Comparing the Metabolic, Systemic, and Neuropsychiatric Impacts of Olanzapine and Clozapine in Patients with Schizophrenia
Abstract
1. Introduction
2. Results
2.1. Demographic Characteristics
2.2. Baseline Characteristics
2.3. Effects on PANSS Score
2.3.1. Effects on General Symptoms
2.3.2. Effects on Negative Symptoms
2.3.3. Effects on Positive Symptoms
2.3.4. Effect on Total PANSS Score
2.4. Effect on Blood Minerals
2.5. Effect on the Metabolic Parameters
2.6. Effect on Renal and Hepatic Functions
2.7. Effect on Cardiovascular Parameters
2.8. Effects on Body Weight and Waist Circumference
2.9. Effects on Neurotransmitters
2.9.1. Effects on Serotonin
2.9.2. Effects on Dopamine Levels
2.9.3. Effects on Leptin Levels
2.9.4. Effects on Ghrelin
2.10. Effects on Inflammatory Mediators
3. Discussion
4. Materials and Methods
4.1. Ethical Considerations
4.2. Study Design and Setting
4.3. Eligibility Criteria
4.3.1. Inclusion Criteria
- Healthy control group.
- CLZ-treated group: The parameters were determined before starting clozapine treatment (25 mg) and 3 and 6 months after treatment began.
- OLZ-treated group: The parameters were determined before starting olanzapine treatment (5 mg) and 3 and 6 months after treatment began.
4.3.2. Exclusion Criteria
4.3.3. Outcome Determination
PANSS Determination
Laboratory Procedures
Cardiac Performance Test
Neurotransmitter Determination
Western Blot Analysis of Inflammatory Mediators
4.4. Statistical Analyses
5. Conclusions
6. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Morgan, V.A.; Waterreus, A.; Carr, V.; Castle, D.; Cohen, M.; Harvey, C.; Galletly, C.; Mackinnon, A.; McGorry, P.; McGrath, J.J.; et al. Responding to challenges for people with psychotic illness: Updated evidence from the Survey of High Impact Psychosis. Aust. N. Z. J. Psychiatry 2017, 51, 124–140. [Google Scholar] [CrossRef]
- McCleery, A.; Nuechterlein, K.H. Cognitive impairment in psychotic illness: Prevalence, profile of impairment, developmental course, and treatment considerations. Dialogues Clin. Neurosci. 2019, 21, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Rössler, W.; Salize, H.J.; van Os, J.; Riecher-Rössler, A. Size of burden of schizophrenia and psychotic disorders. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2005, 15, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Liddle, P.F. The Core Deficit of Classical Schizophrenia: Implications for Predicting the Functional Outcome of Psychotic Illness and Developing Effective Treatments. Can. J. Psychiatry 2019, 64, 680–685. [Google Scholar] [CrossRef]
- Garrido-Torres, N.; Rocha-Gonzalez, I.; Alameda, L.; Rodriguez-Gangoso, A.; Vilches, A.; Canal-Rivero, M.; Crespo-Facorro, B.; Ruiz-Veguilla, M. Metabolic syndrome in antipsychotic-naïve patients with first-episode psychosis: A systematic review and meta-analysis. Psychol. Med. 2021, 51, 2307–2320. [Google Scholar] [CrossRef] [PubMed]
- Saccaro, L.F.; Aimo, A.; Panichella, G.; Sentissi, O. Shared and unique characteristics of metabolic syndrome in psychotic disorders: A review. Front. Psychiatry 2024, 15, 1343427. [Google Scholar] [CrossRef]
- Howell, S.; Yarovova, E.; Khwanda, A.; Rosen, S.D. Cardiovascular effects of psychotic illnesses and antipsychotic therapy. Heart 2019, 105, 1852–1859. [Google Scholar] [CrossRef]
- Korkatti-Puoskari, N.; Tiihonen, M.; Caballero-Mora, M.A.; Topinkova, E.; Szczerbińska, K.; Hartikainen, S.; on the Behalf of the EuGMS Task; Finish Group on FRIDs. Therapeutic dilemma’s: Antipsychotics use for neuropsychiatric symptoms of dementia, delirium and insomnia and risk of falling in older adults, a clinical review. Eur. Geriatr. Med. 2023, 14, 709–720. [Google Scholar] [CrossRef]
- Martínez-Hernáez, Á.; Pié-Balaguer, A.; Serrano-Miguel, M.; Morales-Sáez, N.; García-Santesmases, A.; Bekele, D.; Alegre-Agís, E. The collaborative management of antipsychotic medication and its obstacles: A qualitative study. Soc. Sci. Med. 2020, 247, 112811. [Google Scholar] [CrossRef]
- Dehelean, L.; Romoşan, A.; Andor, M.; Buda, V.O.; Bredicean, A.C.; Manea, M.M.; PapavĂ, I.; RomoŞan, R.Ş.J.F. Clinical factors influencing antipsychotic choice, dose and augmentation in patients treated with long acting antipsychotics. Farmacia 2020, 68, 35–41. [Google Scholar] [CrossRef]
- Haddad, P.M.; Correll, C.U. Long-acting antipsychotics in the treatment of schizophrenia: Opportunities and challenges. Expert Opin. Pharmacother. 2023, 24, 473–493. [Google Scholar] [CrossRef] [PubMed]
- Neumeier, M.S.; Homan, S.; Vetter, S.; Seifritz, E.; Kane, J.M.; Huhn, M.; Leucht, S.; Homan, P. Examining Side Effect Variability of Antipsychotic Treatment in Schizophrenia Spectrum Disorders: A Meta-analysis of Variance. Schizophr. Bull. 2021, 47, 1601–1610. [Google Scholar] [CrossRef] [PubMed]
- Fakra, E.; Azorin, J.M. Clozapine for the treatment of schizophrenia. Expert Opin. Pharmacother. 2012, 13, 1923–1935. [Google Scholar] [CrossRef]
- Marinho, E. Clozapine: A special case of an atypical antipsychotic. Eur. J. Med. Chem. Rep. 2024, 10, 100140. [Google Scholar] [CrossRef]
- Grover, S.; Naskar, C. Patient and caregivers perspective about clozapine: A systematic review. Schizophr. Res. 2024, 268, 223–232. [Google Scholar] [CrossRef]
- Vickers, M.; Ramineni, V.; Malacova, E.; Eriksson, L.; McMahon, K.; Moudgil, V.; Scott, J.; Siskind, D. Risk factors for clozapine-induced myocarditis and cardiomyopathy: A systematic review and meta-analysis. Acta Psychiatr. Scand. 2022, 145, 442–455. [Google Scholar] [CrossRef]
- Babiloni, A.H.; Beetz, G.; Bruneau, A.; Martel, M.O.; Cistulli, P.A.; Nixdorf, D.R.; Conway, J.M.; Lavigne, G.J. Multitargeting the sleep-pain interaction with pharmacological approaches: A narrative review with suggestions on new avenues of investigation. Sleep Med. Rev. 2021, 59, 101459. [Google Scholar] [CrossRef]
- Meftah, A.M.; Deckler, E.; Citrome, L.; Kantrowitz, J.T. New discoveries for an old drug: A review of recent olanzapine research. Postgrad. Med. 2020, 132, 80–90. [Google Scholar] [CrossRef]
- Kolli, P.; Kelley, G.; Rosales, M.; Faden, J.; Serdenes, R. Olanzapine Pharmacokinetics: A Clinical Review of Current Insights and Remaining Questions. Pharmacogenomics Pers. Med. 2023, 16, 1097–1108. [Google Scholar] [CrossRef]
- Souza, J.S.; Kayo, M.; Tassell, I.; Martins, C.B.; Elkis, H. Efficacy of olanzapine in comparison with clozapine for treatment-resistant schizophrenia: Evidence from a systematic review and meta-analyses. CNS Spectr. 2013, 18, 82–89. [Google Scholar] [CrossRef]
- Bernardo, M.; Rico-Villademoros, F.; García-Rizo, C.; Rojo, R.; Gómez-Huelgas, R. Real-World Data on the Adverse Metabolic Effects of Second-Generation Antipsychotics and Their Potential Determinants in Adult Patients: A Systematic Review of Population-Based Studies. Adv. Ther. 2021, 38, 2491–2512. [Google Scholar] [CrossRef] [PubMed]
- Solmi, M.; Seitidis, G.; Mavridis, D.; Correll, C.U.; Dragioti, E.; Guimond, S.; Tuominen, L.; Dargel, A.; Carvalho, A.F.; Fornaro, M.; et al. Incidence, prevalence, and global burden of schizophrenia—Data, with critical appraisal, from the Global Burden of Disease (GBD) 2019. Mol. Psychiatry 2023, 28, 5319–5327. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Facorro, B.; Such, P.; Nylander, A.G.; Madera, J.; Resemann, H.K.; Worthington, E.; O’Connor, M.; Drane, E.; Steeves, S.; Newton, R. The burden of disease in early schizophrenia—A systematic literature review. Curr. Med. Res. Opin. 2021, 37, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Kadakia, A.; Catillon, M.; Fan, Q.; Williams, G.R.; Marden, J.R.; Anderson, A.; Kirson, N.; Dembek, C. The Economic Burden of Schizophrenia in the United States. J. Clin. Psychiatry 2022, 83, 43278. [Google Scholar] [CrossRef]
- Martinotti, G.; Chiappini, S.; Mosca, A.; Miuli, A.; Santovito, M.C.; Pettorruso, M.; Skryabin, V.; Sensi, S.L.; Giannantonio, M.D. Atypical Antipsychotic Drugs in Dual Disorders: Current Evidence for Clinical Practice. Curr. Pharm. Des. 2022, 28, 2241–2259. [Google Scholar] [CrossRef]
- Pillinger, T.; Howes, O.D.; Correll, C.U.; Leucht, S.; Huhn, M.; Schneider-Thoma, J.; Gaughran, F.; Jauhar, S.; McGuire, P.K.; Taylor, D.M.; et al. Antidepressant and antipsychotic side-effects and personalised prescribing: A systematic review and digital tool development. Lancet Psychiatry 2023, 10, 860–876. [Google Scholar] [CrossRef]
- Meltzer, H.Y.; Gadaleta, E. Contrasting Typical and Atypical Antipsychotic Drugs. Focus (Am. Psychiatr. Publ.) 2021, 19, 3–13. [Google Scholar] [CrossRef]
- Madras, B.K. History of the discovery of the antipsychotic dopamine D2 receptor: A basis for the dopamine hypothesis of schizophrenia. J. Hist. Neurosci. 2013, 22, 62–78. [Google Scholar] [CrossRef]
- Yang, A.C.; Tsai, S.J. New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis. Int. J. Mol. Sci. 2017, 18, 1689. [Google Scholar] [CrossRef]
- Stahl, S.M. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: Dopamine, serotonin, and glutamate. CNS Spectr. 2018, 23, 187–191. [Google Scholar] [CrossRef]
- Howes, O.D.; Shatalina, E. Integrating the Neurodevelopmental and Dopamine Hypotheses of Schizophrenia and the Role of Cortical Excitation-Inhibition Balance. Biol. Psychiatry 2022, 92, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; McCutcheon, R.; Owen, M.J.; Murray, R.M. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biol. Psychiatry 2017, 81, 9–20. [Google Scholar] [CrossRef]
- Maia, T.V.; Frank, M.J. An Integrative Perspective on the Role of Dopamine in Schizophrenia. Biol. Psychiatry 2017, 81, 52–66. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, R.A.; Abi-Dargham, A.; Howes, O.D. Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms. Trends Neurosci. 2019, 42, 205–220. [Google Scholar] [CrossRef]
- Brisch, R.; Saniotis, A.; Wolf, R.; Bielau, H.; Bernstein, H.G.; Steiner, J.; Bogerts, B.; Braun, K.; Jankowski, Z.; Kumaratilake, J.; et al. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue. Front. Psychiatry 2014, 5, 47. [Google Scholar] [CrossRef]
- Kesby, J.P.; Eyles, D.W.; McGrath, J.J.; Scott, J.G. Dopamine, psychosis and schizophrenia: The widening gap between basic and clinical neuroscience. Transl. Psychiatry 2018, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Kay, S.R.; Opler, L.A.; Lindenmayer, J.P. The Positive and Negative Syndrome Scale (PANSS): Rationale and standardisation. Br. J. Psychiatry Suppl. 1989, 155, 59–67. [Google Scholar] [CrossRef]
- Yamamoto, N.; Inada, T.; Shimodera, S.; Morokuma, I.; Furukawa, T.A. Brief PANSS to assess and monitor the overall severity of schizophrenia. Psychiatry Clin. Neurosci. 2010, 64, 262–267. [Google Scholar] [CrossRef]
- Aboraya, A.; Nasrallah, H.A. Perspectives on the Positive and Negative Syndrome Scale (Panss): Use, Misuse, Drawbacks, and A New Alternative for Schizophrenia Research. Ann. Clin. Psychiatry 2016, 28, 125–131. [Google Scholar] [CrossRef]
- Kelley, M.E.; White, L.; Compton, M.T.; Harvey, P.D. Subscale structure for the Positive and Negative Syndrome Scale (PANSS): A proposed solution focused on clinical validity. Psychiatry Res. 2013, 205, 137–142. [Google Scholar] [CrossRef]
- Hieronymus, F.; Correll, C.U.; Østergaard, S.D. Initial severity of the Positive and Negative Syndrome Scale (PANSS)-30, its main subscales plus the PANSS-6, and the relationship to subsequent improvement and trial dropout: A pooled participant-level analysis of 18 placebo-controlled risperidone and paliperidone trials. Transl. Psychiatry 2023, 13, 191. [Google Scholar] [CrossRef]
- Santor, D.A.; Ascher-Svanum, H.; Lindenmayer, J.-P.; Obenchain, R.L. Item response analysis of the Positive and Negative Syndrome Scale. BMC Psychiatry 2007, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Shafer, A.; Dazzi, F. Meta-analysis of the positive and Negative Syndrome Scale (PANSS) factor structure. J. Psychiatr. Res. 2019, 115, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Lepping, P.; Sambhi, R.S.; Whittington, R.; Lane, S.; Poole, R. Clinical relevance of findings in trials of antipsychotics: Systematic review. Br. J. Psychiatry 2011, 198, 341–345. [Google Scholar] [CrossRef]
- Hopkins, S.C.; Ogirala, A.; Loebel, A.; Koblan, K.S. Understanding Antipsychotic Drug Treatment Effects: A Novel Method to Reduce Pseudospecificity of the Positive and Negative Syndrome Scale (PANSS) Factors. Innov. Clin. Neurosci. 2017, 14, 54–58. [Google Scholar] [PubMed]
- Kumari, S.; Malik, M.; Florival, C.; Manalai, P.; Sonje, S. An Assessment of Five (PANSS, SAPS, SANS, NSA-16, CGI-SCH) commonly used Symptoms Rating Scales in Schizophrenia and Comparison to Newer Scales (CAINS, BNSS). J. Addict. Res. Ther. 2017, 8, 324. [Google Scholar] [CrossRef]
- Czobor, P.; Sebe, B.; Acsai, K.; Barabássy, Á.; Laszlovszky, I.; Németh, G.; Furukawa, T.A.; Leucht, S. What Is the Minimum Clinically Important Change in Negative Symptoms of Schizophrenia? PANSS Based Post-hoc Analyses of a Phase III Clinical Trial. Front. Psychiatry 2022, 13, 816339. [Google Scholar] [CrossRef]
- Leucht, S.; Barabassy, A.; Laszlovszky, I.; Szatmari, B.; Acsai, K.; Szalai, E.; Harsanyi, J.; Earley, W.; Nemeth, G. Linking PANSS negative symptom scores with the Clinical Global Impressions Scale: Understanding negative symptom scores in schizophrenia. Neuropsychopharmacology 2019, 44, 1589–1596. [Google Scholar] [CrossRef]
- Raguraman, J.; Vijay Sagar, K.J.; Chandrasekaran, R. Effectiveness of clozapine in treatment-resistant schizophrenia. Indian J. Psychiatry 2005, 47, 102–105. [Google Scholar] [CrossRef]
- Sharafi, M. Comparison of Classical and Clozapine Treatment on Schizophrenia Using Positive and Negative Syndrome Scale of Schizophrenia (PANSS) and SPECT Imaging. Int. J. Med. Sci. 2005, 2, 79–86. [Google Scholar] [CrossRef]
- Buchanan, R.W.; Ball, M.P.; Weiner, E.; Kirkpatrick, B.; Gold, J.M.; McMahon, R.P.; Carpenter, W.T., Jr. Olanzapine treatment of residual positive and negative symptoms. Am. J. Psychiatry 2005, 162, 124–129. [Google Scholar] [CrossRef]
- Shi, L.; Schuh, L.M.; Trzepacz, P.T.; Huang, L.X.; Namjoshi, M.A.; Tohen, M. Improvement of Positive and Negative Syndrome Scale cognitive score associated with olanzapine treatment of acute mania. Curr. Med. Res. Opin. 2004, 20, 1371–1376. [Google Scholar] [CrossRef]
- Zhu, L.; Wu, G.; Heng, W.; Zang, X. A comparative study of olanzapine, aripiprazole and risperidone in the treatment of psychiatric and behavioral symptoms of Alzheimer’s disease. Pak. J. Pharm. Sci. 2021, 34, 2053–2057. [Google Scholar]
- Yang, L.; Qi, X. Effect of olanzapine combined with risperidone in the treatment of schizophrenia and its influence on cognitive function. Pak. J. Med. Sci. 2021, 37, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Yoca, G.; Anil Yagcioglu, A.E.; Eni, N.; Karahan, S.; Turkoglu, I.; Akal Yildiz, E.; Mercanligil, S.M.; Yazici, M.K. A follow-up study of metabolic syndrome in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Wetterling, T. Bodyweight Gain with Atypical Antipsychotic. Drug Saf. 2001, 24, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Pedrero, L.; Bes-Rastrollo, M.; Marti, A. Effects of antidepressant and antipsychotic use on weight gain: A systematic review. Obes. Rev. 2019, 20, 1680–1690. [Google Scholar] [CrossRef]
- Castellani, L.N.; Pereira, S.; Kowalchuk, C.; Asgariroozbehani, R.; Singh, R.; Wu, S.; Hamel, L.; Alganem, K.; Ryan, W.G.; Zhang, X.; et al. Antipsychotics impair regulation of glucose metabolism by central glucose. Mol. Psychiatry 2022, 27, 4741–4753. [Google Scholar] [CrossRef]
- Ren, L.; Zhou, X.; Huang, X.; Wang, C.; Li, Y. The IRS/PI3K/Akt signaling pathway mediates olanzapine-induced hepatic insulin resistance in male rats. Life Sci. 2019, 217, 229–236. [Google Scholar] [CrossRef]
- Castellani, L.N.; Peppler, W.T.; Miotto, P.M.; Bush, N.; Wright, D.C. Exercise Protects Against Olanzapine-Induced Hyperglycemia in Male C57BL/6J Mice. Sci. Rep. 2018, 8, 772. [Google Scholar] [CrossRef]
- Citrome, L.; Holt, R.I.; Walker, D.J.; Hoffmann, V.P. Weight gain and changes in metabolic variables following olanzapine treatment in schizophrenia and bipolar disorder. Clin. Drug Investig. 2011, 31, 455–482. [Google Scholar] [CrossRef] [PubMed]
- Shamshoum, H.; Medak, K.D.; Wright, D.C. Peripheral mechanisms of acute olanzapine induced metabolic dysfunction: A review of in vivo models and treatment approaches. Behav. Brain Res. 2021, 400, 113049. [Google Scholar] [CrossRef] [PubMed]
- Yuen, J.W.Y.; Kim, D.D.; Procyshyn, R.M.; Panenka, W.J.; Honer, W.G.; Barr, A.M. A Focused Review of the Metabolic Side-Effects of Clozapine. Front. Endocrinol. 2021, 12, 609240. [Google Scholar] [CrossRef]
- Gurrera, R.J.; Gearin, P.F.; Love, J.; Li, K.J.; Xu, A.; Donaghey, F.H.; Gerace, M.R. Recognition and management of clozapine adverse effects: A systematic review and qualitative synthesis. Acta Psychiatr. Scand. 2022, 145, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Alobaidi, Z.A.; Mohammed, S.I. Association of Disease Duration and Duration of Olanzapine Use with Blood Sugar, Blood Pressure, BMI, and Lipid Profile among Schizophrenic Patients in Iraq. Al-Rafidain J. Med. Sci. 2023, 4, 79–85. [Google Scholar] [CrossRef]
- Feng, S.; Melkersson, K. Metabolic parameters and long-term antipsychotic treatment: A comparison between patients treated with clozapine or olanzapine. Neuroendocrinol. Lett. 2012, 33, 493–498. [Google Scholar]
- Henderson, D.C.; Cagliero, E.; Gray, C.; Nasrallah, R.A.; Hayden, D.L.; Schoenfeld, D.A.; Goff, D.C. Clozapine, diabetes mellitus, weight gain, and lipid abnormalities: A five-year naturalistic study. Am. J. Psychiatry 2000, 157, 975–981. [Google Scholar] [CrossRef]
- Skokou, M.; Karavia, E.A.; Drakou, Z.; Konstantinopoulou, V.; Kavakioti, C.A.; Gourzis, P.; Kypreos, K.E.; Andreopoulou, O. Adverse Drug Reactions in Relation to Clozapine Plasma Levels: A Systematic Review. Pharmaceuticals 2022, 15, 817. [Google Scholar] [CrossRef]
- Pereira, S.; Au, E.; Agarwal, S.M.; Wright, D.C.; Hahn, M.K. Antipsychotic-Induced Alterations in Lipid Turnover. Endocrinology 2023, 164, bqad025. [Google Scholar] [CrossRef]
- Li, R.; Zhang, Y.; Zhu, W.; Ding, C.; Dai, W.; Su, X.; Dai, W.; Xiao, J.; Xing, Z.; Huang, X. Effects of olanzapine treatment on lipid profiles in patients with schizophrenia: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 17028. [Google Scholar] [CrossRef]
- Dursun, S.M.; Szemis, A.; Andrews, H.; Reveley, M.A. The effects of clozapine on levels of total cholesterol and related lipids in serum of patients with schizophrenia: A prospective study. J. Psychiatry Neurosci. 1999, 24, 453–455. [Google Scholar]
- Chen, C.H.; Shyue, S.K.; Hsu, C.P.; Lee, T.S. Atypical Antipsychotic Drug Olanzapine Deregulates Hepatic Lipid Metabolism and Aortic Inflammation and Aggravates Atherosclerosis. Cell Physiol. Biochem. 2018, 50, 1216–1229. [Google Scholar] [CrossRef] [PubMed]
- Manu, P.; Dima, L.; Shulman, M.; Vancampfort, D.; De Hert, M.; Correll, C.U. Weight gain and obesity in schizophrenia: Epidemiology, pathobiology, and management. Acta Psychiatr. Scand. 2015, 132, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Barton, B.B.; Segger, F.; Fischer, K.; Obermeier, M.; Musil, R. Update on weight-gain caused by antipsychotics: A systematic review and meta-analysis. Expert Opin. Drug Saf. 2020, 19, 295–314. [Google Scholar] [CrossRef]
- Lis, M.; Stanczykiewicz, B.; Liskiewicz, P.; Misiak, B. Impaired hormonal regulation of appetite in schizophrenia: A narrative review dissecting intrinsic mechanisms and the effects of antipsychotics. Psychoneuroendocrinology 2020, 119, 104744. [Google Scholar] [CrossRef] [PubMed]
- Goetz, R.L.; Miller, B.J. Meta-analysis of ghrelin alterations in schizophrenia: Effects of olanzapine. Schizophr. Res. 2019, 206, 21–26. [Google Scholar] [CrossRef]
- Lu, M.-L.; Wang, T.-N.; Lin, T.-Y.; Shao, W.-C.; Chang, S.-H.; Chou, J.-Y.; Ho, Y.-F.; Liao, Y.-T.; Chen, V.C.-H. Differential effects of olanzapine and clozapine on plasma levels of adipocytokines and total ghrelin. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2015, 58, 47–50. [Google Scholar] [CrossRef]
- Mukherjee, S.; Skrede, S.; Milbank, E.; Andriantsitohaina, R.; López, M.; Fernø, J. Understanding the effects of antipsychotics on appetite control. Front. Nutr. 2022, 8, 815456. [Google Scholar] [CrossRef]
- Goh, K.K.; Chen, C.Y.; Wu, T.H.; Chen, C.H.; Lu, M.L. Crosstalk between Schizophrenia and Metabolic Syndrome: The Role of Oxytocinergic Dysfunction. Int. J. Mol. Sci. 2022, 23, 7092. [Google Scholar] [CrossRef]
- Hagi, K.; Nosaka, T.; Dickinson, D.; Lindenmayer, J.P.; Lee, J.; Friedman, J.; Boyer, L.; Han, M.; Abdul-Rashid, N.A.; Correll, C.U. Association between cardiovascular risk factors and cognitive impairment in people with schizophrenia: A systematic review and meta-analysis. JAMA Psychiatry 2021, 78, 510–518. [Google Scholar] [CrossRef]
- Nielsen, R.E.; Banner, J.; Jensen, S.E. Cardiovascular disease in patients with severe mental illness. Nat. Rev. Cardiol. 2021, 18, 136–145. [Google Scholar] [CrossRef]
- Solmi, M.; Croatto, G.; Gupta, A.; Fabiano, N.; Wong, S.; Fornaro, M.; Schneider, L.K.; Rohani-Montez, S.C.; Fairley, L.; Smith, N.; et al. Effects of antipsychotic treatment on cardio-cerebrovascular related mortality in schizophrenia: A subanalysis of a systematic review and meta-analysis with meta-regression of moderators. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2024, 88, 6–20. [Google Scholar] [CrossRef]
- Nazıroglu, M.; Demirdas, A. Psychiatric disorders and TRP channels: Focus on psychotropic drugs. Curr. Neuropharmacol. 2015, 13, 248–257. [Google Scholar] [CrossRef]
- Sicouri, S.; Antzelevitch, C. Mechanisms Underlying the Actions of Antidepressant and Antipsychotic Drugs That Cause Sudden Cardiac Arrest. Arrhythmia Electrophysiol. Rev. 2018, 7, 199–209. [Google Scholar] [CrossRef]
- Meulendijks, D.; Mannesse, C.K.; Jansen, P.A.; van Marum, R.J.; Egberts, T.C. Antipsychotic-induced hyponatraemia: A systematic review of the published evidence. Drug Saf. 2010, 33, 101–114. [Google Scholar] [CrossRef]
- Khasawneh, F.T.; Shankar, G.S. Minimizing cardiovascular adverse effects of atypical antipsychotic drugs in patients with schizophrenia. Cardiol. Res. Pract. 2014, 2014, 273060. [Google Scholar] [CrossRef] [PubMed]
- Valpey, R.; Faeder, M. Aripiprazole-Induced Syndrome of Inappropriate Antidiuretic Hormone Secretion: Case Report and Literature Review. Psychosomatics 2020, 61, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H. Pathophysiology of Drug-Induced Hyponatremia. J. Clin. Med. 2022, 11, 5810. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Hsu, W.T.; Lai, C.C.; Esmaily-Fard, A.; Tsai, Y.W.; Chiu, C.C.; Wang, J.; Chang, S.S.; Lee, C.C. Use of antipsychotics increases the risk of fracture: A systematic review and meta-analysis. Osteoporos. Int. 2017, 28, 1167–1178. [Google Scholar] [CrossRef]
- Wu, H.; Deng, L.; Zhao, L.; Zhao, J.; Li, L.; Chen, J. Osteoporosis associated with antipsychotic treatment in schizophrenia. Int. J. Endocrinol. 2013, 2013, 167138. [Google Scholar] [CrossRef]
- Andrade, R.J.; Chalasani, N.; Björnsson, E.S.; Suzuki, A.; Kullak-Ublick, G.A.; Watkins, P.B.; Devarbhavi, H.; Merz, M.; Lucena, M.I.; Kaplowitz, N.; et al. Drug-induced liver injury. Nat. Rev. Dis. Primers 2019, 5, 58. [Google Scholar] [CrossRef] [PubMed]
- Todorović Vukotić, N.; Đorđević, J.; Pejić, S.; Đorđević, N.; Pajović, S.B. Antidepressants- and antipsychotics-induced hepatotoxicity. Arch. Toxicol. 2021, 95, 767–789. [Google Scholar] [CrossRef] [PubMed]
- Ozer, J.; Ratner, M.; Shaw, M.; Bailey, W.; Schomaker, S. The current state of serum biomarkers of hepatotoxicity. Toxicology 2008, 245, 194–205. [Google Scholar] [CrossRef]
- Ong, L.T.; Chee, N.M.Z.; Loh, A.J.C. Risk of renal impairment in atypical antipsychotics: A systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 2024, 80, 1435–1444. [Google Scholar] [CrossRef]
- Damba, J.J.; Bodenstein, K.; Lavin, P.; Drury, J.; Sekhon, H.; Renoux, C.; Trinh, E.; Rej, S.; Greenway, K.T. Psychotropic Drugs and Adverse Kidney Effects: A Systematic Review of the Past Decade of Research. CNS Drugs 2022, 36, 1049–1077. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, C.L. Biomarkers in acute kidney injury. In Biomarkers of Kidney Disease, 2nd ed.; Academic Press: New York, NY, USA, 2017; pp. 241–315. [Google Scholar]
- Khandaker, G.M.; Cousins, L.; Deakin, J.; Lennox, B.R.; Yolken, R.; Jones, P.B. Inflammation and immunity in schizophrenia: Implications for pathophysiology and treatment. Lancet Psychiatry 2015, 2, 258–270. [Google Scholar] [CrossRef]
- Fond, G.; Lancon, C.; Korchia, T.; Auquier, P.; Boyer, L. The Role of Inflammation in the Treatment of Schizophrenia. Front. Psychiatry 2020, 11, 160. [Google Scholar] [CrossRef]
- Hong, J.; Bang, M. Anti-inflammatory Strategies for Schizophrenia: A Review of Evidence for Therapeutic Applications and Drug Repurposing. Clin. Psychopharmacol. Neurosci. 2020, 18, 10–24. [Google Scholar] [CrossRef]
- Murphy, C.E.; Walker, A.K.; Weickert, C.S. Neuroinflammation in schizophrenia: The role of nuclear factor kappa B. Transl. Psychiatry 2021, 11, 528. [Google Scholar] [CrossRef]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
Control | Olanzapine | Clozapine | ||||
---|---|---|---|---|---|---|
Number | % | Number | % | Number | % | |
Gender | ||||||
Male | 12 | 50 | 13 | 54.1 | 13 | 54.1 |
Female | 12 | 50 | 11 | 45.8 | 11 | 45.8 |
Marital status | ||||||
Married | 18 | 75 | 19 | 79.1 | 18 | 75 |
Unmarried | 6 | 25 | 5 | 20.8 | 6 | 25 |
Employment | ||||||
Employed | 17 | 70.8 | 18 | 75 | 20 | 83.3 |
Unemployed | 7 | 29.2 | 6 | 25 | 4 | 16.6 |
Mean | SD | Mean | SD | Mean | SD | |
Age | 45.6 | 16.5 | 41.8 | 14.3 | 44.2 | 18.4 |
General Scale | Olanzapine Group (N = 24) (0 Months) | Clozapine Group (N = 24) (0 Months) | Olanzapine Group (N = 24) (3 Months) | Clozapine Group (N = 24) (3 Months) | Olanzapine Group (N = 24) (6 Months) | Clozapine Group (N = 24) (6 Months) |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Somatic concern | 1.7 ± 0.52 | 2.38 * ± 0.89 | 1.45 ± 0.49 | 1.76 ± 0.69 | 1.3 ± 0.32 | 1.15 ± 0.37 |
Anxiety | 2.2 ± 0.47 | 2.71 ± 0.89 | 1.45 ± 0.38 | 2.28 ± 0.48 | 1.6 ± 0.44 | 1.64 ± 0.32 |
Guilt feelings | 1.4 ± 0.88 | 2.5 * ± 0.91 | 1.4 ± 0.28 | 1.78 ± 0.25 | 1.15 ± 0.48 | 1.28 ± 0.72 |
Tension | 2 ± 0.25 | 2.85 ± 0.83 | 1.55 ± 0.24 | 2.5 ± 0.5 | 1.45 ± 0.32 | 1.53 ± 0.56 |
Mannerisms and posturing | 1.75 ± 0.44 | 2.64 * ± 0.98 | 1.45 ± 0.54 | 1.92 ± 0.49 | 1.3 ± 0.40 | 1.28 ± 0.42 |
Depression | 1.55 ± 0.14 | 2.64 * ± 0.26 | 1.45 ± 0.44 | 1.78 ± 0.25 | 1.45 ± 0.39 | 1.28 ± 0.52 |
Motor retardation | 1.6 ± 0.27 | 2.64 * ± 0.56 | 1.45 ± 0.58 | 2.08 ± 0.72 | 1.35 ± 0.41 | 1.5 ± 0.71 |
Uncooperativeness | 3.85 ± 0.48 | 4.85 ± 0.7 | 1.95 ± 0.38 | 2.35 ± 0.39 | 1.5 ± 0.40 | 1.42 ± 0.44 |
Unusual thought content | 3.85 ± 0.93 | 4.25 ± 0.71 | 2.05 ± 0.35 | 2.35 ± 0.49 | 1.6 ± 0.30 | 1.64 ± 0.62 |
Disorientation | 1.6 ± 0.34 | 2.5 * ± 0.87 | 1.3 ± 0.60 | 1.35 ± 0.43 | 1.05 ± 0.22 | 1.38 ± 0.32 |
Poor attention | 2.05 ± 0.49 | 3.14 * ± 0.99 | 1.65 ± 0.61 | 2.38 ± 0.35 | 1.45 ± 0.40 | 2 * ± 0.80 |
Lack of judgment and insight | 4.25 ± 0.46 | 5.07 ± 0.43 | 3.65 ± 0.88 | 3.35 ± 0.44 | 3.4 ± 0.64 | 2.71 ± 0.46 |
Disturbance of volition | 1.95 ± 0.73 | 3.42 ± 0.78 | 1.95 ± 0.23 | 2.42 ± 0.73 | 1.4 ± 0.59 | 1.75 ± 0.55 |
Poor impulse control | 3.35 ± 0.61 | 4.64 ± 0.86 | 1.75 ± 0.40 | 2.92 ± 0.48 | 1.2 ± 0.41 | 1.78 ± 0.38 |
Pre-occupation | 1.95 ± 0.57 | 3.35 * ± 0.64 | 1.6 ± 0.58 | 2.21 ± 0.28 | 1.15 ± 0.36 | 1.46 ± 0.46 |
Active social avoidance | 2.15 ± 0.52 | 3.35 ± 0.36 | 1.7 ± 0.62 | 2.85 ± 0.51 | 1.25 ± 0.35 | 1.71 ± 0.49 |
Total | 37.2 ± 8.1 | 52.2 * ± 11.4 | 27.5 ± 7.6 | 35.78 ± 7.48 | 23.6 ± 6.43 | 24.92 ± 8.14 |
p-value | Baseline p = 0.822 value | 3 months p = 0.098 value | 6 months p = 0.124 value |
Percentage Change in General Scale Scores After 6 Months | Olanzapine Group (N = 24) | Clozapine Group (N = 24) |
---|---|---|
Somatic concern | −24% | −52% |
Anxiety | −27% | −39% |
Guilt feelings | −18% | −49% |
Tension | −28% | −46% |
Mannerisms and posturing | −26% | −52% |
Depression | −6% | −52% |
Motor retardation | −16% | −43% |
Uncooperativeness | −61% | −71% |
Unusual thought content | −58% | −61% |
Disorientation | −34% | −45% |
Poor attention | −29% | −36% |
Lack of judgment and insight | −20% | −47% |
Disturbance of volition | −28% | −49% |
Poor impulse control | −64% | −62% |
Preoccupation | −41% | −56% |
Active social avoidance | −42% | −49% |
Total | −31% | −52% |
p-value | 0.187 |
Negative Scale | Olanzapine Group (N = 24) (0 Months) | Clozapine Group (N = 24) (0 Months) | Olanzapine Group (N = 24) (3 Months) | Clozapine Group (N = 24) (3 Months) | Olanzapine Group (N = 24) (6 Months) | Clozapine Group (N = 24) (6 Months) |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Blunted affect | 2.75 ± 0.9 | 3.35 ± 0.82 | 2.5 ± 0.94 | 3.35 * ± 0.73 | 2.15 ± 0.74 | 2.07 ± 0.58 |
Emotional withdrawal | 2.7 ± 0.66 | 3.57 * ± 0.92 | 2.5 ± 0.94 | 3.42 * ± 0.98 | 2.3 ± 0.22 | 2.14 ± 0.49 |
Poor rapport | 3.1 ± 0.95 | 3.78 ± 0.91 | 2.6 ± 0.82 | 3.57 * ± 0.94 | 2.25 ± 0.31 | 2.21 ± 0.31 |
Passive apathetic social withdrawal | 3 ± 0.63 | 3.57 * ± 0.82 | 2.35 ± 0.7 | 3.21 * ± 0.92 | 2.1 ± 0.24 | 2.42 ± 0.63 |
Difficulty in abstract thinking | 3.9 ± 0.49 | 3.85 ± 0.7 | 3.4 ± 0.94 | 3.42 ± 0.74 | 3.25 ± 0.26 | 2.71 ± 0.43 |
Lack of spontaneity flow of conversation | 3.2 ± 0.63 | 3.35 ± 0.73 | 2.5 ± 0.74 | 3.21 * ± 0.8 | 2.1 ± 0.96 | 2.35 ± 0.73 |
Stereotyped thinking | 2.5 ± 0.60 | 3.35 * ± 0.57 | 1.9 ± 0.57 | 3.21 ± 0.82 | 1.55 ± 0.49 | 2.21 ± 0.8 |
Total | 20.2 ± 5.2 | 24.8 * ± 5.47 | 17.5 ± 5.65 | 23.4 * ± 5.39 | 15.7 ± 2.98 | 16.1 ± 3.79 |
p-value | Baseline p = 0.041 | 3 months p = 0.039 | 6 months p = 0.11 |
Percentage Changes in Negative Scale Scores After 6 Months | Olanzapine Group (N = 24) | Clozapine Group (N = 24) |
---|---|---|
Blunted affect | −22% | −38% |
Emotional withdrawal | −15% | −40% |
Poor rapport | −27% | −42% |
Passive apathetic social withdrawal | −30% | −32% |
Difficulty in abstract thinking | −17% | −30% |
Lack of spontaneity flow of conversation | −34% | −30% |
Stereotyped thinking | −38% | −34% |
Total | −22% | −35% |
p-value | 0.129 |
Positive Scale | Olanzapine Group (N = 24) (0 Months) | Clozapine Group (N = 24) (0 Months) | Olanzapine Group (N = 24) (3 Months) | Clozapine Group (N = 24) (3 Months) | Olanzapine Group (N = 24) (6 Months) | Clozapine Group (N = 24) (6 Months) |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Delusions | 4.95 ± 1.27 | 5.5 ± 1.08 | 2.1 ± 0.78 | 2.92 * ± 0.54 | 1.55 ± 0.51 | 1.6 ± 0.65 |
Conceptual | 3.6 ± 0.65 | 4.09 ± 0.92 | 1.8 ± 0.46 | 2.69 * ± 0.43 | 1.25 ± 0.44 | 1.5 ± 0.71 |
Hallucinatory | 4.2 ± 0.79 | 4.42 ± 0.98 | 2 ± 0.71 | 3.14 * ± 0.65 | 1.25 ± 0.44 | 1.5 ± 0.67 |
Excitement | 4.4 ± 0.61 | 5.14 ± 1.23 | 1.75 ± 0.66 | 2.78 ± 0.51 | 1.35 ± 0.74 | 1.28 ± 0.36 |
Grandiosity | 2.45 ± 0.66 | 3.35 * ± 0.89 | 1.4 ± 0.65 | 2.36 * ± 0.46 | 1.1 ± 0.34 | 1.076 ± 0.27 |
Suspiciousness | 4.15 ± 0.36 | 5 ± 1.15 | 2.05 ± 0.61 | 2.69 ± 0.97 | 1.65 ± 0.47 | 1.5 ± 0.65 |
Hostility | 4.2 ± 0.58 | 5.14 ± 1.29 | 1.7 ± 0.70 | 2.57 * ± 0.54 | 1.5 ± 0.46 | 1.35 ± 0.44 |
Total | 27.95 ± 4.92 | 32.64 * ± 7.54 | 12.8 ± 4.57 | 18.28 * ± 4.1 | 9.6 ± 3.4 | 9.64 ± 3.75 |
p-value | Baseline p = 0.424 | 3 months p = 0.325 | 6 months p = 0.542 |
Percentage Changes in Positive Scale Scores after 6 Months | Olanzapine Group (N = 24) | Clozapine Group (N = 24) |
---|---|---|
Delusions | −69% | −72% |
Conceptual | −65% | −65% |
Hallucinatory | −70% | −66% |
Excitement | −69% | −75% |
Grandiosity | −55% | −68% |
Suspiciousness | −60% | −70% |
Hostility | −64% | −74% |
Total | −64% | −69% |
p-value | p = 0.493 |
Olanzapine Group (N = 24) (0 Months) Mean ± SD | Clozapine Group (N = 24) (0 Months) Mean ± SD | Olanzapine Group (N = 24) (3 Months) Mean ± SD | Clozapine Group (N = 24) (3 Months) Mean ± SD | Olanzapine Group (N = 24) (6 Months) Mean ± SD | Clozapine Group (N = 24) (6 Months) Mean ± SD | |
---|---|---|---|---|---|---|
Total score | 85.35 ± 18.22 | 109.64 ± 29.73 | 57.8 ± 17.82 | 77.46 ± 16.97 | 48.9 ± 12.81 | 50.66 ± 15.68 |
p-value | 0.428 | 0.154 | 0.25 |
Olanzapine Group (N = 24) (0 Months) | Clozapine Group (N = 24) (0 Months) | Olanzapine Group (N = 24) (6 Months) | Clozapine Group (N = 24) (6 Months) | ||
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p-Value | |
Blood Minerals | |||||
Sodium level | 133.9 ± 2.52 | 137.9 ± 3.17 | 131.2 ± 3.58 | 134.1 ± 4.75 | 0.647 |
Potassium level | 3.918 ± 0.28 | 4.018 ± 0.35 | 4.042 ± 0.31 | 4.206 ± 0.39 | 0.685 |
Calcium level | 2.251 ± 0.04 | 2.35 ± 0.07 | 2.338 ± 0.12 | 2.295 ± 0.11 | 0.774 |
Chloride level | 100.2 ± 4.55 | 104.2 ± 6.28 | 98.06 ± 3.07 | 98.85 ± 2.66 | 0.469 |
Magnesium level | 0.708 ± 0.04 | 0.808 ± 0.06 | 0.760 ± 0.19 | 0.777 ± 0.06 | 0.547 |
Blood Glucose and Lipid Profile | |||||
HbA1C | 5.80 ± 0.89 | 5.88 ± 1.3 | 6.09 ± 0.98 | 6.79 * ± 0.87 | 0.034 |
Cholesterol | 4.2 ± 0.67 | 4.33 ± 1.03 | 4.4 ± 0.92 | 4.48 ± 0.78 | 0.685 |
LDL | 84.05 ± 11.9 | 85.85 ± 21.1 | 87.15 ± 20.5 | 99.8 * ± 17.0 | 0.047 |
HDL | 1.27 ± 0.24 | 1.29 ± 0.53 | 1.12 ± 0.15 | 1.01 ± 0.41 | 0.547 |
Kidney and Liver Function Tests | |||||
Urea | 66.38 ± 7.7 | 79 ± 8.67 | 67.42 ± 12.7 | 72.8 ± 14.2 | 0.029 |
Creatinine | 4.11 ± 0.34 | 4.02 ± 0.55 | 4.65 ± 2 | 3.99 * ± 1.3 | 0.032 |
Total bilirubin | 6.84 ± 1.14 | 7.81 ± 1.76 | 6.45 ± 1.09 | 7.7 * ± 0.9 | 0.041 |
Direct bilirubin | 2.06 ± 0.56 | 2.65 ± 0.71 | 2.11 ± 1.09 | 2.75 ± 0.53 | 0.568 |
ALT | 14.06 ± 3.05 | 16.21 ± 4.5 | 13.35 ± 3.24 | 15.14 * ± 4.9 | 0.038 |
AST | 19.01 ± 2.05 | 22.35 ± 3.2 | 21.97 ± 2.39 | 27.45 * ± 3.14 | 0.044 |
Alkaline phosphatase | 59.87 ± 11.4 | 62.57 ± 18.9 | 72.83 ± 19.0 | 76.8 ± 23.5 | 0.457 |
Albumin | 43.25 ± 2.11 | 41.05 ± 3.76 | 38.93 ± 3.26 | 40.5 * ± 29.5 | 0.039 |
Percentage Changes After 6 Months | Olanzapine Group (N = 24) | Clozapine Group (N = 24) | |
---|---|---|---|
Blood Mineral Laboratory Tests | p-Value | ||
Sodium level | −2% | −3% | 0.658 |
Potassium level | 3% | 5% | 0.558 |
Calcium level | 4% | −2% | 0.154 |
Chloride level | −2% | −5% | 0.214 |
Magnesium level | 7% | −4% | 0.158 |
Blood Glucose and Lipid Profile | |||
HbA1C | 5% | 15% | 0.041 * |
Cholesterol | 5% | 3% | 0.325 |
LDL | 4% | 16% | 0.032 * |
HDL | −14% | −22% | 0.098 |
Kidney and Liver Function Tests | |||
Urea | 2% | −3% | 0.151 |
Creatinine | 14% | −1% | 0.021 * |
Total bilirubin | −6% | −1% | 0.048 * |
Direct bilirubin | 2% | 4% | 0.214 |
ALT | −5% | −7% | 0.096 |
AST | 13% | 24% | 0.044 * |
Alkaline phosphatase | 22% | 23% | 0.521 |
Albumin | −10% | −1% | 0.021 * |
Cardiac Parameters | Olanzapine Group (N = 24) (0 Months) | Clozapine Group (N = 24) (0 Months) | Olanzapine Group (N = 24) (3 Months) | Clozapine Group (N = 24) (3 Months) | Olanzapine Group (N = 24) (6 Months) | Clozapine Group (N = 24) (6 Months) | |
---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p-Value | |
ECG (QTc) | 404.01 ± 14.5 | 408.1 ± 22.4 | 409.4 ± 14 | 411.5 ± 21.6 | 413 ± 15.1 | 415 ± 23.3 | 0.884 |
SBP | 125.1 ± 6.74 | 120.5 ± 7.19 | 114.8 ± 4.82 | 117.1 ± 5.24 | 123.9 ± 9.41 | 124.4 ± 9.65 | 0.745 |
DBP | 79.21 ± 5.48 | 76.53 ± 6.07 | 73.1 ± 6.67 | 74.57 ± 7.64 | 77.35 ± 7.08 | 77 ± 7.48 | 0.652 |
HR | 73.12 ± 7.67 | 75.14 ± 9.28 | 74.78 ± 7.89 | 77 ± 9.54 | 79.57 ± 13.2 | 80.23 ± 16.4 | 0.551 |
CK-MB | 11.93 ± 4.88 | 13.03 ± 5.52 | 12.65 ± 4.11 | 13.41 ± 4.9 | 14.74 ± 3.47 | 14.8 ± 4.78 | 0.325 |
Percentage Changes in Cardiac Parameters After 6 Months | Olanzapine Group (N = 24) | Clozapine Group (N = 24) |
---|---|---|
ECG | 2% | 2% |
SBP | −1% | 3% |
DBP | −2% | 1% |
HR | 9% | 7% |
CK-MB | 24% | 14% |
Body Weight and Waist Circumference | Olanzapine Group (N = 24) (0 Months) | Clozapine Group (N = 24) (0 Months) | Olanzapine Group (N = 24) (3 Months) | Clozapine Group (N = 24) (3 Months) | Olanzapine Group (N = 24) (6 Months) | Clozapine Group (N = 24) (6 Months) | p-Value |
---|---|---|---|---|---|---|---|
Weight (kg): mean ± SD | 71.38 ± 15.1 | 66.03 ± 11.9 | 76.77 ± 23 | 71.42 ± 13.4 | 83.7 * ± 23.6 | 79 * ± 15.4 | 0.021 |
Waist circumference (cm): mean ± SD | 97.29 ± 16.0 | 92.96 ± 17.9 | 102.2 ± 18.3 | 101.2 ± 17.7 | 108.82 * ± 18.8 | 106.4 * ± 17.3 | 0.036 |
After 6 Months | Olanzapine Group (N = 24) | Clozapine Group (N = 24) |
---|---|---|
Weight (kg): Mean ± SD | 16% | 19.9% |
Waist circumference (cm): Mean ± SD | 11% | 15% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, N.S.; Hamdy, N.A.; Aboubakr, E.M.; Alharbi, M.; Ali, M.A.; Alharbi, G.; ElMallah, A.I. Comparing the Metabolic, Systemic, and Neuropsychiatric Impacts of Olanzapine and Clozapine in Patients with Schizophrenia. Pharmaceuticals 2025, 18, 1314. https://doi.org/10.3390/ph18091314
Alharbi NS, Hamdy NA, Aboubakr EM, Alharbi M, Ali MA, Alharbi G, ElMallah AI. Comparing the Metabolic, Systemic, and Neuropsychiatric Impacts of Olanzapine and Clozapine in Patients with Schizophrenia. Pharmaceuticals. 2025; 18(9):1314. https://doi.org/10.3390/ph18091314
Chicago/Turabian StyleAlharbi, Nayef Samah, Noha Alaa Hamdy, Esam M. Aboubakr, Mansour Alharbi, Mostafa A. Ali, Ghaleb Alharbi, and Ahmed Ibrahim ElMallah. 2025. "Comparing the Metabolic, Systemic, and Neuropsychiatric Impacts of Olanzapine and Clozapine in Patients with Schizophrenia" Pharmaceuticals 18, no. 9: 1314. https://doi.org/10.3390/ph18091314
APA StyleAlharbi, N. S., Hamdy, N. A., Aboubakr, E. M., Alharbi, M., Ali, M. A., Alharbi, G., & ElMallah, A. I. (2025). Comparing the Metabolic, Systemic, and Neuropsychiatric Impacts of Olanzapine and Clozapine in Patients with Schizophrenia. Pharmaceuticals, 18(9), 1314. https://doi.org/10.3390/ph18091314