Solanum lyratum-Derived Solalyraine A1 Suppresses Non-Small Cell Lung Cancer Through Regulation of Exosome Secretion and Related Protein Biomarkers
Abstract
1. Introduction
2. Results
2.1. Characterization of Exosomes
2.2. Exosomes Derived from SA1-Treated A549 Cells Inhibits NSCLC Tumor Growth
2.3. Global Proteomics Analysis of SA1-Treated A549 Cells and the Derived Exosomes
2.4. Protein Enrichment and Function Analysis
2.5. Validation of Significantly Regulated DEPs
3. Discussion
4. Materials and Methods
4.1. Regents
4.2. Cell Line and Culture Conditions
4.3. Exosome Extraction
4.4. Assessment of Exosome Characteristics
4.5. Animal Model Establishment and Anti-NSCLC Efficacy Study
4.6. Sample Preparation for Proteomics Analysis
4.7. Peptide Identification by LC-MS/MS
4.8. Data Processing and Functional Analysis of DEPs
4.9. Bioinformatics Analysis of Database
4.10. Western Blot Analysis
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NSCLC | Non-small cell lung cancer |
TSGS | Total steroidal glycoalkaloids from S. lyratum |
SA1 | Solalyraine A1 |
ADEs | A549-derived exosomes |
TDEs | Tumor-derived exosomes |
DEPs | Differentially expressed proteins |
GO | Gene ontology |
KEGG | Kyoto encyclopedia of genes and genomes |
MUC5B | Mucin-5B |
APOB | Apolipoprotein B |
MFGM | Lactadherin |
ANGL4 | Angiopoietin-related protein 4 |
GCN1 | Stalled ribosome sensor GCN1 |
References
- Jha, S.K.; De Rubis, G.; Devkota, S.R.; Zhang, Y.; Adhikari, R.; Jha, L.A.; Bhattacharya, K.; Mehndiratta, S.; Gupta, G.; Singh, S.K.; et al. Cellular senescence in lung cancer: Molecular mechanisms and therapeutic interventions. Ageing Res. Rev. 2024, 97, 102315. [Google Scholar] [CrossRef] [PubMed]
- Bade, B.C.; Dela Cruz, C.S. Lung cancer 2020: Epidemiology, etiology, and prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr.; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet 2017, 389, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gao, W.K.; Wang, X.D.; Zhang, L.H.; Yu, H.Y.; Wu, H.H. Phytochemical and pharmacological studies on Solanum lyratum: A review. Nat. Prod. Bioprospect 2022, 12, 39. [Google Scholar] [CrossRef]
- Kupchan, S.M.; Barboutis, S.J.; Knox, J.R.; Cam, C.A. Beta-solamarine: Tumor inhibitor isolated from Solanum dulcamara. Science 1965, 150, 1827–1828. [Google Scholar] [CrossRef]
- Lin, H.; Yue, Z.; Sun, C.X.; Wang, J.N. Preliminary screening on effective part of tumor inhibitory effect from solanum lyratum. Chin. J. Trad. Chin. Med. Pharm. 2016, 31, 3770–3774. [Google Scholar]
- Han, L.; Wang, J.N.; Cao, X.Q.; Sun, C.X.; Du, X. An-te-xiao capsule inhibits tumor growth in non-small cell lung cancer by targeting angiogenesis. Biomed. Pharmacother. 2018, 108, 941–951. [Google Scholar] [CrossRef]
- Han, L.; Wang, J.N.; Sun, C.X.; Cao, X.Q.; Du, X. Anti-angiogenic activities of glycoalkaloids isolated from Solanum lyratum in tumor-derived vascular endothelial cells. Phytochem. Lett. 2019, 29, 212–219. [Google Scholar] [CrossRef]
- Han, L. Inhibition of Alkaloids from Sloanum Lyratum on Non-Small Cell Lung Cancer and Antitumor Mechanism of Anti-Angiogenesis by Agglutinating Cholesterol in the Lipid Raft. Ph.D. Thesis, China Academy of Chinese Medical Sciences, Beijing, China, 2017. [Google Scholar]
- Du, X.; Wang, J.N.; Sun, J.; Wu, T.; Cao, X.Q.; Liu, L.Y.; Yang, Y.K. Steroidal glycoalkaloids from Solanum lyratum inhibit the pro-angiogenic activity of A549-derived exosomes. Fitoterapia 2020, 141, 104481. [Google Scholar] [CrossRef]
- Yang, C.; Robbins, P.D. The roles of tumor-derived exosomes in cancer pathogenesis. Clin. Dev. Immunol. 2011, 2011, 842849. [Google Scholar] [CrossRef]
- Liu, J.; Ren, L.; Li, S.; Li, W.; Zheng, X.; Yang, Y.; Fu, W.; Yi, J.; Wang, J.; Du, G. The biology, function, and applications of exosomes in cancer. Acta Pharm. Sin. B 2021, 11, 2783–2797. [Google Scholar] [CrossRef] [PubMed]
- Pollet, H.; Conrard, L.; Cloos, A.S.; Tyteca, D. Plasma membrane lipid domains as platforms for vesicle biogenesis and shedding. Biomolecules 2018, 8, 94. [Google Scholar] [CrossRef]
- Sapon, K.; Manka, R.; Janas, T.; Janas, T. The role of lipid rafts in vesicle formation. J. Cell Sci. 2023, 136, jcs260887. [Google Scholar] [CrossRef]
- Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-Moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef]
- Skotland, T.; Hessvik, N.P.; Sandvig, K.; Llorente, A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J. Lipid Res. 2019, 60, 9–18. [Google Scholar] [CrossRef]
- Kristensen, K.K.; Midtgaard, S.R.; Mysling, S.; Kovrov, O.; Hansen, L.B.; Skar-Gislinge, N.; Beigneux, A.P.; Kragelund, B.B.; Olivecrona, G.; Young, S.G.; et al. A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase. Proc. Natl. Acad. Sci. USA 2018, 115, E6020–E6029. [Google Scholar] [CrossRef]
- Sirwi, A.; Hussain, M.M. Lipid transfer proteins in the assembly of apoB-containing lipoproteins. J. Lipid Res. 2018, 59, 1094–1102. [Google Scholar] [CrossRef]
- Han, B.; Sun, C.; Yang, R.; Li, X.; Kang, J.; Cai, J.; Zhou, S.; Wang, G.; Wang, J.; Zhang, J.; et al. Dihydrotanshinone I inhibits ovarian tumor growth by suppressing ITGB1/FAK-mediated extracellular matrix signaling. Phytomedicine 2025, 145, 157023. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Qu, Y.; Liu, L.; Zhang, X.; He, Y.; Wang, C.; Guo, Y.; Yuan, L.; Ma, Z.; Bai, H.; et al. Comparative proteomic profiling of plasma exosomes in lung cancer cases of liver and brain metastasis. Cell Biosci. 2023, 13, 180. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Liu, H.; Luo, S.; Clarke, J.; Glass, C.; Su, L.; Lin, L.; Christiani, D.C.; Wei, Q. APOB genotypes and CDH13 haplotypes in the cholesterol-related pathway genes predict non-small cell lung cancer survival. Cancer Epidemiol. Biomarkers Prev. 2020, 29, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Caswell, D.R.; Gui, P.; Mayekar, M.K.; Law, E.K.; Pich, O.; Bailey, C.; Boumelha, J.; Kerr, D.L.; Blakely, C.M.; Manabe, T.; et al. The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance. Nat. Genet. 2024, 56, 60–73. [Google Scholar] [CrossRef]
- Riley, N.M.; Wen, R.M.; Bertozzi, C.R.; Brooks, J.D.; Pitteri, S.J. Measuring the multifaceted roles of mucin-domain glycoproteins in cancer. Adv. Cancer Res. 2023, 157, 83–121. [Google Scholar]
- Yang, J.; Xu, T.; Gomez, D.R.; Jeter, M.; Levy, L.B.; Song, Y.; Hahn, S.; Liao, Z.; Yuan, X. The pulmonary fibrosis associated MUC5B promoter polymorphism is prognostic of the overall survival in patients with non-small cell lung cancer (NSCLC) receiving definitive radiotherapy. Transl. Oncol. 2017, 10, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Wakata, K.; Tsuchiya, T.; Tomoshige, K.; Takagi, K.; Yamasaki, N.; Matsumoto, K.; Miyazaki, T.; Nanashima, A.; Whitsett, J.A.; Maeda, Y.; et al. A favourable prognostic marker for EGFR mutant non-small cell lung cancer: Immunohistochemical analysis of MUC5B. BMJ Open 2015, 5, e008366. [Google Scholar] [CrossRef]
- Oltion, K.; Carelli, J.D.; Yang, T.; See, S.K.; Wang, H.Y.; Kampmann, M.; Taunton, J. An E3 ligase network engages GCN1 to promote the degradation of translation factors on stalled ribosomes. Cell 2023, 186, 346–362.e17. [Google Scholar] [CrossRef] [PubMed]
- Furnish, M.; Boulton, D.P.; Genther, V.; Grofova, D.; Ellinwood, M.L.; Romero, L.; Lucia, M.S.; Cramer, S.D.; Caino, M.C. MIRO2 regulates prostate cancer cell growth via GCN1-dependent stress signaling. Mol. Cancer Res. 2022, 20, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, C.; Motegi, S.I.; Ohira, A.; Yamaguchi, S.; Sekiguchi, A.; Yasuda, M.; Nakamura, H.; Makiguchi, T.; Yokoo, S.; Hoshina, D.; et al. The significance of tumor cells-derived MFG-E8 in tumor growth of angiosarcoma. J. Dermatol. Sci. 2019, 96, 18–25. [Google Scholar] [CrossRef]
- Wang, J.; Guo, M.; Zhou, X.; Ding, Z.; Chen, X.; Jiao, Y.; Ying, W.; Wu, S.; Zhang, X.; Geng, N. Angiogenesis related gene expression significantly associated with the prognostic role of an urothelial bladder carcinoma. Transl. Androl. Urol. 2020, 9, 2200–2210. [Google Scholar] [CrossRef]
- Ko, D.S.; Kim, S.H.; Park, J.Y.; Lee, G.; Kim, H.J.; Kim, G.; Chi, K.Y.; Kim, I.; Lee, J.; Won, K.Y.; et al. Milk fat globule-EGF factor 8 contributes to progression of hepatocellular carcinoma. Cancers 2020, 12, 403. [Google Scholar] [CrossRef]
- Xiao, S.; Nai-Dong, W.; Jin-Xiang, Y.; Long, T.; Xiu-Rong, L.; Hong, G.; Jie-Cheng, Y.; Fei, Z. ANGPTL4 regulate glutamine metabolism and fatty acid oxidation in nonsmall cell lung cancer cells. J. Cell Mol. Med. 2022, 26, 1876–1885. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Zeng, L.; Zhao, X.; Chen, Q.; Pan, Y.; Bai, Y.; Shao, C.; Zhang, J. Exosomal protein angiopoietin-like 4 mediated radioresistance of lung cancer by inhibiting ferroptosis under hypoxic microenvironment. Br. J. Cancer 2022, 127, 1760–1772. [Google Scholar] [CrossRef]
- Peng, C.H.; Cheng, J.J.; Yu, M.H.; Chung, D.J.; Huang, C.N.; Wang, C.J. Solanum nigrum polyphenols reduce body weight and body fat by affecting adipocyte and lipid metabolism. Food Funct. 2020, 11, 483–492. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Z.; Wang, X.; Li, M.; Zhou, B.; Zhang, X. Solanum nigrum L. berries extract ameliorated the alcoholic liver injury by regulating gut microbiota, lipid metabolism, inflammation, and oxidative stress. Food Res. Int. 2024, 188, 114489. [Google Scholar] [CrossRef] [PubMed]
- Borcherding, N.; Brestoff, J.R. The power and potential of mitochondria transfer. Nature 2023, 623, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Vasan, K.; Werner, M.; Chandel, N.S. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 2020, 32, 341–352. [Google Scholar] [CrossRef]
- Hoeijmakers, J.H. Genome maintenance mechanisms for preventing cancer. Nature 2001, 411, 366–374. [Google Scholar] [CrossRef]
- Simic, P.; Williams, E.O.; Bell, E.L.; Gong, J.J.; Bonkowski, M.; Guarente, L. SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis. Cell Rep. 2013, 3, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Shi, Y.; Luo, Q. Advances of SIRT4 in cancer metabolism and therapy. Pediatr. Discov. 2023, 1, e17. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, J.; Zhu, S.; Han, B.; Liu, B. Context-dependent role of SIRT3 in cancer. Trends Pharmacol. Sci. 2024, 45, 173–190. [Google Scholar] [CrossRef]
- Meng, F.; Qian, M.; Peng, B.; Peng, L.; Wang, X.; Zheng, K.; Liu, Z.; Tang, X.; Zhang, S.; Sun, S.; et al. Synergy between SIRT1 and SIRT6 helps recognize DNA breaks and potentiates the DNA damage response and repair in humans and mice. Elife 2020, 9, e55828. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, J.; Zhao, J.; Liu, B.; Tang, W.; Liu, Y.; Huang, W.; Weinman, S.A.; Li, Z. CYP2E1-dependent upregulation of SIRT7 is response to alcohol mediated metastasis in hepatocellular carcinoma. Cancer Gene Ther. 2022, 29, 1961–1974. [Google Scholar] [CrossRef]
- Zang, Y.; Ran, X.; Yuan, J.; Wu, H.; Wang, Y.; Li, H.; Teng, H.; Sun, Z. Genomic hallmarks and therapeutic targets of ribosome biogenesis in cancer. Brief. Bioinform. 2024, 25, bbae023. [Google Scholar] [CrossRef]
- Qin, K.; Yu, S.; Liu, Y.; Guo, R.; Guo, S.; Fei, J.; Wang, Y.; Jia, K.; Xu, Z.; Chen, H.; et al. USP36 stabilizes nucleolar Snail1 to promote ribosome biogenesis and cancer cell survival upon ribotoxic stress. Nat. Commun. 2023, 14, 6473. [Google Scholar] [CrossRef]
- Dopler, A.; Alkan, F.; Malka, Y.; van der Kammen, R.; Hoefakker, K.; Taranto, D.; Kocabay, N.; Mimpen, I.; Ramirez, C.; Malzer, E.; et al. P-stalk ribosomes act as master regulators of cytokine-mediated processes. Cell 2024, 187, 6981–6993.e23. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Beutler, B.; Zhang, D. Emerging roles of spliceosome in cancer and immunity. Protein Cell 2022, 13, 559–579. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Hu, Q.; Liu, X.; Ji, Y.; Chao, H.P.; Liu, Y.; Tracz, A.; Kirk, J.; Buonamici, S.; Zhu, P.; et al. Intron retention is a hallmark and spliceosome represents a therapeutic vulnerability in aggressive prostate cancer. Nat. Commun. 2020, 11, 2089. [Google Scholar] [CrossRef]
- Bowling, E.A.; Wang, J.H.; Gong, F.; Wu, W.; Neill, N.J.; Kim, I.S.; Tyagi, S.; Orellana, M.; Kurley, S.J.; Dominguez-Vidaña, R.; et al. Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer. Cell 2021, 184, 384–403.e21. [Google Scholar] [CrossRef] [PubMed]
Groups | Particle Number | Size ( ± SD, nm) | Peak Size (nm) | Concentration (/mL) |
---|---|---|---|---|
Control exosome | 3076 | 78.25 ± 16.35 | 74.25 | 8.78 × 108 |
SA1 exosome | 6115 | 75.90 ± 14.14 | 72.75 | 3.34 × 109 |
Groups | Tumor Inhibition Rates (%) |
---|---|
Model | / |
Control exosome | 15.94 ± 8.85 ** |
SA1 exosome | 70.48 ± 5.41 ** |
Taxol | 65.21 ± 6.28 ** |
ID | Entry Name | Ratio (SA1/A549) | LogRatio | p Value | Trend |
---|---|---|---|---|---|
P04114 | APOB_HUMAN | 2925.5951 | 11.5145 | 0.0014 | up |
P04808 | REL1_HUMAN | 892.2453 | 9.8013 | 0.0000 | up |
O43572 | AKA10_HUMAN | 521.9883 | 9.0279 | 0.0001 | up |
Q9HBL7 | PLRKT_HUMAN | 486.5595 | 8.9265 | 0.0019 | up |
P23229 | ITA6_HUMAN | 465.4387 | 8.8624 | 0.0020 | up |
P09012 | SNRPA_HUMAN | 0.0015 | −9.3498 | 0.0001 | down |
P16403 | H12_HUMAN | 0.0015 | −9.3786 | 0.0002 | down |
P37837 | TALDO_HUMAN | 0.0013 | −9.5557 | 0.0001 | down |
P27695 | APEX1_HUMAN | 0.0012 | −9.6502 | 0.0092 | down |
Q9HC84 | MUC5B_HUMAN | 0.0012 | −9.7011 | 0.0011 | down |
ID | Entry Name | Ratio (SA1/A549) | LogRatio | p Value | Trend |
---|---|---|---|---|---|
Q92616 | GCN1_HUMAN | 2409.1026 | 11.2343 | 0.0000 | up |
P41252 | SYIC_HUMAN | 2112.1537 | 11.0445 | 0.0003 | up |
P14868 | SYDC_HUMAN | 1431.1157 | 10.4829 | 0.0000 | up |
P33993 | MCM7_HUMAN | 1188.8187 | 10.2153 | 0.0000 | up |
Q13085 | ACACA_HUMAN | 1094.3648 | 10.0959 | 0.0003 | up |
P00450 | CERU_HUMAN | 0.0001 | −13.5016 | 0.0383 | down |
P17936 | IBP3_HUMAN | 0.0001 | −13.5388 | 0.0139 | down |
Q13103 | SPP24_HUMAN | 0.0001 | −13.8561 | 0.0109 | down |
Q9BY76 | ANGL4_HUMAN | 0.0001 | −14.1495 | 0.0012 | down |
Q08431 | MFGM_HUMAN | 0.0000 | −14.8569 | 0.0030 | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, P.; Liu, L.; Chen, L.; Han, B.; Du, X. Solanum lyratum-Derived Solalyraine A1 Suppresses Non-Small Cell Lung Cancer Through Regulation of Exosome Secretion and Related Protein Biomarkers. Pharmaceuticals 2025, 18, 1280. https://doi.org/10.3390/ph18091280
Jiang P, Liu L, Chen L, Han B, Du X. Solanum lyratum-Derived Solalyraine A1 Suppresses Non-Small Cell Lung Cancer Through Regulation of Exosome Secretion and Related Protein Biomarkers. Pharmaceuticals. 2025; 18(9):1280. https://doi.org/10.3390/ph18091280
Chicago/Turabian StyleJiang, Pu, Liangyu Liu, Lixian Chen, Bing Han, and Xiao Du. 2025. "Solanum lyratum-Derived Solalyraine A1 Suppresses Non-Small Cell Lung Cancer Through Regulation of Exosome Secretion and Related Protein Biomarkers" Pharmaceuticals 18, no. 9: 1280. https://doi.org/10.3390/ph18091280
APA StyleJiang, P., Liu, L., Chen, L., Han, B., & Du, X. (2025). Solanum lyratum-Derived Solalyraine A1 Suppresses Non-Small Cell Lung Cancer Through Regulation of Exosome Secretion and Related Protein Biomarkers. Pharmaceuticals, 18(9), 1280. https://doi.org/10.3390/ph18091280