Exploring Subtilisin Inhibition to Discover Antimalarial Drugs: Insights into Medicinal Chemistry and Drug Discovery
Abstract
1. Introduction
2. Malaria: An Overview
2.1. Epidemiology Data
2.2. Life Cycle and the Importance of Subtilisin
2.3. Clinical Manifestations
2.4. Antimalarial Drugs
2.5. Druggable Targets Against Malaria
3. Subtilisin: A Promising Drug Target
3.1. Structure and Functions
3.1.1. SUB1
3.1.2. SUB2
3.1.3. SUB3
Subtype | PDB ID a | Gene ID b | Number of Amino Acid Residues in Modeled Protein (and Predicted Mr) |
---|---|---|---|
PfSUB1 | 8POL | - | 688 (78 KDa) |
PfSUB2 | 2LU1 (catalytic structure) | - | 150 (17KDa) (catalytic structure) |
PfSUB3 | - | PFE0355c | 769 (88 KDa) |
3.2. Catalysis Mechanism
4. Latest Developments in Medicinal Chemistry to Discover Subtilisin Inhibitors
4.1. Peptide and Peptidomimetic Structures
4.1.1. Cystine Knot Protein Scaffolds
4.1.2. Peptidyl α-Ketoamides
4.1.3. Peptidyl Difluorostatones
4.1.4. Peptidyl Boronic Acids
4.2. Non-Peptide Structures
4.2.1. Benzopyran Derivatives and Analogs
4.2.2. Quinoline Derivatives and Analogs
4.2.3. Triterpene Derivatives
5. Challenges and Opportunities to Discover Antimalarial Drugs Targeting Subtilisins
6. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arora, G.; Chuang, Y.-M.; Sinnis, P.; Dimopoulos, G.; Fikrig, E. Malaria: Influence of Anopheles Mosquito Saliva on Plasmodium Infection. Trends Immunol. 2023, 44, 256–265. [Google Scholar] [CrossRef] [PubMed]
- de Azevedo Teotônio Cavalcanti, M.; Da Silva Menezes, K.J.; De Oliveira Viana, J.; de Oliveira Rios, É.; Corrêa de Farias, A.G.; Weber, K.C.; Nogueira, F.; dos Santos Nascimento, I.J.; de Moura, R.O. Current Trends to Design Antimalarial Drugs Targeting N-Myristoyltransferase. Future Microbiol. 2024, 19, 1601–1618. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Nascimento, I.J.; Cavalcanti, M.d.A.T.; de Moura, R.O. Exploring N-Myristoyltransferase as a Promising Drug Target against Parasitic Neglected Tropical Diseases. Eur. J. Med. Chem. 2023, 258, 115550. [Google Scholar] [CrossRef]
- World Health Organization. World Malaria Report 2024; World Health Organization: Geneva, Switzerland, 2024; Volume WHO/HTM/GM, ISBN 978-92-4-010444-0. [Google Scholar]
- de Jesus Marinho, W.P.; de Oliveira Rios, É.; de Moura, R.O.; dos Santos Nascimento, I.J. Target Selectivity of Cysteine Protease Inhibitors: A Strategy to Address Neglected Tropical Diseases. Curr. Med. Chem. 2025, 32, 1–15. [Google Scholar] [CrossRef]
- Njiro, B.J.; Mutagonda, R.F.; Chamani, A.T.; Mwakyandile, T.; Sabas, D.; Bwire, G.M. Molecular Surveillance of Chloroquine-Resistant Plasmodium falciparum in Sub-Saharan African Countries after Withdrawal of Chloroquine for Treatment of Uncomplicated Malaria: A Systematic Review. J. Infect. Public Health 2022, 15, 550–557. [Google Scholar] [CrossRef]
- Fikadu, M.; Ashenafi, E. Malaria: An Overview. Infect. Drug Resist. 2023, 16, 3339–3347. [Google Scholar] [CrossRef] [PubMed]
- Amelo, W.; Makonnen, E. Efforts Made to Eliminate Drug-Resistant Malaria and Its Challenges. Biomed. Res. Int. 2021, 2021, 5539544. [Google Scholar] [CrossRef]
- de Oliveira Rios, É.; Albino, S.L.; de Moura, R.O.; dos Santos Nascimento, I.J. Targeting Cysteine Protease B to Discover Antileishmanial Drugs: Directions and Advances. Eur. J. Med. Chem. 2025, 289, 117500. [Google Scholar] [CrossRef]
- dos Santos Nascimento, I.J.; Santana Gomes, J.N.; de Oliveira Viana, J.; de Medeiros e Silva, Y.M.; Barbosa, E.G.; de Moura, R.O. The Power of Molecular Dynamics Simulations and Their Applications to Discover Cysteine Protease Inhibitors. Mini Rev. Med. Chem. 2023, 23, 1125–1146. [Google Scholar] [CrossRef]
- Withers-Martinez, C.; George, R.; Maslen, S.; Jean, L.; Hackett, F.; Skehel, M.; Blackman, M.J. The Malaria Parasite Egress Protease SUB1 Is Activated through Precise, Plasmepsin X-Mediated Cleavage of the SUB1 Prodomain. Biochim. Biophys. Acta Gen. Subj. 2024, 1868, 130665. [Google Scholar] [CrossRef]
- De Souza, M.; Medeiros, D.C.; de Moura, R.O.; dos Santos Nascimento, I.J. Pharmacokinetic Limitations to Overcome and Enable K777 as a Potential Drug against Chagas Disease. Curr. Pharm. Des. 2023, 29, 2359–2360. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.K. Targeting the Active Sites of Malarial Proteases for Antimalarial Drug Discovery: Approaches, Progress and Challenges. Int. J. Antimicrob. Agents 2017, 50, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Rawat, A.; Roy, M.; Jyoti, A.; Kaushik, S.; Verma, K.; Srivastava, V.K. Cysteine Proteases: Battling Pathogenic Parasitic Protozoans with Omnipresent Enzymes. Microbiol. Res. 2021, 249, 126784. [Google Scholar] [CrossRef]
- Machin, J.M.; Kantsadi, A.L.; Vakonakis, I. The Complex of Plasmodium falciparum Falcipain-2 Protease with an (E)-Chalcone-Based Inhibitor Highlights a Novel, Small, Molecule-Binding Site. Malar. J. 2019, 18, 388. [Google Scholar] [CrossRef]
- dos Santos Nascimento, I.J.; de Moura, R.O. Targeting Cysteine and Serine Proteases to Discover New Drugs Against Neglected Tropical Diseases. Curr. Med. Chem. 2024, 31, 2133–2134. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, I.; Albino, S.; Menezes, K.; Cavalcanti, M.; Oliveira, M.; Mali, S.; Moura, R. Targeting SmCB1: Perspectives and Insights to Design Antischistosomal Drugs. Curr. Med. Chem. 2023, 31, 2264–2284. [Google Scholar] [CrossRef] [PubMed]
- Withers-Martinez, C.; Suarez, C.; Fulle, S.; Kher, S.; Penzo, M.; Ebejer, J.-P.; Koussis, K.; Hackett, F.; Jirgensons, A.; Finn, P.; et al. Plasmodium Subtilisin-like Protease 1 (SUB1): Insights into the Active-Site Structure, Specificity and Function of a Pan-Malaria Drug Target. Int. J. Parasitol. 2012, 42, 597–612. [Google Scholar] [CrossRef]
- dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Drug Repurposing: A Strategy for Discovering Inhibitors against Emerging Viral Infections. Curr. Med. Chem. 2021, 28, 2887–2942. [Google Scholar] [CrossRef]
- dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva Júnior, E.F.; de Moura, R.O. Insights on Microsomal Prostaglandin E2 Synthase 1 (MPGES-1) Inhibitors Using Molecular Dynamics and MM/PBSA Calculations. Lett. Drug Des. Discov. 2024, 21, 1033–1047. [Google Scholar] [CrossRef]
- dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. The New Era of Drug Discovery: The Power of Computer-Aided Drug Design (CADD). Lett. Drug Des. Discov. 2022, 19, 951–955. [Google Scholar] [CrossRef]
- dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva Júnior, E.F. Computer-Aided Drug Design of Anti-Inflammatory Agents Targeting Microsomal Prostaglandin E2 Synthase-1 (MPGES-1). Curr. Med. Chem. 2022, 29, 5397–5419. [Google Scholar] [CrossRef] [PubMed]
- Brogi, S.; Giovani, S.; Brindisi, M.; Gemma, S.; Novellino, E.; Campiani, G.; Blackman, M.J.; Butini, S. In Silico Study of Subtilisin-like Protease 1 (SUB1) from Different Plasmodium Species in Complex with Peptidyl-Difluorostatones and Characterization of Potent Pan-SUB1 Inhibitors. J. Mol. Graph. Model. 2016, 64, 121–130. [Google Scholar] [CrossRef]
- dos Santos Nascimento, I.J.; da Silva-Júnior, E.F. TNF-α Inhibitors from Natural Compounds: An Overview, CADD Approaches, and Their Exploration for Anti-Inflammatory Agents. Comb. Chem. High Throughput Screen. 2021, 25, 2317–2340. [Google Scholar] [CrossRef]
- dos Santos Nascimento, I.J.; da Silva Rodrigues, É.E.; da Silva, M.F.; de Araújo-Júnior, J.X.; de Moura, R.O. Advances in Computational Methods to Discover New NS2B-NS3 Inhibitors Useful Against Dengue and Zika Viruses. Curr. Top. Med. Chem. 2022, 22, 2435–2462. [Google Scholar] [CrossRef]
- Albino, S.L.; da Silva Moura, W.C.; dos Reis, M.M.L.; Sousa, G.L.S.; da Silva, P.R.; de Oliveira, M.G.C.; Borges, T.K.d.S.; Albuquerque, L.F.F.; de Almeida, S.M.V.; de Lima, M.d.C.A.; et al. ACW-02 an Acridine Triazolidine Derivative Presents Antileishmanial Activity Mediated by DNA Interaction and Immunomodulation. Pharmaceuticals 2023, 16, 204. [Google Scholar] [CrossRef]
- Duffy, P.E.; Gorres, J.P.; Healy, S.A.; Fried, M. Malaria vaccines: A new era of prevention and control. Nat. Rev. Microbiol. 2024, 22, 756–772. [Google Scholar] [CrossRef]
- Dvorin, J.D.; Goldberg, D.E. Plasmodium Egress Across the Parasite Life Cycle. Annu. Rev. Microbiol. 2022, 76, 67–90. [Google Scholar] [CrossRef]
- Dzianach, P.A.; Rumisha, S.F.; Lubinda, J.; Saddler, A.; van den Berg, M.; Gelaw, Y.A.; Harris, J.R.; Browne, A.J.; Sanna, F.; Rozier, J.A.; et al. Evaluating COVID-19-Related Disruptions to Effective Malaria Case Management in 2020–2021 and Its Potential Effects on Malaria Burden in Sub-Saharan Africa. Trop. Med. Infect. Dis. 2023, 8, 216. [Google Scholar] [CrossRef]
- Gutman, J.R.; Lucchi, N.W.; Cantey, P.T.; Steinhardt, L.C.; Samuels, A.M.; Kamb, M.L.; Kapella, B.K.; McElroy, P.D.; Udhayakumar, V.; Lindblade, K.A. Malaria and Parasitic Neglected Tropical Diseases: Potential Syndemics with COVID-19? Am. J. Trop. Med. Hyg. 2020, 103, 572–577. [Google Scholar] [CrossRef] [PubMed]
- World Malaria Report 2024. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2024 (accessed on 23 April 2025).
- Hill, J.; Accrombessi, M.; Briand, V.; Dhabangi, A.; Hill, J.; Hoyt, J.; Idro, R.; Khairallah, C.; Kariuki, S.; ter Kuile, F.O.; et al. Implementation of Post-Discharge Malaria Chemoprevention (PDMC) in Benin, Kenya, Malawi, and Uganda: Stakeholder Engagement Meeting Report. Malar. J. 2024, 23, 89. [Google Scholar] [CrossRef] [PubMed]
- Malaria. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria (accessed on 12 August 2022).
- World Health Organization. World Malaria Report 2022 Addressing Inequity in the Global Malaria Response Addressing Inequity in the Global Malaria Response; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Boletim Epidemiológico|Secretaria de Vigilância Em Saúde e Ambiente|Ministério Da Saúde. Available online: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/epidemiologicos/edicoes/2024/boletim-epidemiologico-volume-55-no-01/ (accessed on 23 July 2025).
- Talapko, J.; Škrlec, I.; Alebić, T.; Jukić, M.; Včev, A. Malaria: The Past and the Present. Microorganisms 2019, 7, 179. [Google Scholar] [CrossRef]
- Abbas, N.; Saba, T.; Rehman, A.; Mehmood, Z.; Kolivand, H.; Uddin, M.; Anjum, A. Plasmodium Life Cycle Stage Classification Based Quantification of Malaria Parasitaemia in Thin Blood Smears. Microsc. Res. Tech. 2019, 82, 283–295. [Google Scholar] [CrossRef]
- Mohandas, N.; An, X. Malaria and Human Red Blood Cells. Med. Microbiol. Immunol. 2012, 201, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Grüring, C.; Heiber, A.; Kruse, F.; Ungefehr, J.; Gilberger, T.-W.; Spielmann, T. Development and Host Cell Modifications of Plasmodium falciparum Blood Stages in Four Dimensions. Nat. Commun. 2011, 2, 165. [Google Scholar] [CrossRef]
- Zuccala, E.S.; Baum, J. Cytoskeletal and Membrane Remodelling during Malaria Parasite Invasion of the Human Erythrocyte. Br. J. Haematol. 2011, 154, 680–689. [Google Scholar] [CrossRef]
- López, R.; Valbuena, J.; Rodríguez, L.E.; Ocampo, M.; Vera, R.; Curtidor, H.; Puentes, A.; García, J.; Ramirez, L.E.; Patarroyo, M.E. Plasmodium falciparum Merozoite Surface Protein 6 (MSP-6) Derived Peptides Bind Erythrocytes and Partially Inhibit Parasite Invasion. Peptides 2006, 27, 1685–1692. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.S.; Uboldi, A.D.; Marapana, D.; Czabotar, P.E.; Epp, C.; Bujard, H.; Taylor, N.L.; Perugini, M.A.; Hodder, A.N.; Cowman, A.F. The Merozoite Surface Protein 1 Complex Is a Platform for Binding to Human Erythrocytes by Plasmodium falciparum. J. Biol. Chem. 2014, 289, 25655–25669. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, M.R.; Li, X.; Hanada, T.; Liu, S.-C.; Chishti, A.H. Merozoite Surface Protein 1 Recognition of Host Glycophorin A Mediates Malaria Parasite Invasion of Red Blood Cells. Blood 2015, 125, 2704–2711. [Google Scholar] [CrossRef]
- Boyle, M.J.; Richards, J.S.; Gilson, P.R.; Chai, W.; Beeson, J.G. Interactions with Heparin-like Molecules during Erythrocyte Invasion by Plasmodium falciparum Merozoites. Blood 2010, 115, 4559–4568. [Google Scholar] [CrossRef]
- Mayer, D.C.G. Protein Sorting in Plasmodium falciparum. Life 2021, 11, 937. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, N.; Sang, X.; Yang, N.; Feng, Y.; Chen, R.; Wang, X.; Chen, Q. Protein Modification Characteristics of the Malaria Parasite Plasmodium falciparum and the Infected Erythrocytes. Mol. Cell. Proteom. 2021, 20, 100001. [Google Scholar] [CrossRef]
- Lin, C.S.; Uboldi, A.D.; Epp, C.; Bujard, H.; Tsuboi, T.; Czabotar, P.E.; Cowman, A.F. Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes. J. Biol. Chem. 2016, 291, 7703–7715. [Google Scholar] [CrossRef]
- Harris, P.K.; Yeoh, S.; Dluzewski, A.R.; O’Donnell, R.A.; Withers-Martinez, C.; Hackett, F.; Bannister, L.H.; Mitchell, G.H.; Blackman, M.J. Molecular Identification of a Malaria Merozoite Surface Sheddase. PLoS Pathog. 2005, 1, e29. [Google Scholar] [CrossRef]
- Das, S.; Hertrich, N.; Perrin, A.J.; Withers-Martinez, C.; Collins, C.R.; Jones, M.L.; Watermeyer, J.M.; Fobes, E.T.; Martin, S.R.; Saibil, H.R.; et al. Processing of Plasmodium falciparum Merozoite Surface Protein MSP1 Activates a Spectrin-Binding Function Enabling Parasite Egress from RBCs. Cell Host Microbe 2015, 18, 433–444. [Google Scholar] [CrossRef]
- Mukherjee, S.; Nasamu, A.S.; Rubiano, K.C.; Goldberg, D.E. Activation of the Plasmodium Egress Effector Subtilisin-Like Protease 1 Is Mediated by Plasmepsin X Destruction of the Prodomain. mBio 2023, 14, e0067323. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.R.; Hackett, F.; Howell, S.A.; Snijders, A.P.; Russell, M.R.; Collinson, L.M.; Blackman, M.J. The Malaria Parasite Sheddase SUB2 Governs Host Red Blood Cell Membrane Sealing at Invasion. eLife 2020, 9, e61121. [Google Scholar] [CrossRef]
- Alves-Rosa, M.F.; Tayler, N.M.; Dorta, D.; Coronado, L.M.; Spadafora, C.P. Falciparum Invasion and Erythrocyte Aging. Cells 2024, 13, 334. [Google Scholar] [CrossRef] [PubMed]
- Lamarque, M.; Besteiro, S.; Papoin, J.; Roques, M.; Vulliez-Le Normand, B.; Morlon-Guyot, J.; Dubremetz, J.-F.; Fauquenoy, S.; Tomavo, S.; Faber, B.W.; et al. The RON2-AMA1 Interaction Is a Critical Step in Moving Junction-Dependent Invasion by Apicomplexan Parasites. PLoS Pathog. 2011, 7, e1001276. [Google Scholar] [CrossRef]
- Richard, D.; Kats, L.M.; Langer, C.; Black, C.G.; Mitri, K.; Boddey, J.A.; Cowman, A.F.; Coppel, R.L. Identification of Rhoptry Trafficking Determinants and Evidence for a Novel Sorting Mechanism in the Malaria Parasite Plasmodium falciparum. PLoS Pathog. 2009, 5, e1000328. [Google Scholar] [CrossRef]
- Dash, M.; Sachdeva, S.; Bansal, A.; Sinha, A. Gametogenesis in Plasmodium: Delving Deeper to Connect the Dots. Front. Cell. Infect. Microbiol. 2022, 12, 877907. [Google Scholar] [CrossRef] [PubMed]
- Crutcher, J.M.; Hoffman, S.L. Malaria. In Medical Microbiology, 4th ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; ISBN 0963117211. [Google Scholar]
- Gomes, A.P.; Vitorino, R.R.; Costa, A.d.P.; de Mendonça, E.G.; Oliveira, M.G.d.A.; Siqueira-Batista, R. Severe Plasmodium falciparum Malaria. Rev. Bras. Ter. Intensiva. 2011, 23, 358–369. [Google Scholar] [CrossRef]
- Goldstein, D.S. Concepts of Scientific Integrative Medicine Applied to the Physiology and Pathophysiology of Catecholamine Systems. Compr. Physiol. 2013, 3, 1569. [Google Scholar] [CrossRef]
- Chilot, D.; Mondelaers, A.; Alem, A.Z.; Asres, M.S.; Yimer, M.A.; Toni, A.T.; Ayele, T.A. Pooled Prevalence and Risk Factors of Malaria Among Children Aged 6–59 Months in 13 Sub-Saharan African Countries: A Multilevel Analysis Using Recent Malaria Indicator Surveys. PLoS ONE 2023, 18, e0285265. [Google Scholar] [CrossRef]
- Schantz-Dunn, J.; Nour, N.M. Malaria and Pregnancy: A Global Health Perspective. Rev. Obstet. Gynecol. 2009, 2, 186. [Google Scholar]
- Hariyanti, H.; Mauludin, R.; Sumirtapura, Y.C.; Kurniati, N.F. A Review: Pharmacological Activities of Quinoline Alkaloid of Cinchona sp. Biointerface Res. Appl. Chem. 2022, 13, 3. [Google Scholar] [CrossRef]
- Kacprzak, K.M. Chemistry and Biology of Cinchona Alkaloids. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 605–641. [Google Scholar] [CrossRef]
- Myint, H.Y.; Berman, J.; Walker, L.; Pybus, B.; Melendez, V.; Baird, J.K.; Ohrt, C. Review: Improving the Therapeutic Index of 8-Aminoquinolines by the Use of Drug Combinations: Review of the Literature and Proposal for Future Investigations. Am. J. Trop. Med. Hyg. 2011, 85, 1010. [Google Scholar] [CrossRef]
- Tse, E.G.; Korsik, M.; Todd, M.H. The Past, Present and Future of Anti-Malarial Medicines. Malar. J. 2019, 18, 93. [Google Scholar] [CrossRef] [PubMed]
- Slater, A.F.G. Chloroquine: Mechanism of Drug Action and Resistance in Plasmodium falciparum. Pharmacol. Ther. 1993, 57, 203–235. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Rogan, W.J. Nonmalarial Infant Deaths and Ddt Use for Malaria Control. Emerg. Infect. Dis. 2003, 9, 960–964. [Google Scholar] [CrossRef]
- Bouwman, H.; van den Berg, H.; Kylin, H. DDT and Malaria Prevention: Addressing the Paradox. Environ. Health Perspect. 2011, 119, 744–747. [Google Scholar] [CrossRef]
- Mabaso, M.L.H.; Sharp, B.; Lengeler, C. Historical Review of Malarial Control in Southern African with Emphasis on the Use of Indoor Residual House-Spraying. Trop. Med. Int. Health 2004, 9, 846–856. [Google Scholar] [CrossRef]
- de Oliveira, R.G.; dos Reis Cruz, L.; Dias, L.C. Artemisinins e Derivados: Descoberta, Estrategias Sinteticas e Obtencao Industrial. Quim Nova 2022, 45, 831–846. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Rakoto, M.L.; Marodon, C.; Bedoui, Y.; Nakab, J.; Simon, E.; Hoarau, L.; Savriama, S.; Strasberg, D.; Guiraud, P.; et al. Artemisia Annua, a Traditional Plant Brought to Light. Int. J. Mol. Sci. 2020, 21, 4986. [Google Scholar] [CrossRef]
- Phyo, A.P.; Jittamala, P.; Nosten, F.H.; Pukrittayakamee, S.; Imwong, M.; White, N.J.; Duparc, S.; Macintyre, F.; Baker, M.; Möhrle, J.J. Antimalarial Activity of Artefenomel (OZ439), a Novel Synthetic Antimalarial Endoperoxide, in Patients with Plasmodium falciparum and Plasmodium vivax Malaria: An Open-Label Phase 2 Trial. Lancet Infect. Dis. 2016, 16, 61. [Google Scholar] [CrossRef]
- Alecrim, M.D.G.C.; Carvalho, L.M.; Fernandes, M.C.; De Andrade, S.D.; Loureiro, A.C.; Arcanjo, A.R.L.; Alecrim, W.D. Tratamento Da Malária Com Artesunate (Retocaps®) Em Crianças Da Amazônia Brasileira. Rev. Soc. Bras. Med. Trop. 2000, 33, 163–168. [Google Scholar] [CrossRef]
- Omari, A.A.; Gamble, C.L.; Garner, P. Artemether-lumefantrine (Six-dose Regimen) for Treating Uncomplicated Falciparum Malaria. Cochrane Database Syst. Rev. 2005, 2005, CD005564. [Google Scholar] [CrossRef]
- Manyando, C.; Kayentao, K.; Dalessandro, U.; Okafor, H.U.; Juma, E.; Hamed, K. A Systematic Review of the Safety and Efficacy of Artemether-Lumefantrine against Uncomplicated Plasmodium falciparum Malaria during Pregnancy. Malar. J. 2012, 11, 141. [Google Scholar] [CrossRef] [PubMed]
- Njuguna, N.M.; Ongarora, D.S.B.; Chibale, K. Artemisinin Derivatives: A Patent Review (2006–Present). Expert Opin. Ther. Pat. 2012, 22, 1179–1203. [Google Scholar] [CrossRef]
- Campbell, K.B. Antimicrobial Agents and Torsades de Pointes. In Torsades de Pointes; Academic Press: Cambridge, MA, USA, 2022; pp. 231–266. [Google Scholar] [CrossRef]
- Pinheiro, L.C.S.; Feitosa, L.M.; da Silveira, F.F.; Boechat, N. Current Antimalarial Therapies and Advances in the Development of Semi-Synthetic Artemisinin Derivatives. An. Acad. Bras. Cienc. 2018, 90, 1251–1271. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.; Pongtavornpinyo, W.; Hastings, I.M.; Mills, A.J.; White, N.J. Antimalarial Drug Resistance, Artemisinin-Based Combination Therapy, and the Contribution of Modeling to Elucidating Policy Choices. Am. J. Trop. Med. Hyg. 2004, 71, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Nasamu, A.S.; Polino, A.J.; Istvan, E.S.; Goldberg, D.E. Malaria Parasite Plasmepsins: More than Just Plain Old Degradative Pepsins. J. Biol. Chem. 2020, 295, 8425. [Google Scholar] [CrossRef]
- Boutayeb, A. Developing Countries and Neglected Diseases: Challenges and Perspectives. Int. J. Equity Health 2007, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Weng, H.B.; Chen, H.X.; Wang, M.W. Innovation in Neglected Tropical Disease Drug Discovery and Development. Infect. Dis. Poverty 2018, 7, 67. [Google Scholar] [CrossRef]
- Cohen, J.P.; Sturgeon, G.; Cohen, A. Measuring Progress in Neglected Disease Drug Development. Clin. Ther. 2014, 36, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, T.; Anderson, K.S. Probing the Role of Parasite-Specific, Distant, Structural Regions on Communication and Catalysis in the Bifunctional Thymidylate Synthase- Dihydrofolate Reductase from Plasmodium falciparum. Biochemistry 2008, 47, 1336. [Google Scholar] [CrossRef] [PubMed]
- Hyde, J.E. Exploring the Folate Pathway in Plasmodium falciparum. Acta Trop. 2005, 94, 191–206. [Google Scholar] [CrossRef]
- Rosenthal, P.J. Falcipains and Other Cysteine Proteases of Malaria Parasites. Adv. Exp. Med. Biol. 2011, 712, 30–48. [Google Scholar] [CrossRef]
- Wiser, M.F. The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome. Pathogens 2024, 13, 182. [Google Scholar] [CrossRef]
- Withers-Martinez, C.; Jean, L.; Blackman, M.J. Subtilisin-like Protease of the Malaria Parasite. Mol. Microbiol. 2004, 53, 55–63. [Google Scholar] [CrossRef]
- Blackman, M.J.; Fujioka, H.; Stafford, W.H.L.; Sajid, M.; Clough, B.; Fleck, S.L.; Aikawa, M.; Grainger, M.; Hackett, F. A Subtilisin-like Protein in Secretory Organelles of Plasmodium falciparum Merozoites. J. Biol. Chem. 1998, 273, 23398–23409. [Google Scholar] [CrossRef]
- Abugri, J.; Ayariga, J.; Sunwiale, S.S.; Wezena, C.A.; Gyamfi, J.A.; Adu-Frimpong, M.; Agongo, G.; Dongdem, J.T.; Abugri, D.; Dinko, B. Targeting the Plasmodium falciparum Proteome and Organelles for Potential Antimalarial Drug Candidates. Heliyon 2022, 8, e10390. [Google Scholar] [CrossRef]
- PCSK2 Proprotein Convertase Subtilisin/Kexin Type 2 [Homo Sapiens (Human)]—Gene—NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/5126 (accessed on 9 July 2025).
- Janse, C.J.; Waters, A.P. The Exoneme Helps Malaria Parasites to Break out of Blood Cells. Cell 2007, 131, 1036–1038. [Google Scholar] [CrossRef]
- Withers-Martinez, C.; Saldanha, J.W.; Ely, B.; Hackett, F.; O’Connor, T.; Blackman, M.J. Expression of Recombinant Plasmodium falciparum Subtilisin-like Protease-1 in Insect Cells. Characterization, Comparison with the Parasite Protease, and Homology Modeling. J. Biol. Chem. 2002, 277, 29698–29709. [Google Scholar] [CrossRef]
- Withers-Martinez, C.; Strath, M.; Hackett, F.; Haire, L.F.; Howell, S.A.; Walker, P.A.; Evangelos, C.; Dodson, G.G.; Blackman, M.J. The Malaria Parasite Egress Protease SUB1 Is a Calcium-Dependent Redox Switch Subtilisin. Nat. Commun. 2014, 5, 3726. [Google Scholar] [CrossRef]
- Tarr, S.J.; Withers-Martinez, C.; Flynn, H.R.; Snijders, A.P.; Masino, L.; Koussis, K.; Conway, D.J.; Blackman, M.J. A Malaria Parasite Subtilisin Propeptide-like Protein Is a Potent Inhibitor of the Egress Protease SUB1. Biochem. J. 2020, 477, 525–540. [Google Scholar] [CrossRef]
- Martinez, M.; Bouillon, A.; Brûlé, S.; Raynal, B.; Haouz, A.; Alzari, P.M.; Barale, J.C. Prodomain-Driven Enzyme Dimerization: A PH-Dependent Autoinhibition Mechanism That Controls Plasmodium Sub1 Activity before Merozoite Egress. mBio 2024, 15, e0019824. [Google Scholar] [CrossRef]
- Withers-Martinez, C.; Lidumniece, E.; Hackett, F.; Collins, C.R.; Taha, Z.; Blackman, M.J.; Jirgensons, A. Peptidic Boronic Acid Plasmodium falciparum SUB1 Inhibitors with Improved Selectivity over Human Proteasome. J. Med. Chem. 2024, 67, 13033–13055. [Google Scholar] [CrossRef] [PubMed]
- Child, M.A.; Harris, P.K.; Collins, C.R.; Withers-Martinez, C.; Yeoh, S.; Blackman, M.J. Molecular Determinants for Subcellular Trafficking of the Malarial Sheddase PfSUB2. Traffic 2013, 14, 1053–1064. [Google Scholar] [CrossRef]
- Singh, S.; Alam, M.M.; Pal-Bhowmick, I.; Brzostowski, J.A.; Chitnis, C.E. Distinct External Signals Trigger Sequential Release of Apical Organelles during Erythrocyte Invasion by Malaria Parasites. PLoS Pathog. 2010, 6, e1000746. [Google Scholar] [CrossRef] [PubMed]
- Kats, L.M.; Black, C.G.; Proellocks, N.I.; Coppel, R.L. Plasmodium Rhoptries: How Things Went Pear-Shaped. Trends Parasitol. 2006, 22, 269–276. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, Y.; Oganesyan, N.; Ruan, B.; O’Brochta, D.; Bryan, P.N.; Orban, J. Solution NMR Structure of a Sheddase Inhibitor Prodomain from the Malarial Parasite Plasmodium falciparum. Proteins Struct. Funct. Bioinform. 2012, 80, 2810–2817. [Google Scholar] [CrossRef]
- Barale, J.-C.; Blisnick, T.; Fujioka, H.; Alzari, P.M.; Aikawa, M.; Braun-Breton, C.; Langsley, G. Plasmodium falciparum Subtilisin-like Protease 2, a Merozoite Candidate for the Merozoite Surface Protein 1–42 Maturase. Proc. Natl. Acad. Sci. USA 1999, 96, 6445–6450. [Google Scholar] [CrossRef]
- Alam, A.; Bhatnagar, R.K.; Relan, U.; Mukherjee, P.; Chauhan, V.S. Proteolytic Activity of Plasmodium falciparum Subtilisin-like Protease 3 on Parasite Profilin, a Multifunctional Protein. Mol. Biochem. Parasitol. 2013, 191, 58–62. [Google Scholar] [CrossRef]
- Mishra, M.; Singh, V.; Singh, S. Structural Insights Into Key Plasmodium Proteases as Therapeutic Drug Targets. Front. Microbiol. 2019, 10, 394. [Google Scholar] [CrossRef]
- Alam, A.; Bhatnagar, R.K.; Chauhan, V.S. Expression and Characterization of Catalytic Domain of Plasmodium falciparum Subtilisin-like Protease 3. Mol. Biochem. Parasitol. 2012, 183, 84–89. [Google Scholar] [CrossRef] [PubMed]
- RCSB PDB: Homepage. Available online: https://www.rcsb.org/ (accessed on 10 July 2025).
- Denesyuk, A.I.; Denessiouk, K.; Johnson, M.S.; Uversky, V.N. Structural Catalytic Core in Subtilisin-like Proteins and Its Comparison to Trypsin-like Serine Proteases and Alpha/Beta-Hydrolases. Int. J. Mol. Sci. 2024, 25, 11858. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Wu, C.-Q.; Manna, S.; Samanta, D.; Chen, P.P.-Y.; Rath, S.P. Probing Substrate Binding inside a Paramagnetic Cavity: A NMR Spectroscopy Toolbox for Combined Experimental and Theoretical Investigation. Chem. Sci. 2024, 15, 17407–17417. [Google Scholar] [CrossRef]
- Armistead, J.S.; Jennison, C.; O’Neill, M.T.; Lopaticki, S.; Liehl, P.; Hanson, K.K.; Annoura, T.; Rajasekaran, P.; Erickson, S.M.; Tonkin, C.J.; et al. Plasmodium falciparum Subtilisin-like Ookinete Protein SOPT Plays an Important and Conserved Role during Ookinete Infection of the Anopheles stephensi Midgut. Mol. Microbiol. 2018, 109, 458–473. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Withers-Martinez, C.; Blackman, M.J. Maturation and Specificity of Plasmodium falciparum Subtilisin-like Protease-1, a Malaria Merozoite Subtilisin-like Serine Protease. J. Biol. Chem. 2000, 275, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, A.; Giganti, D.; Benedet, C.; Gorgette, O.; Pêtres, S.; Crublet, E.; Girard-Blanc, C.; Witkowski, B.; Ménard, D.; Nilges, M.; et al. In Silico Screening on the Three-Dimensional Model of the Plasmodium vivax SUB1 Protease Leads to the Validation of a Novel Anti-Parasite Compound. J. Biol. Chem. 2013, 288, 18561–18573. [Google Scholar] [CrossRef]
- Legru, A.; Batista, F.A.; Puszko, A.K.; Bouillon, A.; Maurel, M.; Martinez, M.; Ejjoummany, A.; Ortega Varga, L.; Adler, P.; Méchaly, A.; et al. Insights from Structure-Activity Relationships and the Binding Mode of Peptidic α-Ketoamide Inhibitors of the Malaria Drug Target Subtilisin-like SUB1. Eur. J. Med. Chem. 2024, 269, 116308. [Google Scholar] [CrossRef]
- Choi, S.J.; Parent, R.; Guillaume, C.; Deregnaucourt, C.; Delarbre, C.; Ojcius, D.M.; Montagne, J.J.; Célérier, M.L.; Phelipot, A.; Amiche, M.; et al. Isolation and Characterization of Psalmopeotoxin I and II: Two Novel Antimalarial Peptides from the Venom of the Tarantula Psalmopoeus cambridgei. FEBS Lett. 2004, 572, 109–117. [Google Scholar] [CrossRef]
- Bastianelli, G.; Bouillon, A.; Nguyen, C.; Crublet, E.; Pêtres, S.; Gorgette, O.; Le-Nguyen, D.; Barale, J.C.; Nilges, M. Computational Reverse-Engineering of a Spider-Venom Derived Peptide Active against Plasmodium falciparum SUB1. PLoS ONE 2011, 6, e21812. [Google Scholar] [CrossRef]
- Bastianelli, G.; Bouillon, A.; Nguyen, C.; Le-Nguyen, D.; Nilges, M.; Barale, J.C. Computational Design of Protein-Based Inhibitors of Plasmodium vivax Subtilisin-like 1 Protease. PLoS ONE 2014, 9, e109269. [Google Scholar] [CrossRef] [PubMed]
- De Risi, C.; Pollini, G.P.; Zanirato, V. Recent Developments in General Methodologies for the Synthesis of α-Ketoamides. Chem. Rev. 2016, 116, 3241–3305. [Google Scholar] [CrossRef]
- Robello, M.; Barresi, E.; Baglini, E.; Salerno, S.; Taliani, S.; Settimo, F. Da The Alpha Keto Amide Moiety as a Privileged Motif in Medicinal Chemistry: Current Insights and Emerging Opportunities. J. Med. Chem. 2021, 64, 3508–3545. [Google Scholar] [CrossRef]
- Lidumniece, E.; Withers-Martinez, C.; Hackett, F.; Blackman, M.J.; Jirgensons, A. Subtilisin-like Serine Protease 1 (SUB1) as an Emerging Antimalarial Drug Target: Current Achievements in Inhibitor Discovery. J. Med. Chem. 2022, 65, 12535–12545. [Google Scholar] [CrossRef] [PubMed]
- Fulle, S.; Withers-Martinez, C.; Blackman, M.J.; Morris, G.M.; Finn, P.W. Molecular Determinants of Binding to the Plasmodium Subtilisin-like Protease 1. J. Chem. Inf. Model. 2013, 53, 573–583. [Google Scholar] [CrossRef]
- Giganti, D.; Bouillon, A.; Tawk, L.; Robert, F.; Martinez, M.; Crublet, E.; Weber, P.; Girard-Blanc, C.; Petres, S.; Haouz, A.; et al. A Novel Plasmodium-Specific Prodomain Fold Regulates the Malaria Drug Target SUB1 Subtilase. Nat. Commun. 2014, 5, 4833. [Google Scholar] [CrossRef]
- Kher, S.S.; Penzo, M.; Fulle, S.; Finn, P.W.; Blackman, M.J.; Jirgensons, A. Substrate Derived Peptidic α-Ketoamides as Inhibitors of the Malarial Protease PfSUB1. Bioorg. Med. Chem. Lett. 2014, 24, 4486–4489. [Google Scholar] [CrossRef] [PubMed]
- Puszko, A.K.; Batista, F.A.; Ejjoummany, A.; Bouillon, A.; Maurel, M.; Adler, P.; Legru, A.; Martinez, M.; Ortega Varga, L.; Hadjadj, M.; et al. Towards Improved Peptidic α-Ketoamide Inhibitors of the Plasmodial Subtilisin-Like SUB1: Exploration of N-Terminal Extensions and Cyclic Constraints. Chem. Med. Chem. 2025, 20, e202400924. [Google Scholar] [CrossRef]
- Giovani, S.; Penzo, M.; Brogi, S.; Brindisi, M.; Gemma, S.; Novellino, E.; Savini, L.; Blackman, M.J.; Campiani, G.; Butini, S. Rational Design of the First Difluorostatone-Based PfSUB1 Inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 3582–3586. [Google Scholar] [CrossRef]
- Giovani, S.; Penzo, M.; Butini, S.; Brindisi, M.; Gemma, S.; Novellino, E.; Campiani, G.; Blackman, M.J.; Brogi, S. Plasmodium falciparum Subtilisin-like Protease 1: Discovery of Potent Difluorostatone-Based Inhibitors. RSC Adv. 2015, 5, 22431–22448. [Google Scholar] [CrossRef]
- Plescia, J.; Moitessier, N. Design and Discovery of Boronic Acid Drugs. Eur. J. Med. Chem. 2020, 195, 112270. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Wu, J.; Song, L.; Zhang, M.; Hipolito, C.J.; Wu, C.; Wang, S.; Zhang, Y.; Yin, Y. Merging the Versatile Functionalities of Boronic Acid with Peptides. Int. J. Mol. Sci. 2021, 22, 12958. [Google Scholar] [CrossRef]
- Lidumniece, E.; Withers-Martinez, C.; Hackett, F.; Collins, C.R.; Perrin, A.J.; Koussis, K.; Bisson, C.; Blackman, M.J.; Jirgensons, A. Peptidic Boronic Acids Are Potent Cell-Permeable Inhibitors of the Malaria Parasite Egress Serine Protease SUB1. Proc. Natl. Acad. Sci. USA 2021, 118, e2022696118. [Google Scholar] [CrossRef]
- Yeoh, S.; O’Donnell, R.A.; Koussis, K.; Dluzewski, A.R.; Ansell, K.H.; Osborne, S.A.; Hackett, F.; Withers-Martinez, C.; Mitchell, G.H.; Bannister, L.H.; et al. Subcellular Discharge of a Serine Protease Mediates Release of Invasive Malaria Parasites from Host Erythrocytes. Cell 2007, 131, 1072–1083. [Google Scholar] [CrossRef]
- Koussis, K.; Withers-Martinez, C.; Yeoh, S.; Child, M.; Hackett, F.; Knuepfer, E.; Juliano, L.; Woehlbier, U.; Bujard, H.; Blackman, M.J. A Multifunctional Serine Protease Primes the Malaria Parasite for Red Blood Cell Invasion. EMBO J. 2009, 28, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Arastu-Kapur, S.; Ponder, E.L.; Fonović, U.P.; Yeoh, S.; Yuan, F.; Fonović, M.; Grainger, M.; Phillips, C.I.; Powers, J.C.; Bogyo, M. Identification of Proteases That Regulate Erythrocyte Rupture by the Malaria Parasite Plasmodium falciparum. Nat. Chem. Biol. 2008, 4, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Gemma, S.; Giovani, S.; Brindisi, M.; Tripaldi, P.; Brogi, S.; Savini, L.; Fiorini, I.; Novellino, E.; Butini, S.; Campiani, G.; et al. Quinolylhydrazones as Novel Inhibitors of Plasmodium falciparum Serine Protease PfSUB1. Bioorg. Med. Chem. Lett. 2012, 22, 5317–5321. [Google Scholar] [CrossRef]
- Kher, S.S.; Penzo, M.; Fulle, S.; Ebejer, J.P.; Finn, P.W.; Blackman, M.J.; Jirgensons, A. Quinoxaline-Based Inhibitors of Malarial Protease PfSUB1. Chem. Heterocycl. Compd. 2015, 50, 1456–1462. [Google Scholar] [CrossRef]
- Moneriz, C.; Marín-García, P.; García-Granados, A.; Bautista, J.M.; Diez, A.; Puyet, A. Parasitostatic Effect of Maslinic Acid. I. Growth Arrest of Plasmodium falciparum Intraerythrocytic Stages. Malar. J. 2011, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Moneriz, C.; Marín-García, P.; Bautista, J.M.; Diez, A.; Puyet, A. Parasitostatic Effect of Maslinic Acid. II. Survival Increase and Immune Protection in Lethal Plasmodium yoelii-Infected Mice. Malar. J. 2011, 10, 103. [Google Scholar] [CrossRef]
- Moneriz, C.; Mestres, J.; Bautista, J.M.; Diez, A.; Puyet, A. Multi-Targeted Activity of Maslinic Acid as an Antimalarial Natural Compound. FEBS J. 2011, 278, 2951–2961. [Google Scholar] [CrossRef]
- Alam, A. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets. Interdiscip. Perspect. Infect. Dis. 2014, 2014, 453186. [Google Scholar] [CrossRef] [PubMed]
Enzyme | Structural Data | S1 Binding Pocket | S2 Pocket Feature | S4 Pocket Characteristic | Oxyanion Hole Residue |
---|---|---|---|---|---|
PfSUB1 | Crystal structure | Polar; favors acidic P1 via Ser490, Ser517, Ser519 | Constrained by Lys465; small | Hydrophobic (Phe491, Phe493, Phe500) | Asn520; redox-controlled loop |
PfSUB2 | No structure | Likely broad/hydrophobic | Likely flexible for large substrates | Presumed broader hydrophobic | Roughly canonical |
PfSUB3 | No structure | Unknown; predicted unique phenylalanine may alter shape | Unknown | Undetermined; speculative | Canonical based on homology |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cochicho Leonardo, M.; Albino, S.L.; de Araújo, W.J.S.; Nascimento, M.V.d.B.; Rodríguez-Macías, J.D.; Brazon, E.A.M.; Moura, R.O.d.; Nogueira, F.; Nascimento, I.J.d.S. Exploring Subtilisin Inhibition to Discover Antimalarial Drugs: Insights into Medicinal Chemistry and Drug Discovery. Pharmaceuticals 2025, 18, 1318. https://doi.org/10.3390/ph18091318
Cochicho Leonardo M, Albino SL, de Araújo WJS, Nascimento MVdB, Rodríguez-Macías JD, Brazon EAM, Moura ROd, Nogueira F, Nascimento IJdS. Exploring Subtilisin Inhibition to Discover Antimalarial Drugs: Insights into Medicinal Chemistry and Drug Discovery. Pharmaceuticals. 2025; 18(9):1318. https://doi.org/10.3390/ph18091318
Chicago/Turabian StyleCochicho Leonardo, Margarida, Sonaly Lima Albino, Wallyson Junio Santos de Araújo, Maria Verônica de Barros Nascimento, Juan David Rodríguez-Macías, Edgar Alexander Marquez Brazon, Ricardo Olimpio de Moura, Fátima Nogueira, and Igor José dos Santos Nascimento. 2025. "Exploring Subtilisin Inhibition to Discover Antimalarial Drugs: Insights into Medicinal Chemistry and Drug Discovery" Pharmaceuticals 18, no. 9: 1318. https://doi.org/10.3390/ph18091318
APA StyleCochicho Leonardo, M., Albino, S. L., de Araújo, W. J. S., Nascimento, M. V. d. B., Rodríguez-Macías, J. D., Brazon, E. A. M., Moura, R. O. d., Nogueira, F., & Nascimento, I. J. d. S. (2025). Exploring Subtilisin Inhibition to Discover Antimalarial Drugs: Insights into Medicinal Chemistry and Drug Discovery. Pharmaceuticals, 18(9), 1318. https://doi.org/10.3390/ph18091318