C.D.; Chai, S.C.; Chen, T. A Current Structural Perspective on PXR and CAR in Drug Metabolism. Expert Opin. Drug Metab. Toxicol. 2018, 14, 635–647. [Google Scholar] [CrossRef]
- Bettonte, S.; Berton, M.; Stader, F.; Battegay, M.; Marzolini, C. Management of Drug Interactions with Inducers: Onset and Disappearance of Induction on Cytochrome P450 3A4 and Uridine Diphosphate Glucuronosyltransferase 1A1 Substrates. Eur. J. Drug Metab. Pharmacokinet. 2023, 48, 353–362. [Google Scholar] [CrossRef]
- Hohmann, N.; Friedrichs, A.S.; Burhenne, J.; Blank, A.; Mikus, G.; Haefeli, W.E. Dose-Dependent Induction of CYP3A Activity by St. John’s Wort Alone and in Combination with Rifampin. Clin. Transl. Sci. 2024, 17, e70007. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.B.; Goodwin, B.; Jones, S.A.; Wisely, G.B.; Serabjit-Singh, C.J.; Willson, T.M.; Collins, J.L.; Kliewer, S.A. St. John’s Wort Induces Hepatic Drug Metabolism through Activation of the Pregnane X Receptor. Proc. Natl. Acad. Sci. USA 2000, 97, 7500–7502. [Google Scholar] [CrossRef] [PubMed]
- Wentworth, J.M.; Agostini, M.; Love, J.; Schwabe, J.W.; Chatterjee, V.K. St John’s Wort, a Herbal Antidepressant, Activates the Steroid X Receptor. J. Endocrinol. 2000, 166, R11–R16. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.-G.; Kim, R.B. St John’s Wort-Associated Drug Interactions: Short-Term Inhibition and Long-Term Induction? Clin. Pharmacol. Ther. 2005, 78, 19–24. [Google Scholar] [CrossRef]
- Gurley, B.J.; Gardner, S.F.; Hubbard, M.A.; Williams, D.K.; Gentry, W.B.; Cui, Y.; Ang, C.Y.W. Cytochrome P450 Phenotypic Ratios for Predicting Herb-Drug Interactions in Humans. Clin. Pharmacol. Ther. 2002, 72, 276–287. [Google Scholar] [CrossRef]
- Satyanarayana, N.H.; Visalakshmi, V.; Mukherjee, S.; Sarkar, K.K. Studies on Genetic Diversity in Roselle (Hibiscus sabdariffa L.) for Seed Yield and It’s Contributing Traits in India. Vegetos 2017, 30, 105–109. [Google Scholar] [CrossRef]
- Srikanth, Y.; Reddy, D.H.; Anusha, V.L.; Dumala, N.; Viswanadh, M.K.; Chakravarthi, G.; Nalluri, B.N.; Yadagiri, G.; Ramakrishna, K. Unveiling the Multifaceted Pharmacological Actions of Indole-3-Carbinol and Diindolylmethane: A Comprehensive Review. Plants 2025, 14, 827. [Google Scholar] [CrossRef]
- Vo, Q.V.; Mechler, A. In Silico Study of the Radical Scavenging Activities of Natural Indole-3-Carbinols. J. Chem. Inf. Model. 2020, 60, 316–321. [Google Scholar] [CrossRef]
- Anderton, M.J.; Manson, M.M.; Verschoyle, R.D.; Gescher, A.; Lamb, J.H.; Farmer, P.B.; Steward, W.P.; Williams, M.L. Pharmacokinetics and Tissue Disposition of Indole-3-Carbinol and Its Acid Condensation Products after Oral Administration to Mice. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2004, 10, 5233–5241. [Google Scholar] [CrossRef]
- Pavek, P.; Dusek, J.; Smutny, T.; Lochman, L.; Kucera, R.; Skoda, J.; Smutna, L.; Kamaraj, R.; Soucek, P.; Vrzal, R.; et al. Gene Expression Profiling of 1α,25(OH)2D3 Treatment in 2D/3D Human Hepatocyte Models Reveals CYP3A4 Induction but Minor Changes in Other Xenobiotic-Metabolizing Genes. Mol. Nutr. Food Res. 2022, 66, 2200070. [Google Scholar] [CrossRef]
- Feierman, D.E.; Melinkov, Z.; Nanji, A.A. Induction of CYP3A by Ethanol in Multiple In Vitro and In Vivo Models. Alcohol. Clin. Exp. Res. 2003, 27, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Raucy, J.L. Regulation of CYP3A4 Expression in Human Hepatocytes by Pharmaceuticals and Natural Products. Drug Metab. Dispos. 2003, 31, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Wang, X. Role of Vitamin D Receptor in the Regulation of CYP3A Gene Expression. Acta Pharm. Sin. B 2019, 9, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Bartonkova, I.; Dvorak, Z. Essential Oils of Culinary Herbs and Spices Activate PXR and Induce CYP3A4 in Human Intestinal and Hepatic In Vitro Models. Toxicol. Lett. 2018, 296, 1–9. [Google Scholar] [CrossRef]
- Minegishi, G.; Kobayashi, Y.; Fujikura, M.; Sano, A.; Kazuki, Y.; Kobayashi, K. Induction of Hepatic CYP3A4 Expression by Cholesterol and Cholic Acid: Alterations of Gene Expression, Microsomal Activity, and Pharmacokinetics. Pharmacol. Res. Perspect. 2024, 12, e1197. [Google Scholar] [CrossRef]
- Klionsky, D.J.; Abdelmohsen, K.; Abe, A.; Abedin, M.J.; Abeliovich, H.; Acevedo Arozena, A.; Adachi, H.; Adams, C.M.; Adams, P.D.; Adeli, K.; et al. Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (3rd Edition). Autophagy 2016, 12, 1–222. [Google Scholar] [CrossRef]
- Han, C.J.; Akowuah, G.A.; Shukkoor, M.S.A.; Biswas, A. Modulation of Rat Hepatic Cyp3a4 Activity by Brassica Oleracea, Hibiscus Rosa Sinensis, and Tradescantia Zebrina. Biointerface Res. Appl. Chem. 2021, 11, 7453–7459. [Google Scholar] [CrossRef]
- Murray, M. Altered CYP Expression and Function in Response to Dietary Factors: Potential Roles in Disease Pathogenesis. Curr. Drug Metab. 2005, 7, 67–81. [Google Scholar] [CrossRef]
- Drocourt, L.; Ourlin, J.C.; Pascussi, J.M.; Maurel, P.; Vilarem, M.J. Expression of CYP3A4, CYP2B6, andCYP2C9 Is Regulated by the Vitamin D Receptor Pathway in Primary Human Hepatocytes. J. Biol. Chem. 2002, 277, 25125–25132. [Google Scholar] [CrossRef]
- Montgomery, M.; Srinivasan, A. Epigenetic Gene Regulation by Dietary Compounds in Cancer Prevention. Adv. Nutr. 2019, 10, 1012–1028. [Google Scholar] [CrossRef]
- Prasad, M.; Rajagopal, P.; Devarajan, N.; Veeraraghavan, V.P.; Palanisamy, C.P.; Cui, B.; Patil, S.; Jayaraman, S. A Comprehensive Review on High -Fat Diet-Induced Diabetes Mellitus: An Epigenetic View. J. Nutr. Biochem. 2022, 107, 109037. [Google Scholar] [CrossRef]
- Zarezadeh, M.; Saedisomeolia, A.; Shekarabi, M.; Khorshidi, M.; Emami, M.R.; Müller, D.J. The Effect of Obesity, Macronutrients, Fasting and Nutritional Status on Drug-Metabolizing Cytochrome P450s: A Systematic Review of Current Evidence on Human Studies. Eur. J. Nutr. 2020, 60, 2905–2921. [Google Scholar] [CrossRef]
- Liu, R.; Ding, Y.; Li, W.; Li, S.; Li, X.; Zhao, D.; Zhang, Y.; Wei, G.; Zhang, X. Protective Role of Curcumin on Broiler Liver by Modulating Aflatoxin B1-Induced DNA Methylation and CYPs Expression. Ecotoxicol. Environ. Saf. 2023, 260, 115086. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, Y.; Yang, S.; Lu, J.; Jin, X.; Wu, M. Diet-Gut Microbiota-Epigenetics in Metabolic Diseases: From Mechanisms to Therapeutics. Biomed. Pharmacother. 2022, 153, 113290. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.; Barnes, S.; Demark-Wahnefried, W.; Morrow, C.; Salvador, C.; Skibola, C.; Tollefsbol, T.O. Influences of Diet and the Gut Microbiome on Epigenetic Modulation in Cancer and Other Diseases. Clin. Epigenetics 2015, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Bhawal, S.; Kapila, S.; Yadav, H.; Kapila, R. Health-Promoting Role of Dietary Bioactive Compounds through Epigenetic Modulations: A Novel Prophylactic and Therapeutic Approach. Crit. Rev. Food Sci. Nutr. 2022, 62, 619–639. [Google Scholar] [CrossRef]
- Carlos-Reyes, Á.; López-González, J.S.; Meneses-Flores, M.; Gallardo-Rincón, D.; Ruíz-García, E.; Marchat, L.A.; Vega, H.A.-D.L.; Cruz, O.N.H.D.L.; López-Camarillo, C. Dietary Compounds as Epigenetic Modulating Agents in Cancer. Front. Genet. 2019, 10, 426442. [Google Scholar] [CrossRef]
- Martino, E.; D’Onofrio, N.; Balestrieri, A.; Colloca, A.; Anastasio, C.; Sardu, C.; Marfella, R.; Campanile, G.; Balestrieri, M.L. Dietary Epigenetic Modulators: Unravelling the Still-Controversial Benefits of miRNAs in Nutrition and Disease. Nutrients 2024, 16, 160. [Google Scholar] [CrossRef]
- Rubio, K.; Hernández-Cruz, E.Y.; Rogel-Ayala, D.G.; Sarvari, P.; Isidoro, C.; Barreto, G.; Pedraza-Chaverri, J. Nutriepigenomics in Environmental-Associated Oxidative Stress. Antioxidants 2023, 12, 771. [Google Scholar] [CrossRef]
- Sundaram, M.K.; Preetha, R.; Haque, S.; Akhter, N.; Khan, S.; Ahmad, S.; Hussain, A. Dietary Isothiocyanates Inhibit Cancer Progression by Modulation of Epigenome. Semin. Cancer Biol. 2022, 83, 353–376. [Google Scholar] [CrossRef]
- Pavek, P.; Pospechova, K.; Svecova, L.; Syrova, Z.; Stejskalova, L.; Blazkova, J.; Dvorak, Z.; Blahos, J. Intestinal Cell-Specific Vitamin D Receptor (VDR)-Mediated Transcriptional Regulation of CYP3A4 Gene. Biochem. Pharmacol. 2010, 79, 277–287. [Google Scholar] [CrossRef]
- Zeng, H.; Lin, Y.; Gong, J.; Lin, S.; Gao, J.; Li, C.; Feng, Z.; Zhang, H.; Zhang, J.; Li, Y.; et al. CYP3A Suppression during Diet-Induced Nonalcoholic Fatty Liver Disease Is Independent of PXR Regulation. Chem. Biol. Interact. 2019, 308, 185–193. [Google Scholar] [CrossRef]
- Maggioni, A.P.; Calabria, S.; Rossi, E.; Martini, N. Use of Lipid Lowering Drugs in Patients at Very High Risk of Cardiovascular Events: An Analysis on Nearly 3,000,000 Italian Subjects of the ARNO Observatory. Int. J. Cardiol. 2017, 246, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, B.; Drouot, S.; Barrail-Tran, A.; Taburet, A.M. Drug-Drug Interactions between HMG-CoA Reductase Inhibitors (Statins) and Antiviral Protease Inhibitors. Clin. Pharmacokinet. 2013, 52, 815–831. [Google Scholar] [CrossRef] [PubMed]
- Mauro, V.F. Clinical Pharmacokinetics and Practical Applications of Simvastatin. Clin. Pharmacokinet. 1993, 24, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Tubic-Grozdanis, M.; Hilfinger, J.M.; Amidon, G.L.; Kim, J.S.; Kijek, P.; Staubach, P.; Langguth, P. Pharmacokinetics of the CYP 3A Substrate Simvastatin Following Administration of Delayed versus Immediate Release Oral Dosage Forms. Pharm. Res. 2008, 25, 1591–1600. [Google Scholar] [CrossRef]
- Lennernäs, H. Clinical Pharmacokinetics of Atorvastatin. Clin. Pharmacokinet. 2003, 42, 1141–1160. [Google Scholar] [CrossRef]
- Hu, N.; Chen, C.; Wang, J.; Huang, J.; Yao, D.; Li, C. Atorvastatin Ester Regulates Lipid Metabolism in Hyperlipidemia Rats via the PPAR-Signaling Pathway and HMGCR Expression in the Liver. Int. J. Mol. Sci. 2021, 22, 11107. [Google Scholar] [CrossRef]
- Stillemans, G.; Paquot, A.; Muccioli, G.G.; Hoste, E.; Panin, N.; Åsberg, A.; Balligand, J.; Haufroid, V.; Elens, L. Atorvastatin Population Pharmacokinetics in a Real-life Setting: Influence of Genetic Polymorphisms and Association with Clinical Response. Clin. Transl. Sci. 2022, 15, 667–679. [Google Scholar] [CrossRef]
- Cao, M.-C.; Huang, X.; Tang, B.-H.; Shi, H.-Y.; Zheng, Y.; Zhao, W. Simultaneous Determination of the Combined and Free Concentrations of Atorvastatin and Its Major Metabolite In Vitro and In Vivo Based on Ultrafiltration Coupled with UPLC-MS/MS Method: An Application in a Protein Binding Rate and Metabolism Ability Study in Uremic Hemodialysis Patients. Front. Cardiovasc. Med. 2024, 11, 1461181. [Google Scholar] [CrossRef]
- Hwang, J.G.; Yu, K.-S.; Lee, S. Comparison of the Pharmacokinetics of Highly Variable Drugs in Healthy Subjects Using a Partial Replicated Crossover Study: A Fixed-Dose Combination of Fimasartan 120 Mg and Atorvastatin 40 Mg versus Separate Tablets. Drug Des. Devel. Ther. 2020, 14, 1953–1961. [Google Scholar] [CrossRef]
- Reig-López, J.; García-Arieta, A.; Mangas-Sanjuán, V.; Merino-Sanjuán, M. Current Evidence, Challenges, and Opportunities of Physiologically Based Pharmacokinetic Models of Atorvastatin for Decision Making. Pharmaceutics 2021, 13, 709. [Google Scholar] [CrossRef]
- Istvan, E.S.; Deisenhofer, J. Structural Mechanism for Statin Inhibition of HMG-CoA Reductase. Science 2001, 292, 1160–1164. [Google Scholar] [CrossRef] [PubMed]
- Nf, Z.; Mmr, M.M.A.; Aba, M. Lovastatin: History, Physicochemistry, Pharmacokinetics and Enhanced Solubility. Int. J. Res. Pharm. Sci. 2017, 8, 90–102. [Google Scholar]
- Singh, S.K.; Verma, P.R.P.; Razdan, B. Development and Characterization of a Lovastatin-Loaded Self-Microemulsifying Drug Delivery System. Pharm. Dev. Technol. 2010, 15, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, H.; Angerbauer, R.; Bender, J.; Bischoff, E.; Faggiotto, A.; Petzinna, D.; Pfitzner, J.; Porter, M.C.; Schmidt, D.; Thomas, G. Cerivastatin: Pharmacology of a Novel Synthetic and Highly Active HMG-CoA Reductase Inhibitor. Atherosclerosis 1997, 135, 119–130. [Google Scholar] [CrossRef]
- Mück, W. Clinical Pharmacokinetics of Cerivastatin. Clin. Pharmacokinet. 2000, 39, 99–116. [Google Scholar] [CrossRef]
- Kaspera, R.; Naraharisetti, S.B.; Tamraz, B.; Sahele, T.; Cheesman, M.J.; Kwok, P.-Y.; Marciante, K.; Heckbert, S.R.; Psaty, B.M.; Totah, R.A. Cerivastatin In Vitro Metabolism by CYP2C8 Variants Found in Patients Experiencing Rhabdomyolysis. Pharmacogenet. Genom. 2010, 20, 619–629. [Google Scholar] [CrossRef]
- Marciante, K.D.; Durda, J.P.; Heckbert, S.R.; Lumley, T.; Rice, K.; McKnight, B.; Totah, R.A.; Tamraz, B.; Kroetz, D.L.; Fukushima, H.; et al. Cerivastatin, Genetic Variants, and the Risk of Rhabdomyolysis. Pharmacogenet. Genom. 2011, 21, 280–288. [Google Scholar] [CrossRef]
- Graham, D.J.; Staffa, J.A.; Shatin, D.; Andrade, S.E.; Schech, S.D.; La Grenade, L.; Gurwitz, J.H.; Chan, K.A.; Goodman, M.J.; Platt, R. Incidence of Hospitalized Rhabdomyolysis in Patients Treated with Lipid-Lowering Drugs. JAMA 2004, 292, 2585–2590. [Google Scholar] [CrossRef]
- Ainurofiq, A.; Ismaya, L. Pharmacokinetic Drug-Drug Interactions: A Systematic Review of the Cytochrome P450 (CYP) Isoenzyme 3A4. Res. J. Pharm. Technol. 2023, 16, 3016–3024. [Google Scholar] [CrossRef]
- Tornio, A.; Niemi, M.; Neuvonen, P.J.; Backman, J.T. Drug Interactions with Oral Antidiabetic Agents: Pharmacokinetic Mechanisms and Clinical Implications. Trends Pharmacol. Sci. 2012, 33, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can. J. Cardiol. 2018, 34, 575. [Google Scholar] [CrossRef] [PubMed]
- Sheneni, V.D.; Shaibu, I.E. Drug Interactions and Drug-Food Interactions in Patients Receiving Diabetes Mellitus Treatment. Endocrinol. Metab. Int. J. 2023, 11, 23–28. [Google Scholar] [CrossRef]
- Jangra, A.; Babu, B.; Divakar, S.; Gowramma, B.; Rajan, S.; Jangra, S.; Malakar, V. An In-Depth Review of PPARγ Modulators as Anti-Diabetes Therapeutics. Drug Metab. Rev. 2025. [Google Scholar] [CrossRef]
- Graefe-Mody, U.; Retlich, S.; Friedrich, C. Clinical Pharmacokinetics and Pharmacodynamics of Linagliptin. Clin. Pharmacokinet. 2012, 51, 411–427. [Google Scholar] [CrossRef]
- Hwang, I.; Kim, Y.; Yoo, H.; Jang, I.J.; Yu, K.S.; Lee, S. Pharmacokinetic/Pharmacodynamic Interaction Between Evogliptin and Pioglitazone in Healthy Male Subjects. Drug Des. Dev. Ther. 2020, 14, 4493–4502. [Google Scholar] [CrossRef]
- Nowak, S.N.; Edwards, D.J.; Clarke, A.; Anderson, G.D.; Jaber, L.A. Pioglitazone: Effect on CYP3A4 Activity. J. Clin. Pharmacol. 2002, 42, 1299–1302. [Google Scholar] [CrossRef]
- Bidstrup, T.B.; Bjørnsdottir, I.; Sidelmann, U.G.; Thomsen, M.S.; Hansen, K.T. CYP2C8 and CYP3A4 Are the Principal Enzymes Involved in the Human In Vitro Biotransformation of the Insulin Secretagogue Repaglinide. Br. J. Clin. Pharmacol. 2003, 56, 305–314. [Google Scholar] [CrossRef]
- Jaakkola, T.; Laitila, J.; Neuvonen, P.J.; Backman, J.T. Pioglitazone Is Metabolised by CYP2C8 and CYP3A4 In Vitro: Potential for Interactions with CYP2C8 Inhibitors. Basic Clin. Pharmacol. Toxicol. 2006, 99, 44–51. [Google Scholar] [CrossRef]
- Mansour, R.Y.; ElBorolossy, R.; Shaheen, S.M.; Sabri, N.A. Evaluation of Drug Interactions of Saxagliptin with Sildenafil in Healthy Volunteers. Eur. J. Clin. Pharmacol. 2022, 78, 1935. [Google Scholar] [CrossRef]
- Husain, I.; Manda, V.; Alhusban, M.; Dale, O.R.; Bae, J.Y.; Avula, B.; Gurley, B.J.; Chittiboyina, A.G.; Khan, I.A.; Khan, S.I. Modulation of CYP3A4 and CYP2C9 Activity by Bulbine Natalensis and Its Constituents: An Assessment of HDI Risk of B. Natalensis Containing Supplements. Phytomedicine 2021, 81, 153416. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, K.E.; Teng, C.; Patek, T.M.; Frei, C.R. Hypoglycemia Associated with Antibiotics Alone and in Combination with Sulfonylureas and Meglitinides: An Epidemiologic Surveillance Study of the FDA Adverse Event Reporting System (FAERS). Drug Saf. 2020, 43, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Parasrampuria, D.A.; Mendell, J.; Shi, M.; Matsushima, N.; Zahir, H.; Truitt, K. Edoxaban Drug–Drug Interactions with Ketoconazole, Erythromycin, and Cyclosporine. Br. J. Clin. Pharmacol. 2016, 82, 1591–1600. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shi, C.; Feng, L.; Pan, W.; Tian, X.G.; Sun, C.P.; Wang, C.; Ning, J.; Lv, X.; Wang, Y.; et al. Potent Inhibition of Human Cytochrome P450 3A4 by Biflavone Components from Ginkgo Biloba and Selaginella tamariscina. Front. Pharmacol. 2022, 13, 856784. [Google Scholar] [CrossRef]
- Wanwimolruk, S.; Wong, K.; Wanwimolruk, P. Variable Inhibitory Effect of Different Brands of Commercial Herbal Supplements on Human Cytochrome P-450 CYP3A4. Drug Metabol. Drug Interact. 2009, 24, 17–35. [Google Scholar] [CrossRef]
- Gallo, P.; Vincentis, A.D.; Pedone, C.; Nobili, A.; Tettamanti, M.; Gentilucci, U.V.; Picardi, A.; Mannucci, P.M.; Incalzi, R.A. Drug–Drug Interactions Involving CYP3A4 and p-Glycoprotein in Hospitalized Elderly Patients. Eur. J. Intern. Med. 2019, 65, 51–57. [Google Scholar] [CrossRef]
- Klotz, U. Pharmacokinetics and Drug Metabolism in the Elderly. Drug Metab. Rev. 2009, 41, 67–76. [Google Scholar] [CrossRef]
- Tsujimoto, M.; Nagano, Y.; Hosoda, S.; Shiraishi, A.; Miyoshi, A.; Hiraoka, S.; Furukubo, T.; Izumi, S.; Yamakawa, T.; Minegaki, T.; et al. Effects of Decreased Vitamin D and Accumulated Uremic Toxin on Human CYP3A4 Activity in Patients with End-Stage Renal Disease. Toxins 2013, 5, 1475–1485. [Google Scholar] [CrossRef]
- Scott, L.J. Repaglinide: A Review of Its Use in Type 2 Diabetes Mellitus. Drugs 2012, 72, 249–272. [Google Scholar] [CrossRef]
- Ding, D.; Wang, M.; Wu, J.X.; Kang, Y.; Chen, L. The Structural Basis for the Binding of Repaglinide to the Pancreatic KATP Channel. Cell Rep. 2019, 27, 1848–1857.e4. [Google Scholar] [CrossRef]
- Trexler, A.J.; Taraska, J.W. Regulation of Insulin Exocytosis by Calcium-Dependent Protein Kinase C in Beta Cells. Cell Calcium 2017, 67, 1. [Google Scholar] [CrossRef]
- Guardado-Mendoza, R.; Prioletta, A.; Jiménez-Ceja, L.M.; Sosale, A.; Folli, F. The Role of Nateglinide and Repaglinide, Derivatives of Meglitinide, in the Treatment of Type 2 Diabetes Mellitus. Arch. Med. Sci. AMS 2013, 9, 936. [Google Scholar] [CrossRef] [PubMed]
- Säll, C.M.T. In Vitro-In Vivo Assessment of Repaglinide Metabolism and Drug-Drug Interactions:Towards a Physiologically-Based Pharmacokinetic Model; Research Explorer; The University of Manchester: Manchester, UK, 2013. [Google Scholar]
- Säll, C.; Houston, J.B.; Galetin, A. A Comprehensive Assessment of Repaglinide Metabolic Pathways: Impact of Choice of In Vitro System and Relative Enzyme Contribution to In Vitro Clearance. Drug Metab. Dispos. 2012, 40, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Akagi, Y.; Iketaki, A.; Kimura, H.; Matsudaira, Y.; Yoshida, T.; Nishimura, T.; Kawano, Y.; Mano, Y.; Shigematsu, E.; Ujihara, M. Risk of Hypoglycemia Associated with Repaglinide Combined with Clopidogrel, a Retrospective Cohort Study. J. Pharm. Health Care Sci. 2020, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Honkalammi, J.; Niemi, M.; Neuvonen, P.J.; Backman, J.T. Dose-Dependent Interaction between Gemfibrozil and Repaglinide in Humans: Strong Inhibition of CYP2C8 with Subtherapeutic Gemfibrozil Doses. Drug Metab. Dispos. 2011, 39, 1977–1986. [Google Scholar] [CrossRef]
- Bidstrup, T.B.; Stilling, N.; Damkier, P.; Scharling, B.; Thomsen, M.S.; Brøsen, K. Rifampicin Seems to Act as Both an Inducer and an Inhibitor of the Metabolism of Repaglinide. Eur. J. Clin. Pharmacol. 2004, 60, 109–114. [Google Scholar] [CrossRef]
- Lee, S.; Kim, A.H.J.; Yoon, S.; Lee, J.; Lee, Y.; Ji, S.C.; Yoon, S.H.; Lee, S.H.; Yu, K.S.; Jang, I.J.; et al. The Utility of CYP3A Activity Endogenous Markers for Evaluating Drug-Drug Interaction between Sildenafil and CYP3A Inhibitors in Healthy Subjects. Drug Metab. Pharmacokinet. 2021, 36, 100368. [Google Scholar] [CrossRef]
- Kajosaari, L.I.; Laitila, J.; Neuvonen, P.J.; Backman, J.T. Metabolism of Repaglinide by CYP2C8 and CYP3A4 In Vitro: Effect of Fibrates and Rifampicin. Basic Clin. Pharmacol. Toxicol. 2005, 97, 249–256. [Google Scholar] [CrossRef]
- Hansen, A.M.K.; Christensen, I.T.; Hansen, J.B.; Carr, R.D.; Ashcroft, F.M.; Wahl, P. Differential Interactions of Nateglinide and Repaglinide on the Human β-Cell Sulphonylurea Receptor 1. Diabetes 2002, 51, 2789–2795. [Google Scholar] [CrossRef]
- Krentz, A. Established Classes of Glucose-Lowering Drugs. In Drug Therapy for Type 2 Diabetes; Springer: Berlin/Heidelberg, Germany, 2012; pp. 27–61. [Google Scholar] [CrossRef]
- Alanazi, M.M. Nateglinide: A Comprehensive Profile. Profiles Drug Subst. Excip. Relat. Methodol. 2025, 50, 43–96. [Google Scholar] [CrossRef]
- Weaver, M.L.; Orwig, B.; Rodriguez, L.; Graham, E.D.; Chin, J.; Shapiro, M.; McLeod, J.; Mangold, J. Pharmacokinetics and Metabolism of Nateglinide in Humans. Drug Metab. Dispos. 2001, 29, 415–421. [Google Scholar] [PubMed]
- Maideen, N.M.P.; Manavalan, G.; Balasubramanian, K. Drug Interactions of Meglitinide Antidiabetics Involving CYP Enzymes and OATP1B1 Transporter. Ther. Adv. Endocrinol. Metab. 2018, 9, 259. [Google Scholar] [CrossRef] [PubMed]
- Asaumi, R.; Toshimoto, K.; Tobe, Y.; Hashizume, K.; Nunoya, K.I.; Imawaka, H.; Lee, W.; Sugiyama, Y. Comprehensive PBPK Model of Rifampicin for Quantitative Prediction of Complex Drug-Drug Interactions: CYP3A/2C9 Induction and OATP Inhibition Effects. CPT Pharmacomet. Syst. Pharmacol. 2018, 7, 186–196. [Google Scholar] [CrossRef]
- Takanohashi, T.; Koizumi, T.; Mihara, R.; Okudaira, K. Prediction of the Metabolic Interaction of Nateglinide with Other Drugs Based on In Vitro Studies. Drug Metab. Pharmacokinet. 2007, 22, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Tentolouris, N.; Voulgari, C.; Katsilambros, N. A Review of Nateglinide in the Management of Patients with Type 2 Diabetes. Vasc. Health Risk Manag. 2007, 3, 797. [Google Scholar]
- Dave, D.J. Saxagliptin: A Dipeptidyl Peptidase-4 Inhibitor in the Treatment of Type 2 Diabetes Mellitus. J. Pharmacol. Pharmacother. 2011, 2, 230. [Google Scholar] [CrossRef]
- Butrovich, M.A.; Tang, W.; Boulton, D.W.; Nolin, T.D.; Sharma, P. Use of Physiologically Based Pharmacokinetic Modeling to Evaluate the Impact of Chronic Kidney Disease on CYP3A4-Mediated Metabolism of Saxagliptin. J. Clin. Pharmacol. 2022, 62, 1018. [Google Scholar] [CrossRef]
- Neumiller, J.J. Efficacy and Safety of Saxagliptin as Add-On Therapy in Type 2 Diabetes. Clin. Diabetes 2014, 32, 170–177. [Google Scholar] [CrossRef]
- liu, Q.; Ou-Yang, Q.G.; Lin, Q.M.; Lu, X.R.; Ma, Y.Q.; Li, Y.H.; Xu, R.A.; Lin, D.; Hu, G.X.; Cai, J.P. Effects of 27 CYP3A4 Protein Variants on Saxagliptin Metabolism In Vitro. Fundam. Clin. Pharmacol. 2022, 36, 150–159. [Google Scholar] [CrossRef]
- Fura, A.; Khanna, A.; Vyas, V.; Koplowitz, B.; Chang, S.Y.; Caporuscio, C.; Boulton, D.W.; Christopher, L.J.; Chadwick, K.D.; Hamann, L.G.; et al. Pharmacokinetics of the Dipeptidyl Peptidase 4 Inhibitor Saxagliptin in Rats, Dogs, and Monkeys and Clinical Projections. Drug Metab. Dispos. 2009, 37, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Patel, C.G.; Li, L.; Girgis, S.; Kornhauser, D.M.; Frevert, E.U.; Boulton, D.W. Two-Way Pharmacokinetic Interaction Studies between Saxagliptin and Cytochrome P450 Substrates or Inhibitors: Simvastatin, Diltiazem Extended-Release, and Ketoconazole. Clin. Pharmacol. Adv. Appl. 2011, 3, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Chacra, A.R. Saxagliptin for Type 2 Diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 2010, 3, 325. [Google Scholar] [CrossRef]
- Government of Canada. Summary Basis of Decision for Onglyza™. Drug and Health Product Portal. Available online: https://dhpp.hpfb-dgpsa.ca/review-documents/resource/SBD00107 (accessed on 12 July 2025).
- McLean, P.; Bennett, J.; Edward “Trey” Woods; Chandrasekhar, S.; Newman, N.; Mohammad, Y.; Khawaja, M.; Rizwan, A.; Siddiqui, R.; Birnbaum, Y.; et al. SGLT2 Inhibitors across Various Patient Populations in the Era of Precision Medicine: The Multidisciplinary Team Approach. npj Metab. Health Dis. 2025, 3, 29. [Google Scholar] [CrossRef]
- Deeks, E.D.; Scheen, A.J. Canagliflozin: A Review in Type 2 Diabetes. Drugs 2017, 77, 1577–1592. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Polidori, D.; Mari, A.; Ferrannini, E. Canagliflozin, a Sodium Glucose Co-Transporter 2 Inhibitor, Improves Model-Based Indices of Beta Cell Function in Patients with Type 2 Diabetes. Diabetologia 2014, 57, 891. [Google Scholar] [CrossRef]
- Scheen, A.J. Pharmacokinetics, Pharmacodynamics and Clinical Use of SGLT2 Inhibitors in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease. Clin. Pharmacokinet. 2015, 54, 691–708. [Google Scholar] [CrossRef]
- Mamidi, R.N.V.S.; Dallas, S.; Sensenhauser, C.; Lim, H.K.; Scheers, E.; Verboven, P.; Cuyckens, F.; Leclercq, L.; Evans, D.C.; Kelley, M.F.; et al. In Vitro and Physiologically-based Pharmacokinetic Based Assessment of Drug–Drug Interaction Potential of Canagliflozin. Br. J. Clin. Pharmacol. 2016, 83, 1082. [Google Scholar] [CrossRef]
- Devineni, D.; Polidori, D. Clinical Pharmacokinetic, Pharmacodynamic, and Drug–Drug Interaction Profile of Canagliflozin, a Sodium-Glucose Co-Transporter 2 Inhibitor. Clin. Pharmacokinet. 2015, 54, 1027–1041. [Google Scholar] [CrossRef]
- Guengerich, F.P. Roles of Individual Human Cytochrome P450 Enzymes in Drug Metabolism. Pharmacol. Rev. 2024, 76, 1104–1132. [Google Scholar] [CrossRef]
- Shah, M. Abstract P1039: Inhibition Of Drug Metabolizing Enzyme Cytochrome P450 2C8 By Acyl-Glucuronide Metabolites Of Gemfibrozil And Clopidogrel. Circulation 2025, 151, 1. [Google Scholar] [CrossRef]
- Forst, T.; Karagiannis, E.; Lübben, G.; Hohberg, C.; Schöndorf, T.; Dikta, G.; Drexler, M.; Morcos, M.; Dänschel, W.; Borchert, M.; et al. Pleiotrophic and Anti-Inflammatory Effects of Pioglitazone Precede the Metabolic Activity in Type 2 Diabetic Patients with Coronary Artery Disease. Atherosclerosis 2008, 197, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, J.; Li, J.; Chen, C.; Su, G. Pharmacokinetics and Pharmacodynamic Interaction of Bergamottin with Atorvastatin in Rats. Xenobiotica Fate Foreign Compd. Biol. Syst. 2022, 52, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-J.; Yeo, C.-W.; Shim, E.-J.; Kim, H.; Liu, K.-H.; Shin, J.-G.; Shon, J.-H. Pomegranate Juice Does Not Affect the Disposition of Simvastatin in Healthy Subjects. Eur. J. Drug Metab. Pharmacokinet. 2016, 41, 339–344. [Google Scholar] [CrossRef]
- Le Goff-Klein, N.; Klein, L.; Hérin, M.; Koffel, J.-C.; Ubeaud, G. Inhibition of In-Vitro Simvastatin Metabolism in Rat Liver Microsomes by Bergamottin, a Component of Grapefruit Juice. J. Pharm. Pharmacol. 2004, 56, 1007–1014. [Google Scholar] [CrossRef]
- Ubeaud, G.; Hagenbach, J.; Vandenschrieck, S.; Jung, L.; Koffel, J.C. In Vitro Inhibition of Simvastatin Metabolism in Rat and Human Liver by Naringenin. Life Sci. 1999, 65, 1403–1412. [Google Scholar] [CrossRef]
- Lilja, J.J.; Kivistö, K.T.; Neuvonen, P.J. Grapefruit Juice Increases Serum Concentrations of Atorvastatin and Has No Effect on Pravastatin. Clin. Pharmacol. Ther. 1999, 66, 118–127. [Google Scholar] [CrossRef]
- Ando, H.; Tsuruoka, S.; Yanagihara, H.; Sugimoto, K.; Miyata, M.; Yamazoe, Y.; Takamura, T.; Kaneko, S.; Fujimura, A. Effects of Grapefruit Juice on the Pharmacokinetics of Pitavastatin and Atorvastatin. Br. J. Clin. Pharmacol. 2005, 60, 494–497. [Google Scholar] [CrossRef]
- Fukazawa, I.; Uchida, N.; Uchida, E.; Yasuhara, H. Effects of Grapefruit Juice on Pharmacokinetics of Atorvastatin and Pravastatin in Japanese. Br. J. Clin. Pharmacol. 2004, 57, 448–455. [Google Scholar] [CrossRef]
- Reddy, P.; Ellington, D.; Zhu, Y.; Zdrojewski, I.; Parent, S.J.; Harmatz, J.S.; Derendorf, H.; Greenblatt, D.J.; Browne, K. Serum Concentrations and Clinical Effects of Atorvastatin in Patients Taking Grapefruit Juice Daily. Br. J. Clin. Pharmacol. 2011, 72, 434–441. [Google Scholar] [CrossRef]
- Medwid, S.; Li, M.M.J.; Knauer, M.J.; Lin, K.; Mansell, S.E.; Schmerk, C.L.; Zhu, C.; Griffin, K.E.; Yousif, M.D.; Dresser, G.K.; et al. Fexofenadine and Rosuvastatin Pharmacokinetics in Mice with Targeted Disruption of Organic Anion Transporting Polypeptide 2B1. Drug Metab. Dispos. Biol. Fate Chem. 2019, 47, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Kashihara, Y.; Ieiri, I.; Yoshikado, T.; Maeda, K.; Fukae, M.; Kimura, M.; Hirota, T.; Matsuki, S.; Irie, S.; Izumi, N.; et al. Small-Dosing Clinical Study: Pharmacokinetic, Pharmacogenomic (SLCO2B1 and ABCG2), and Interaction (Atorvastatin and Grapefruit Juice) Profiles of 5 Probes for OATP2B1 and BCRP. J. Pharm. Sci. 2017, 106, 2688–2694. [Google Scholar] [CrossRef] [PubMed]
- Rebello, S.; Zhao, S.; Hariry, S.; Dahlke, M.; Alexander, N.; Vapurcuyan, A.; Hanna, I.; Jarugula, V. Intestinal OATP1A2 Inhibition as a Potential Mechanism for the Effect of Grapefruit Juice on Aliskiren Pharmacokinetics in Healthy Subjects. Eur. J. Clin. Pharmacol. 2012, 68, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Boddu, S.P.; Yamsani, M.R.; Potharaju, S.; Veeraraghavan, S.; Rajak, S.; Kuma, S.V.V.S.; Avery, B.A.; Repka, M.A.; Varanasi, V.S.K.K. Influence of Grapefruit Juice on the Pharmacokinetics of Diltiazem in Wistar Rats upon Single and Multiple Dosage Regimens. Int. J. Pharm. Sci. 2009, 64, 525–531. [Google Scholar]
- Rogers, J.D.; Zhao, J.; Liu, L.; Amin, R.D.; Gagliano, K.D.; Porras, A.G.; Blum, R.A.; Wilson, M.F.; Stepanavage, M.; Vega, J.M. Grapefruit Juice Has Minimal Effects on Plasma Concentrations of Lovastatin-Derived 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors. Clin. Pharmacol. Ther. 1999, 66, 358–366. [Google Scholar] [CrossRef]
- Bidstrup, T.B.; Damkier, P.; Olsen, A.K.; Ekblom, M.; Karlsson, A.; Brøsen, K. The Impact of CYP2C8 Polymorphism and Grapefruit Juice on the Pharmacokinetics of Repaglinide. Br. J. Clin. Pharmacol. 2006, 61, 49–57. [Google Scholar] [CrossRef]
- Lilja, J.J.; Niemi, M.; Fredrikson, H.; Neuvonen, P.J. Effects of Clarithromycin and Grapefruit Juice on the Pharmacokinetics of Glibenclamide. Br. J. Clin. Pharmacol. 2007, 63, 732–740. [Google Scholar] [CrossRef]
- Owira, P.M.O.; Ojewole, J.A.O. Grapefruit Juice Improves Glycemic Control but Exacerbates Metformin-Induced Lactic Acidosis in Non-Diabetic Rats. Methods Find. Exp. Clin. Pharmacol. 2009, 31, 563–570. [Google Scholar] [CrossRef]
- Qurtam, A.A.; Mechchate, H.; Es-Safi, I.; Al-Zharani, M.; Nasr, F.A.; Noman, O.M.; Aleissa, M.; Imtara, H.; Aleissa, A.M.; Bouhrim, M.; et al. Citrus Flavanone Narirutin, In Vitro and In Silico Mechanistic Antidiabetic Potential. Pharmaceutics 2021, 13, 1818. [Google Scholar] [CrossRef]
- Cesar, T.B.; Ramos, F.M.M.; Ribeiro, C.B. Nutraceutical Eriocitrin (Eriomin) Reduces Hyperglycemia by Increasing Glucagon-Like Peptide 1 and Downregulates Systemic Inflammation: A Crossover-Randomized Clinical Trial. J. Med. Food 2022, 25, 1050–1058. [Google Scholar] [CrossRef]
- Bertelli, A.; Biagi, M.; Corsini, M.; Baini, G.; Cappellucci, G.; Miraldi, E. Polyphenols: From Theory to Practice. Foods 2021, 10, 2595. [Google Scholar] [CrossRef]
- Walle, T. Methoxylated Flavones, a Superior Cancer Chemopreventive Flavonoid Subclass? Semin. Cancer Biol. 2007, 17, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Bruno, R.S. Endogenous and Exogenous Mediators of Quercetin Bioavailability. J. Nutr. Biochem. 2015, 26, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.E.; Li, T.; Buttar, H.S. Interactions of Grapefruit Juice and Cardiovascular Medications: A Potential Risk of Toxicity. Exp. Clin. Cardiol. 2003, 8, 99–107. [Google Scholar]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.-P.; Li, S.; Chen, Y.-M.; Li, H.-B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef]
- Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Interaction between Phenolics and Gut Microbiota: Role in Human Health. J. Agric. Food Chem. 2009, 57, 6485–6501. [Google Scholar] [CrossRef]
- Galati, G.; O’Brien, P.J. Potential Toxicity of Flavonoids and Other Dietary Phenolics: Significance for Their Chemopreventive and Anticancer Properties. Free Radic. Biol. Med. 2004, 37, 287–303. [Google Scholar] [CrossRef]
- Komoroski, B.J.; Zhang, S.; Cai, H.; Hutzler, J.M.; Frye, R.; Tracy, T.S.; Strom, S.C.; Lehmann, T.; Ang, C.Y.W.; Cui, Y.Y.; et al. Induction and Inhibition of Cytochromes P450 by the St. John’s Wort Constituent Hyperforin in Human Hepatocyte Cultures. Drug Metab. Dispos. Biol. Fate Chem. 2004, 32, 512–518. [Google Scholar] [CrossRef]
- Awortwe, C.; Bruckmueller, H.; Cascorbi, I. Interaction of Herbal Products with Prescribed Medications: A Systematic Review and Meta-Analysis. Pharmacol. Res. 2019, 141, 397–408. [Google Scholar] [CrossRef]
- Nicolussi, S.; Drewe, J.; Butterweck, V.; Schwabedissen, H.E.M. zu Clinical Relevance of St. John’s Wort Drug Interactions Revisited. Br. J. Pharmacol. 2020, 177, 1212–1226. [Google Scholar] [CrossRef]
- Velingkar, V.S.; Gupta, G.L.; Hegde, N.B. A Current Update on Phytochemistry, Pharmacology and Herb–Drug Interactions of Hypericum perforatum. Phytochem. Rev. 2017, 16, 725–744. [Google Scholar] [CrossRef]
- Turton-Weeks, S.M.; Barone, G.W.; Gurley, B.J.; Ketel, B.L.; Lightfoot, M.L.; Abul-Ezz, S.R. St John’s Wort: A Hidden Risk for Transplant Patients. Prog. Transplant. Aliso Viejo Calif 2001, 11, 116–120. [Google Scholar] [CrossRef]
- Martinho, A.; Silva, S.M.; Garcia, S.; Moreno, I.; Granadeiro, L.B.; Alves, G.; Duarte, A.P.; Domingues, F.; Silvestre, S.; Gallardo, E. Effects of Hypericum perforatum Hydroalcoholic Extract, Hypericin, and Hyperforin on Cytotoxicity and CYP3A4 mRNA Expression in Hepatic Cell Lines: A Comparative Study. Med. Chem. Res. 2016, 25, 2999–3010. [Google Scholar] [CrossRef]
- Smith, P.F.; Bullock, J.M.; Booker, B.M.; Haas, C.E.; Berenson, C.S.; Jusko, W.J. Induction of Imatinib Metabolism by Hypericum perforatum. Blood 2004, 104, 1229–1230. [Google Scholar] [CrossRef]
- Ramsden, D.; Fullenwider, C.L.; Santos, C.; LeCluyse, E.L. Quantitative Clinical Risk Assessment of CYP2C, UDP-Glucuronosyltransferase, P-Glycoprotein Induction, and Complex Drug-Drug Interactions Using TruVivo Human Hepatocyte Triculture Platform. Drug Metab. Dispos. 2025, 53, 100052. [Google Scholar] [CrossRef]
- Gümüs, K.S.; Teegelbekkers, A.; Sauter, M.; Meid, A.D.; Burhenne, J.; Weiss, J.; Blank, A.; Haefeli, W.E.; Czock, D. Effect of Tacrolimus Formulation (Prolonged-Release vs. Immediate-Release) on Its Susceptibility to Drug-Drug Interactions with St. John’s Wort. Clin. Pharmacol. Drug Dev. 2024, 13, 297–306. [Google Scholar] [CrossRef]
- Xie, R.; Tan, L.H.; Polasek, E.C.; Hong, C.; Teillol-Foo, M.; Gordi, T.; Sharma, A.; Nickens, D.J.; Arakawa, T.; Knuth, D.W.; et al. CYP3A and P-Glycoprotein Activity Induction With St. John’s Wort in Healthy Volunteers From 6 Ethnic Populations. J. Clin. Pharmacol. 2005, 45, 352–356. [Google Scholar] [CrossRef]
- Gödtel-Armbrust, U.; Metzger, A.; Kroll, U.; Kelber, O.; Wojnowski, L. Variability in PXR-Mediated Induction of CYP3A4 by Commercial Preparations and Dry Extracts of St. John’s Wort. Naunyn. Schmiedebergs Arch. Pharmacol. 2007, 375, 377–382. [Google Scholar] [CrossRef]
- Mueller, S.C.; Majcher-Peszynska, J.; Uehleke, B.; Klammt, S.; Mundkowski, R.G.; Miekisch, W.; Sievers, H.; Bauer, S.; Frank, B.; Kundt, G.; et al. The Extent of Induction of CYP3A by St. John’s Wort Varies among Products and Is Linked to Hyperforin Dose. Eur. J. Clin. Pharmacol. 2006, 62, 29–36. [Google Scholar] [CrossRef]
- Soleymani, S.; Bahramsoltani, R.; Rahimi, R.; Abdollahi, M. Clinical Risks of St John’s Wort (Hypericum perforatum) Co-Administration. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1047–1062. [Google Scholar] [CrossRef]
- Borrelli, F.; Izzo, A.A. Herb-Drug Interactions with St John’s Wort (Hypericum perforatum): An Update on Clinical Observations. AAPS J. 2009, 11, 710–727. [Google Scholar] [CrossRef] [PubMed]
- Izzo, A.A.; Hoon-Kim, S.; Radhakrishnan, R.; Williamson, E.M. A Critical Approach to Evaluating Clinical Efficacy, Adverse Events and Drug Interactions of Herbal Remedies. Phytother. Res. 2016, 30, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Chrubasik-Hausmann, S.; Vlachojannis, J.; McLachlan, A.J. Understanding Drug Interactions with St John’s Wort (Hypericum perforatum L.): Impact of Hyperforin Content. J. Pharm. Pharmacol. 2019, 71, 129–138. [Google Scholar] [CrossRef]
- Mannel, M. Drug Interactions with St John’s Wort: Mechanisms and Clinical Implications. Drug Saf. 2004, 27, 773–797. [Google Scholar] [CrossRef]
- Russo, E.; Scicchitano, F.; Whalley, B.J.; Mazzitello, C.; Ciriaco, M.; Esposito, S.; Patanè, M.; Upton, R.; Pugliese, M.; Chimirri, S.; et al. Hypericum perforatum: Pharmacokinetic, Mechanism of Action, Tolerability, and Clinical Drug–Drug Interactions. Phytother. Res. 2014, 28, 643–655. [Google Scholar] [CrossRef]
- Ehambarampillai, D.; Wan, M.L.Y. A Comprehensive Review of Schisandra Chinensis Lignans: Pharmacokinetics, Pharmacological Mechanisms, and Future Prospects in Disease Prevention and Treatment. Chin. Med. 2025, 20, 47. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, T.; Wu, J.-J.; Cao, Y.-F.; Fang, Z.-Z.; Sun, H.-Z.; Zhu, Z.-T.; Yang, K.; Liu, Y.-Z.; Gonzalez, F.J.; et al. Inhibition of Human CYP3A4 and CYP3A5 Enzymes by Gomisin C and Gomisin G, Two Lignan Analogs Derived from Schisandra Chinensis. Fitoterapia 2017, 119, 26–31. [Google Scholar] [CrossRef]
- Seo, H.-J.; Ji, S.-B.; Kim, S.-E.; Lee, G.-M.; Park, S.-Y.; Wu, Z.; Jang, D.S.; Liu, K.-H. Inhibitory Effects of Schisandra Lignans on Cytochrome P450s and Uridine 5′-Diphospho-Glucuronosyl Transferases in Human Liver Microsomes. Pharmaceutics 2021, 13, 371. [Google Scholar] [CrossRef]
- Wan, C.-K.; Tse, A.K.; Yu, Z.-L.; Zhu, G.-Y.; Wang, H.; Fong, D.W.F. Inhibition of Cytochrome P450 3A4 Activity by Schisandrol A and Gomisin A Isolated from Fructus Schisandrae Chinensis. Phytomedicine Int. J. Phytother. Phytopharm. 2010, 17, 702–705. [Google Scholar] [CrossRef]
- Su, L.; Wang, L.; Li, P.; Mao, C.; Hao, M.; Lu, T. Effects of Unprocessed Versus Vinegar-Processed Schisandra Chinensis on the Activity of CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19 and CYP2D6 Enzymes in Rats. J. Anal. Bioanal. Tech. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Unger, M. Pharmacokinetic Drug Interactions Involving Ginkgo Biloba. Drug Metab. Rev. 2013, 45, 353–385. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.M.; Davey, R.T.; Voell, J.; Formentini, E.; Alfaro, R.M.; Penzak, S.R. Effect of Ginkgo Biloba Extract on Lopinavir, Midazolam and Fexofenadine Pharmacokinetics in Healthy Subjects. Curr. Med. Res. Opin. 2008, 24, 591–599. [Google Scholar] [CrossRef]
- Uchida, S.; Yamada, H.; Xiao, D.L.; Maruyama, S.; Ohmori, Y.; Oki, T.; Watanabe, H.; Umegaki, K.; Ohashi, K.; Yamada, S. Effects of Ginkgo Biloba Extract on Pharmacokinetics and Pharmacodynamics of Tolbutamide and Midazolam in Healthy Volunteers. J. Clin. Pharmacol. 2006, 46, 1290–1298. [Google Scholar] [CrossRef]
- Zadoyan, G.; Rokitta, D.; Klement, S.; Dienel, A.; Hoerr, R.; Gramatté, T.; Fuhr, U. Effect of Ginkgo Biloba Special Extract EGb 761® on Human Cytochrome P450 Activity: A Cocktail Interaction Study in Healthy Volunteers. Eur. J. Clin. Pharmacol. 2012, 68, 553–560. [Google Scholar] [CrossRef]
- Yan, J.; Gu, Q.; Meng, C.; Liu, J.; Liu, F.; Xia, C. Panaxytriol Upregulates CYP3A4 Expression through the Interaction between Nuclear Regulators and DNA Response Elements. J. Ethnopharmacol. 2023, 310, 116398. [Google Scholar] [CrossRef]
- Wu, J.; Yao, N.; Hu, Q.; Liu, M.; Zhang, H.; Xiong, Y.; Hu, J.; Xia, C. Effect of Panaxytriol on Cytochrome P450 3A4 via the Pregnane X Receptor Regulatory Pathway. Phytother. Res. PTR 2019, 33, 968–975. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Xu, H.; Huang, G.; Zhang, Z.; Ma, Z.; Gao, Y. Panax Ginseng Inhibits Metabolism of Diester Alkaloids by Downregulating CYP3A4 Enzyme Activity via the Pregnane X Receptor. Evid.-Based Complement. Altern. Med. ECAM 2019, 2019, 3508658. [Google Scholar] [CrossRef]
- Anderson, G.D.; Rosito, G.; Mohustsy, M.A.; Elmer, G.W. Drug Interaction Potential of Soy Extract and Panax Ginseng. J. Clin. Pharmacol. 2003, 43, 643–648. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, J.; Liu, J.; Meng, C.; Liu, F.; Xia, C. Panaxytriol Upregulates CYP3A4 Expression Based on the Interaction of PXR, CAR, HSP90α, and RXRα. Phytomedicine Int. J. Phytother. Phytopharm. 2022, 101, 154097. [Google Scholar] [CrossRef]
- Elens, L.; van Gelder, T.; Hesselink, D.A.; Haufroid, V.; van Schaik, R.H. CYP3A4*22: Promising Newly Identified CYP3A4 Variant Allele for Personalizing Pharmacotherapy. Pharmacogenomics 2013, 14, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Z.; Wang, Y.; Jin, W.; Zhang, Z.; Jin, L.; Qian, J.; Zheng, L. CYP3A4 and CYP3A5: The Crucial Roles in Clinical Drug Metabolism and the Significant Implications of Genetic Polymorphisms. PeerJ 2024, 12, e18636. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Guo, Y.; Wrighton, S.A.; Cooke, G.E.; Sadee, W. Intronic Polymorphism in CYP3A4 Affects Hepatic Expression and Response to Statin Drugs. Pharmacogenom. J. 2011, 11, 274–286. [Google Scholar] [CrossRef]
- Elalem, E.G.; Jelani, M.; Khedr, A.; Ahmad, A.; Alaama, T.Y.; Alaama, M.N.; Al-Kreathy, H.M.; Damanhouri, Z.A. Association of Cytochromes P450 3A4*22 and 3A5*3 Genotypes and Polymorphism with Response to Simvastatin in Hypercholesterolemia Patients. PLoS ONE 2022, 17, e0260824. [Google Scholar] [CrossRef]
- Jansen, M.E.; Rigter, T.; Rodenburg, W.; Fleur, T.M.C.; Houwink, E.J.F.; Weda, M.; Cornel, M.C. Review of the Reported Measures of Clinical Validity and Clinical Utility as Arguments for the Implementation of Pharmacogenetic Testing: A Case Study of Statin-Induced Muscle Toxicity. Front. Pharmacol. 2017, 8, 555. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, L.; Fu, Q. CYP3A4*1G Polymorphism Is Associated with Lipid-Lowering Efficacy of Atorvastatin but Not of Simvastatin. Eur. J. Clin. Pharmacol. 2008, 64, 877–882. [Google Scholar] [CrossRef]
- Abdullah-Koolmees, H.; van Keulen, A.M.; Nijenhuis, M.; Deneer, V.H.M. Pharmacogenetics Guidelines: Overview and Comparison of the DPWG, CPIC, CPNDS, and RNPGx Guidelines. Front. Pharmacol. 2021, 11, 595219. [Google Scholar] [CrossRef]
- Kaye, J.B.; Schultz, L.E.; Steiner, H.E.; Kittles, R.A.; Cavallari, L.H.; Karnes, J.H. Warfarin Pharmacogenomics in Diverse Populations. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 1150–1163. [Google Scholar] [CrossRef]
- Hirota, T.; Fujita, Y.; Ieiri, I. An Updated Review of Pharmacokinetic Drug Interactions and Pharmacogenetics of Statins. Expert Opin. Drug Metab. Toxicol. 2020, 16, 809–822. [Google Scholar] [CrossRef]
- Adachi, K.; Ohyama, K.; Tanaka, Y.; Sato, T.; Murayama, N.; Shimizu, M.; Saito, Y.; Yamazaki, H. High Hepatic and Plasma Exposures of Atorvastatin in Subjects Harboring Impaired Cytochrome P450 3A4∗16 Modeled after Virtual Administrations and Possibly Associated with Statin Intolerance Found in the Japanese Adverse Drug Event Report Database. Drug Metab. Pharmacokinet. 2023, 49, 100486. [Google Scholar] [CrossRef]
- Saiz-Rodríguez, M.; Almenara, S.; Navares-Gómez, M.; Ochoa, D.; Román, M.; Zubiaur, P.; Koller, D.; Santos, M.; Mejía, G.; Borobia, A.M.; et al. Effect of the Most Relevant CYP3A4 and CYP3A5 Polymorphisms on the Pharmacokinetic Parameters of 10 CYP3A Substrates. Biomedicines 2020, 8, 94. [Google Scholar] [CrossRef]
- Jordan, I.K.; Sharma, S.; Mariño-Ramírez, L. Population Pharmacogenomics for Health Equity. Genes 2023, 14, 1840. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, A.T.; Muñoz, A.M.; Ybañez-Julca, R.O.; Pineda-Pérez, M.; Tasayco-Yataco, N.; Bendezú, M.R.; García, J.A.; Surco-Laos, F.; Chávez, H.; Laos-Anchante, D.; et al. SLCO1B1 and CYP3A4 Allelic Variants Associated with Pharmacokinetic Interactions and Adverse Reactions Induced by Simvastatin and Atorvastatin Used in Peru: Clinical Implications. J. Pharm. Pharmacogn. Res. 2023, 11, 934–952. [Google Scholar] [CrossRef]
- Swen, J.J.; van der Wouden, C.H.; Manson, L.E.; Abdullah-Koolmees, H.; Blagec, K.; Blagus, T.; Böhringer, S.; Cambon-Thomsen, A.; Cecchin, E.; Cheung, K.-C.; et al. A 12-Gene Pharmacogenetic Panel to Prevent Adverse Drug Reactions: An Open-Label, Multicentre, Controlled, Cluster-Randomised Crossover Implementation Study. Lancet 2023, 401, 347–356. [Google Scholar] [CrossRef]
- Brunham, L.R.; Baker, S.; Mammen, A.; Mancini, G.B.J.; Rosenson, R.S. Role of Genetics in the Prediction of Statin-Associated Muscle Symptoms and Optimization of Statin Use and Adherence. Cardiovasc. Res. 2018, 114, 1073–1081. [Google Scholar] [CrossRef]
- Sivadas, A.; Sahana, S.; Jolly, B.; Bhoyar, R.C.; Jain, A.; Sharma, D.; Imran, M.; Senthivel, V.; Divakar, M.K.; Mishra, A.; et al. Landscape of Pharmacogenetic Variants Associated with Non-Insulin Antidiabetic Drugs in the Indian Population. BMJ Open Diabetes Res. Care 2024, 12, e003769. [Google Scholar] [CrossRef]
- Silva, P.; Jacobs, D.; Kriak, J.; Abu-Baker, A.; Udeani, G.; Neal, G.; Ramos, K. Implementation of Pharmacogenomics and Artificial Intelligence Tools for Chronic Disease Management in Primary Care Setting. J. Pers. Med. 2021, 11, 443. [Google Scholar] [CrossRef]
- Tipnoppanon, S.; Udomnilobol, U.; Siwamogsatham, S.; Vorasettakarnkij, Y.; Sukasem, C.; Prueksaritanont, T.; Chariyavilaskul, P.; Yodsurang, V.; Srimatimanon, T.; Chamnanphon, M.; et al. Impacts of Pharmacokinetic Gene Polymorphisms on Steady-State Plasma Concentrations of Simvastatin in Thai Population. Clin. Transl. Sci. 2025, 18, e70225. [Google Scholar] [CrossRef]
- Ulvestad, M.; Skottheim, I.B.; Jakobsen, G.S.; Bremer, S.; Molden, E.; Åsberg, A.; Hjelmesæth, J.; Andersson, T.B.; Sandbu, R.; Christensen, H. Impact of OATP1B1, MDR1, and CYP3A4 Expression in Liver and Intestine on Interpatient Pharmacokinetic Variability of Atorvastatin in Obese Subjects. Clin. Pharmacol. Ther. 2013, 93, 275–282. [Google Scholar] [CrossRef]
- Li, H.; He, J.; Jia, W. The Influence of Gut Microbiota on Drug Metabolism and Toxicity. Expert Opin. Drug Metab. Toxicol. 2016, 12, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Spanogiannopoulos, P.; Bess, E.N.; Carmody, R.N.; Turnbaugh, P.J. The Microbial Pharmacists within Us: A Metagenomic View of Xenobiotic Metabolism. Nat. Rev. Microbiol. 2016, 14, 273–287. [Google Scholar] [CrossRef]
- Wilson, I.D.; Nicholson, J.K. Gut Microbiome Interactions with Drug Metabolism, Efficacy, and Toxicity. Transl. Res. J. Lab. Clin. Med. 2017, 179, 204–222. [Google Scholar] [CrossRef] [PubMed]
- Togao, M.; Kawakami, K.; Otsuka, J.; Wagai, G.; Ohta-Takada, Y.; Kado, S. Effects of Gut Microbiota on In Vivo Metabolism and Tissue Accumulation of Cytochrome P450 3A Metabolized Drug: Midazolam. Biopharm. Drug Dispos. 2020, 41, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.L.; Patterson, A.D. The Gut Microbiome: An Orchestrator of Xenobiotic Metabolism. Acta Pharm. Sin. B 2020, 10, 19–32. [Google Scholar] [CrossRef]
- Enright, E.F.; Gahan, C.G.M.; Joyce, S.A.; Griffin, B.T. The Impact of the Gut Microbiota on Drug Metabolism and Clinical Outcome. Yale J. Biol. Med. 2016, 89, 375–382. [Google Scholar]
- Yang, H.; Zhang, Y.; Zhou, R.; Wu, T.; Zhu, P.; Liu, Y.; Zhou, J.; Xiong, Y.; Xiong, Y.; Zhou, H.; et al. Antibiotics-Induced Depletion of Rat Microbiota Induces Changes in the Expression of Host Drug-Processing Genes and Pharmacokinetic Behaviors of CYPs Probe Drugs. Drug Metab. Dispos. 2023, 51, 509–520. [Google Scholar] [CrossRef]
Drug | Class | CYP3A4 Role | Main PK Characteristics | CYP3A4-Related Interactions | Clinical Notes |
---|---|---|---|---|---|
Simvastatin | Statin (lipophilic) | Major metabolic pathway (hepatic and intestinal) | Prodrug, converted to active acid; bioavailability < 5%; half-life ≈ 1.9 h; mainly biliary excretion | Strong CYP3A4 inhibitors (ketoconazole, erythromycin, ritonavir) increase exposure and myopathy risk | Modified-release formulations increase exposure due to reduced intestinal metabolism |
Atorvastatin | Statin (lipophilic) | Major pathway (hepatic and intestinal); lactone form has higher affinity | Bioavailability ≈ 14%; half-life ≈ 7 h; mainly biliary excretion; high protein binding | Grapefruit juice, itraconazole, and ritonavir increase exposure and myopathy/rhabdomyolysis risk | Glucuronidation (UGT1A1, UGT1A3) also contributes significantly |
Lovastatin | Statin (lipophilic) | Major pathway (intestinal > hepatic) | Prodrug, converted to active acid; bioavailability < 5%; half-life ≈ 3 h; biliary excretion | CYP3A4 inhibitors (erythromycin, ketoconazole, grapefruit juice) increase exposure | Novel delivery systems aim to reduce intestinal metabolism |
Cerivastatin | Statin (synthetic) | Minor role (CYP3A4 + CYP2C8) | High potency; half-life 2–3 h; no unchanged drug excreted | CYP2C8 inhibitors (gemfibrozil) markedly increase rhabdomyolysis risk; CYP3A4 inhibition may add effect | Withdrawn in several countries due to safety concerns |
Repaglinide | Meglitinide | Secondary to CYP2C8 | Rapid onset; half-life ≈ 1–1.5 h; hepatic metabolism | CYP2C8 inhibitors (gemfibrozil, clopidogrel metabolite) increase exposure; CYP3A4 inhibitors (clarithromycin) moderate effect; rifampicin decreases exposure | Narrow therapeutic window with risk of hypoglycemia |
Nateglinide | Meglitinide | Secondary to CYP2C9 | Rapid onset; half-life ≈ 1.5 h; hepatic metabolism | Potent CYP2C9 inhibitors increase exposure; CYP3A4 inhibitors have minor effect; rifampicin decreases exposure | Lower risk of prolonged hypoglycemia compared with repaglinide |
Saxagliptin | DPP-4 inhibitor | Major pathway (CYP3A4/5) | Time to peak ≈ 4 h; active metabolite (M2) | CYP3A4 inhibitors increase exposure; inducers decrease exposure; grapefruit juice may enhance effect | Limited dietary interaction studies available |
Canagliflozin | SGLT2 inhibitor | Minor pathway | Mainly metabolized by glucuronidation (UGT1A9, UGT2B4); dual excretion routes | Strong CYP3A4 inducers (rifampicin) decrease exposure | Dose adjustment may be required with inducers |
Pioglitazone | TZD | Secondary to CYP2C8 | CYP3A4 contributes ≈ 37% of metabolism; long half-life | CYP3A4 inhibitors slightly increase exposure; inducers decrease exposure | Greater CYP3A4 involvement if CYP2C8 is inhibited |
Compound/Source | Model | CYP3A4/Transporter Effect | Main PK/PD Outcomes | References |
---|---|---|---|---|
Grapefruit juice (GFJ) and bergamottin | Preclinical and human | Strong intestinal CYP3A4 inhibition | Statins (atorvastatin, simvastatin): increased AUC/Cmax up to 15-fold, decreased metabolites, and enhanced lipid-lowering effect | [178,179,182] |
Bergamottin and naringenin | In vitro and hepatocytes | Mixed-type inhibition; naringenin stronger than bergamottin in rats | Decreased simvastatin clearance; inhibition constant (Ki) 4–34 μM | [180,181] |
GFJ—differential statin effect | Human | CYP3A4-mediated PK changes vary by statin | Atorvastatin AUC increased 83%, pitavastatin increased 13%, pravastatin showed minimal effect | [183,184] |
GFJ chronic use | Human | Mild increase in atorvastatin exposure; no relevant lipid or toxicity changes | AUC increased by 19–26% | [185] |
GFJ timing effect | Human | Reversible inhibition depending on timing of intake | Simvastatin AUC increased 13.5-fold when co-administered immediately, 2.1-fold after 24 h, and no change after 3–7 days | [36] |
GFJ—transporter effects | Human and animals | Inhibits OATP2B1 and OATP1A2, alters P-glycoprotein (P-gp) | Decreased exposure of fexofenadine, sulfasalazine, and aliskiren; altered diltiazem permeability | [186,187,188] |
GFJ—other drugs | Human and animals | Variable effects on non-CYP3A4 drugs | Repaglinide showed a slight increase in AUC, glibenclamide showed no change, and metformin showed increased hepatic levels and lactic acid | [191,192,193] |
Other citrus flavonoids | In vitro and human | Possible CYP3A4 inhibition | Narirutin predicted to bind to CYP3A4 active site; Eriomin® associated with decreased glucose and inflammation | [194,195] |
St. John’s Wort (Hypericum perforatum) | In vitro, animal and human | Strong CYP3A4 and P-gp induction via pregnane X receptor (PXR) activation | Decreased AUC of midazolam, simvastatin, and cyclosporine (reductions > 50%); increased risk of graft rejection; effect dependent on hyperforin content | [10,72,73,203,207,208,209,210,211,212,213,214] |
Schisandra chinensis | In vitro, animal | Dual effect: some lignans induce CYP3A4 via PXR, others act as inhibitors (substrate-specific) | Gomisin A and G cause time-dependent inhibition; multi-dose extracts may lead to induction | [222,223,224,225] |
Ginkgo biloba extract | In vitro, animal and human | Bidirectional effects, depending on dose and extract quality | Standardized EGb 761 (≤240 mg/day) showed no significant CYP3A4 change; high-dose or poorly standardized preparations may interact | [136,227,228,229] |
Panax ginseng | In vitro, animal and human | Context-dependent PXR activation or CYP3A4 downregulation | In vitro studies show increased CYP3A4 mRNA and protein; animal and human studies indicate minimal or no effect at standard doses | [230,231,232,233,234] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Lorca, M.; Timón, I.M.; Ballester, P.; Henarejos-Escudero, P.; García-Muñoz, A.M.; Victoria-Montesinos, D.; Barcina-Pérez, P. Dietary Modulation of CYP3A4 and Its Impact on Statins and Antidiabetic Drugs: A Narrative Review. Pharmaceuticals 2025, 18, 1351. https://doi.org/10.3390/ph18091351
Hernández-Lorca M, Timón IM, Ballester P, Henarejos-Escudero P, García-Muñoz AM, Victoria-Montesinos D, Barcina-Pérez P. Dietary Modulation of CYP3A4 and Its Impact on Statins and Antidiabetic Drugs: A Narrative Review. Pharmaceuticals. 2025; 18(9):1351. https://doi.org/10.3390/ph18091351
Chicago/Turabian StyleHernández-Lorca, Manuel, Isabel M. Timón, Pura Ballester, Paula Henarejos-Escudero, Ana María García-Muñoz, Desirée Victoria-Montesinos, and Pablo Barcina-Pérez. 2025. "Dietary Modulation of CYP3A4 and Its Impact on Statins and Antidiabetic Drugs: A Narrative Review" Pharmaceuticals 18, no. 9: 1351. https://doi.org/10.3390/ph18091351
APA StyleHernández-Lorca, M., Timón, I. M., Ballester, P., Henarejos-Escudero, P., García-Muñoz, A. M., Victoria-Montesinos, D., & Barcina-Pérez, P. (2025). Dietary Modulation of CYP3A4 and Its Impact on Statins and Antidiabetic Drugs: A Narrative Review. Pharmaceuticals, 18(9), 1351. https://doi.org/10.3390/ph18091351