Acetyl-CoA Carboxylase Inhibitors for Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Protocol Registration
2.2. Eligibility Criteria
2.3. Search Strategy
2.4. Study Selection and Screening
2.5. Data Extraction
2.6. Risk of Bias Assessment
2.7. Study Variables
2.8. Statistical Analysis
3. Results
3.1. Overview of Study Selection
3.2. Characteristics and Outcomes of Included Studies
Trial Phase Author (Year) | Study Location | Characteristics of Population | Regimen, Dose | Sample Size | Age (Year) | Female (%) | Weight (Kg)/ BMI | T2DM (%) | Fibrosis | AST/ALT (U/L) | ALP/GGT (U/L) | TG (mg/dL) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intervention | Control | Intervention | Control | |||||||||||||
Pre | Post | Pre | Post | |||||||||||||
Phase 2 Al Khouri et al. (2022) [24] | USA | Adults with NAFLD | Semaglutide 0.24–24 mg SC (escalated dose over 16 weeks) once weekly + Firsocostat 20 mg oral, once daily | Semaglutide 0.24–24 mg SC (escalated dose over 16 weeks), once weekly | 22 | 20 | 21 | 18 | 53.5 ± 11.5 | 69.76 | 97 ± 25.1/ 33.7 ± 5.3 | 55.8 | F2–F3 or TE ≥ 7 kPA | AST: 43 (26–51) vs 50 (36–61) ALT: 45 (29–76) vs. 60 (48–98) | ALP: 82 (64–105) vs. 78 (62–92) GGT: 38 (26–94) vs. 35 (30–56) | 160 (116–212) vs. 167 (104–230) |
Phase 2a Calle et al. (2021 a) [22] | Australia Canada Israel Poland Taiwan USA | Adults with NAFLD and metabolic syndrome a | Clesacostat 10 mg, oral, once daily | Placebo | 62 | 55 | 61 | 54 | 53.3 ± 11.7 | 57.5 | N/A/ 33.9 ± 5.3 | 40.9 | N/A | AST: 39.9 ± 23.1 vs 42.2 ± 27.6 ALT: 59.0 ± 30.6 vs. 58.9 ± 48.6 | ALP: 82.0 ± 25.5 vs. 76.8 ± 25.3 GGT: 58.2 ± 36.6 vs. 56.4 ± 42.5 | 172.2 ± 83.3 vs. 178.2 ± 84.9 |
Clesacostat 25 mg, oral, once daily | 58 | 48 | N/A | AST: 41.9 ± 18.9 vs 42.2 ± 27.6 ALT: 57.8 ± 29.8 vs. 58.9 ± 48.6 | ALP: 77.7 ± 22.9 vs. 76.8 ± 25.3 GGT: 50.0 ± 35.6 vs. 56.4 ± 42.5 | 165.4 ± 78.7 vs. 178.2 ± 84.9 | ||||||||||
Phase 2a Calle et al. (2021 b) [22] | USA | Adults with NAFLD and metabolic syndrome a | Clesacostat 15mg, oral, twice daily | Placebo | 29 | 22 | 14 | 13 | 54.6 ± 11.0 | 44.6 | N/A/ 35.7 ± 5.1 | N/A | N/A | AST: 24.0 ± 8.1 vs 25.9 ± 9.5 ALT: 31.9 ± 15.7 vs. 35.0 ± 23.0 | ALP: 85.8 ± 32.3 vs. 91.9 ± 37.4 GGT: 32.9 ± 17.0 vs. 38.0 ± 25.0 | 214.2 ± 134.9 vs. 164.2 ± 82.1 |
Clesacostat 15mg + Ervogastat 300mg, oral, twice daily | 28 | 26 | N/A | N/A | AST: 23.5 ± 7.4 vs 25.9 ± 9.5 ALT: 32.8 ± 16.1 vs. 35.0 ± 23.0 | ALP: 84.0 ± 18.3 vs. 91.9 ± 37.4 GGT: 34.6 ± 19.3 vs. 38.0 ± 25.0 | 175.3 ± 66.8 vs. 164.2 ± 82.1 | |||||||||
Clesacostat 15mg + Ervogastat 300mg, oral, twice daily | Ervogastat 300mg oral, twice daily | 28 | 26 | 28 | 24 | 53.5 ± 10.4 | 46.4 | N/A/ 36.6 ± 4.7 | N/A | N/A | AST: 23.5 ± 7.4 vs 26.0 ± 8.5 ALT: 32.8 ± 16.1 vs. 36.0 ± 18.5 | ALP: 84.0 ± 18.3 vs. 82.4 ± 15.8 GGT: 34.6 ± 19.3 vs. 37.2 ± 17.7 | 175.3 ± 66.8 vs. 173.3 ± 90.5 | |||
Phase 2a Dandan et al. (2023) Lawitz et al. (2023) [25,26] | USA | Adults with NAFLD and metabolic syndromea | Firsocostat 20 mg, oral, once daily | Selonsertib 18 mg, oral, once daily | 10 | 10 | 10 | 10 | 54.7 ± 9.7 | 76.7 | N/A | N/A | ≥F2 VCTE ≥ 9.9 kPa or MRE ≥ 2.88 kPa | N/A | N/A | N/A |
Firsocostat 20 mg, oral, once daily | Cilofexor 30 mg, oral, once daily | 10 | 10 | 10 | 10 | |||||||||||
Selonsertib 18 mg + Firsocostat 20 mg, oral, once daily | Selonsertib 18 mg, oral, once daily | 20 | 20 | 10 | 10 | 52.5 ± 11.0 | 68.3 | N/A | N/A | N/A | N/A | N/A | ||||
Cilofexor 30 mg + Firsocostat 20 mg, oral, once daily | Cilofexor 30 mg, oral, once daily | 20 | 19 | 10 | 10 | |||||||||||
Phase 2b Loomba et al. (2021) [21] | USA Canada Australia New Zealand Honkong | Adults with NAFLD | Firsocostat 20 mg, oral, once daily | Placebo | 40 | 33 | 39 | 38 | 61.4 ± 8.5 | 65.8 | 93.4 ± 22.4/34.5 ± 6.7 | 72.2 | F3–F4 or VCTE ≥ 14 kPA and ELF ≥ 9.8 | AST:41 (33, 59) vs. 41 (27, 62) ALT: 47 (32, 62) vs. 44 (29, 61) | ALP: 73 (64, 99) vs. 85 (73, 108) GGT: 55 (45, 91) vs. 77 (54, 123) | 137 (96, 190) vs. 132 (100, 157) |
Cilofexor 30 mg + Firsocostat 20 mg, oral, once daily | Cilofexor 30 mg, oral, once daily | 78 | 69 | 40 | 34 | 59.6 ± 9.2 | 65.3 | 94.2 ± 25.3/34.0 ± 7.2 | 71.2 | AST:46 (29, 56) vs. 49 (35, 62) ALT: 42 (28, 65) vs. 50 (37, 66) | ALP: 86 (64, 102) vs. 95 (76, 127) GGT: 55 (45, 91) vs. 94 (54, 170) | 147 (117,167) vs. 136 (97, 173) | ||||
Phase 2 Loomba et al. (2018) [23] | USA | Adults with NAFLD | Firsocostat 20 mg, oral, once daily | Placebo | 49 | 46 | 26 | 26 | 55.4 ± 12.0 | 69.3 | 94.2 ± 21.0/ 31.9 ± 5.5 | 62.7 | F1–F3 MRE ≥ 2.5 kPA |
Author (Year) | Intervention (Regimen, Dose) | Control (Regimen, Dose) | Duration (Weeks) | Glucose Metabolism | Liver Biochemistry | Liver Fat MRI-PDFF Change (%) | Fibrosis and Other Markers of Liver Injury |
---|---|---|---|---|---|---|---|
Proportion of ≥ 30% Reduction (%) | |||||||
Al Khouri et al. (2022) [24] | Semaglutide 0.24–24 mg (escalated dose over 16 weeks), SC, once weekly + Firsocostat 20 mg, oral, once daily | Semaglutide 0.24–24 mg (escalated dose over 16 weeks), SC, once weekly | 24 | FPG, mg/dL: LSM (95% CI) −32 (−40, −23) vs. −31 (−40, −23), p > 0.05 fasting insulin, μIU/mL: LSM (95% CI) −8.2 (−13.9, −2.5) vs. −8.5 (−14.6, −2.5), p > 0.05 HbA1c, %: LSM (95% CI) −1.2 (−1.4, −1.0) vs. −1.0 (−1.2, −0.7), p > 0.05 HOMA-IR: LSM (95% CI) 3.8 (−5.5, −2.1) vs. −3.5 (−5.3, −1.7), p > 0.05 | AST, U/L: LSM (95% CI) −26 (−35, −18) vs. −11 (−2, −20), p < 0.05 ALT, U/L: LSM (95% CI) −37 (−28, −45) vs. −13 (−3, −24), p < 0.05 | LSM (95% CI) −11.6 (−9.3, −13.9) vs. −8.6 (−6.3, −10.9) a, p < 0.0353 93.3 vs. 80.0 | MRE, kPA: LSM (95% CI) −0.20 (−0.47, 0.06) vs. −0.13 (−0.40, 0.14), p > 0.05 ELF: LSM (95% CI) −0.59 (−0.87, −0.30) vs. −0.56 (−0.86, −0.27), p > 0.05 FibroSure/FibroTest: LSM (95% CI) −0.01 (−0.05, 0.03) vs. 0 (−0.04, 0.04), p > 0.05 CK18M30, U/L: LSM (95% CI) −312 (−381, −243) vs. −179 (−252, −107), p < 0.05 |
Calle et al. (2021 a) [22] | Clesacostat 25 mg, oral, once daily | Placebo | 16 | HbA1c, %: LSM (80% CI) −0.2 (−0.27, −0.14) vs. 0.03 (−0.03, 0.10) a T2DM HbA1c, %: LSM (80% CI) −0.2 (−0.33, −0.08) vs. 0.05 (−0.07, 0.18) a | AST, %: LSM (80% CI) −15.6 (−21.5, −9.3) vs. −6.6 (−12.9, 0.1) b ALT, %: LSM (80% CI) −31.3 (−36.6, −25.5) vs. −8.5 (−15.2, −1.2) b ALP, %: LSM (80% CI) 15.5 (11.9, 19.1) vs. −0.8 (−3.8, 2.2) b GGT, %: LSM (80% CI) 21.5 (13.0, 30.6) vs. −7.7 (−13.9, −1.2) b total bilirubin: LSM (80% CI) −16.9 (−23.4, −10.0) vs. −13.7 (−20.3, −6.5) b | LSM (80% CI) −55.9 (−59.0, −52.4) vs. −7.2 (−13.9, 0.0) b, p < 0.001 85.0 vs. 5.0 | VCTE, %: LSM (80% CI) −14.6 (−20.8, −8.0) b (CK18M30, %: LSM (80% CI) −40 vs. −8 b CK18M65, %: LSM (80% CI) −32 vs. −6 b |
Clesacostat 10 mg, oral, once daily | HbA1c, %: LSM (80% CI) −0.11 (−0.17, −0.05) vs. 0.03 (−0.03, 0.10) a T2DM HbA1c, %: LSM (80% CI) −0.15 (−0.27, −0.03) vs. 0.05 (−0.07, 0.18) a | AST, %: LSM (80% CI) −16.8 (−22.2, −11.0) vs. −6.6 (−12.9, 0.1) b ALT, %: LSM (80% CI) −27.7 (−32.9, −22.2) vs. −8.5 (−15.2, −1.2) b ALP, %: LSM (80% CI) 6.9 (3.9, 10.1) vs. −0.8 (−3.8, 2.2) b GGT, %: LSM (80% CI) 4.9 (−1.9, 12.2) vs. −7.7 (−13.9, −1.2) b total bilirubin, %: LSM (80% CI) 2.7 (−4.7, 10.6) vs. −13.7 (−20.3, −6.5) b | LSM (80% CI) −49.9 (−53.3, −46.2) vs. −7.2 (−13.9, 0.0) b, p < 0.001 74.0 vs. 5.0 | VCTE, %: LSM (80% CI) −14.4 (−20.2, −8.3) b CK18M30, %: LSM (80% CI) −37 vs. −8 b CK18M65, %: LSM (80% CI) −33 vs. −6 b | |||
Calle et al. (2021 b) [22] | Clesacostat 15 mg + Ervogastat 300 mg, oral, twice daily | Ervogastat 300 mg, oral, twice daily | 6 | N/A | AST, %: LSM (90% CI) −3.9 (−10.3, 3.0) vs. 2.2 (−4.7, 9.6) b ALT, %: LSM (90% CI) −7.9 (−13.8, −1.6) vs. −4.2 (−10.3, 2.4) b ALP, %: LSM (90% CI) −3.9 (−10.3, 3.0) vs. 2.2 (−4.7, 9.6) b GGT, %: LSM (90% CI) 10.2 (2.7, 18.2) vs. −6.3 (−12.7, 0.5) b | LSM (90% CI) −40.1 (−46.6, −32.9) vs. −30.1 (−38.0, −21.3) b 60.0 vs. 45.0 | N/A |
Clesacostat 15 mg, oral, twice daily | Placebo | N/A | AST, %: LSM (90% CI) −0.0 (−6.7, 7.2) vs. 5.1 (−4.4, 15.7) b ALT, %: LSM (90% CI) −12.4 (−18.2, −6.2) vs. −3.0 (−11.8, 6.6) b ALP, %: LSM (90% CI) 11.2 (7.6, 14.9) vs. 2.9 (−1.8, 7.9) b GGT, %: LSM (90% CI) 22.6 (14.1, 31.8) vs. 0.0 (−9.8, 10.9) b | LSM (90% CI) −40.0 (−47.0, −32.1) vs. 8.1 (−8.6, 27.9) b p < 0.0001 80.0 vs. 0.0 | N/A | ||
Clesacostat 15 mg + Ervogastat 300 mg, oral, twice daily | Placebo | N/A | AST, %: LSM (90% CI) −3.9 (−10.3, 3.0) vs. 5.1 (−4.4, 15.7) b ALT, %: LSM (90% CI) −7.9 (−13.8, −1.6) vs. −3.0 (−11.8, 6.6) b ALP, %: LSM (90% CI) −0.7 (−3.9, 2.5) vs. 2.9 (−1.8, 7.9) b GGT, %: LSM (90% CI) 10.2 (2.7, 18.2) vs. 0.0 (−9.8, 10.9) b | LSM (90% CI) −40.1 (−46.6, −32.9) vs. 8.1 (-8.6, 27.9) b p < 0.0001 60.0 vs. 0.0 | N/A | ||
Dandan et al. (2023) Lawitz et al. (2023) [25,26] | Firsocostat 20 mg, oral, once daily | Selonsertib 18 mg, oral, once daily | 12 | N/A | N/A | N/A | N/A |
Firsocostat 20 mg, oral, once daily | Cilofexor 30 mg, oral, once daily | ||||||
Selonsertib 18 mg + Firsocostat 20 mg, oral, once daily | Selonsertib 18 mg, oral, once daily | ||||||
Cilofexor 30 mg + Firsocostat 20 mg, oral, once daily | Cilofexor 30 mg, oral, once daily | ||||||
Loomba et al. (2021) [21] | Firsocostat 20 mg, oral, once daily | Placebo | 48 | FSG, mg/dL: LSM (95% CI) −1 (−13, 11) vs. 8 (−3, 20), p = 0.27 fasting insulin, μIU/mL: LSM (95% CI) −1.3 (−9.77, 7.16) vs. 5.89 (−2.26, 14.04), p = 0.22 HbA1c, %: LSM (95% CI) 0.1 (−0.2, 0.3) vs. 0.1 (−0.2, 0.3), p = 0.92 HOMA-IR: LSM (95% CI) −0.81(−4.12, 2.50) vs. 2.01(−1.19, 5.20), p = 0.22 | AST, U/L: LSM (95% CI) −12 (−19, −5) vs. −4 (−10, 3), p = 0.074 ALT, U/L: LSM (95% CI) −16 (−25, −7) vs. −7 (−15, 1), p = 0.12 ALP, U/L: LSM (95% CI) −3 (−10, 16) vs. 0 (−12, 13), p = 0.78 GGT, U/L: LSM (95% CI) −20 (−43, 4) vs. −17 (−40, 5), p = 0.88 total bilirubin, mg/dL: LSM (95% CI) 0.0 (0.0, 0.1) vs. 0.0 (0.0, 0.1), p = 0.80 total bile acids, μmol/L: LSM (95% CI) −0.9 (−3.7, 1.8) vs. 1.9 (−0.7, 4.5), p = 0.14 | LSM (95% CI) −2.96 (−5.67, −0.24) vs. 0.96 (−1.46, 3.39) a; p = 0.033 N/A | MRE, kPA: LSM (95% CI) −0.79 (−1.84, 0.27) vs. 0.43 (−0.55, 1.40), p = 0.092 VCTE, kPA: LSM (95% CI) −6.3 (−9.6, −3.0) vs. −1.2 (−4.1, 1.8), p = 0.021 ELF: LSM (95% CI) −0.1 (−0.4, 0.1) vs. 0.3 (0.1, 0.6), p = 0.010 CK18 M30, U/L: LSM (95% CI) −105 (−203, −7) vs. −0 (−93, 93), p = 0.12 CK18 M65, U/L: LSM (95% CI) −149 (−351, 53) vs. −93 (−285, 100), p = 0.69 |
Cilofexor 30 mg + Firsocostat 20 mg, oral, once daily | Placebo | 48 | FSG, mg/dL: LSM (95% CI) −1 (−7, 10) vs. 8 (−3, 20), p = 0.33 fasting insulin, μIU/mL: LSM (95% CI) −5.83 (−11.74, 0.08) vs. 5.89 (−2.26, 14.04), p = 0.02 HbA1c, %: LSM (95% CI) 0.0 (−0.1, 0.2) vs. 0.1 (−0.2, 0.3), p = 0.77 HOMA-IR: LSM (95% CI) −1.21 (−3.57, 1.15) vs. 2.01 (−1.19, 5.20), p = 0.11 | AST, U/L: LSM (95% CI) 12 (−17, −7) vs. −4 (−10, 3), p = 0.050 ALT, U/L: LSM (95% CI) −18 (−24, −12) vs. −7 (−15, 1), p = 0.033 ALP, U/L: LSM (95% CI) 19 (10, 29) vs. 0 (−12, 13), p = 0.017 GGT, U/L: LSM (95% CI) −19 (−36, −2) vs. −17 (−40, 5), p = 0.91 total bilirubin, mg/dL: LSM (95% CI) −0.1 (−0.1, 0.0) vs. 0.0 (0.0, 0.1), p= 0.010 total bile acids, μmol/L: LSM (95% CI) −2.7 (−4.6, −0.8) vs. 0.9 (−3.7, 1.8) vs. 1.9 (−0.7, 4.5), p = 0.005 | LSM (95% CI) −4.00 (−6.01, −1.98) vs. 0.96 (−1.46, 3.39) a; p = 0.002 N/A | MRE, kPA: LSM (95% CI) 0.03 (−0.77, 0.82) vs. 0.43 (−0.55, 1.40), p = 0.52 VCTE, kPA: LSM (95% CI) −4.2 (−6.5, −1.9) vs. −1.2 (−4.1, 1.8), p = 0.10 ELF: LSM (95% CI) −0.0 (−0.2, 0.2) vs. 0.3 (0.1, 0.6), p = 0.024 CK18 M30, U/L: LSM (95% CI) −158 (−226, −90) vs. −0 (−93, 93), p = 0.006 CK18 M65, U/L: LSM (95% CI) −324 (−464, −184) vs. −93 (−285, 100), p = 0.053 | |
Cilofexor 30 mg + Firsocostat 20 mg, oral, once daily | Cilofexor 30 mg, oral, once daily | 48 | FSG, mg/dL: LSM (95% CI) −1 (−7, 10) vs. 2 (−9, 14) fasting insulin, μIU/mL: LSM (95% CI) −5.83 (−11.74, 0.08) vs. −0.50 (−8.62, 7.61) HbA1c, %: LSM (95% CI) 0.0 (−0.1, 0.2) vs. 0.1 (−0.2, 0.4) HOMA-IR: LSM (95% CI) −1.21 (−3.57, 1.15) vs. 1.06 (−2.12, 4.24) | AST, U/L: LSM (95% CI) 12 (−17, −7) vs. −4 (−11, 3) ALT, U/L: LSM (95% CI) −18 (−24, −12) vs. −12 (−21, −4) ALP, U/L: LSM (95% CI) 19 (10, 29) vs. 1 (−12, 14) GGT, U/L: LSM (95% CI) −19 (−36, −2) vs. −37 (−60, −14) total bilirubin, mg/dL: LSM (95% CI) −0.1 (−0.1, 0.0) vs. 0.0 (−0.1, 0.0) total bile acids, μmol/L: LSM (95% CI) −2.7 (−4.6, −0.8) vs. −0.0 (−2.7, 2.7) | LSM (95% CI) −4.00 (−6.01, −1.98) vs. −3.04 (−6.43, 0.36) a N/A | MRE, kPA: LSM (95% CI) 0.03 (−0.77, 0.82) vs. 0.08 (−1.37, 1.53) VCTE, kPA: LSM (95% CI) −4.2 (−6.5, −1.9) vs. −4.3 (−7.5, −1.0) ELF: LSM (95% CI) −0.0 (−0.2, 0.2) vs. 0.2 (−0.1, 0.4) CK18 M30, U/L: LSM (95% CI) −158 (−226, −90) vs. 26 (−71, 124) CK18 M65, U/L: LSM (95% CI) −324 (−464, −184) vs. −23 (−226, 180) | |
Loomba et al. (2018) [23] | Firsocostat 20 mg, oral, once daily | Placebo | 12 | Glucose, mg/dL: LSM (95% CI) 3.3 (−13.8, 20.4), p = 0.70 c Insulin, μIU/mL: LSM (95% CI) 2.79 (−16.6, 22.2), p = 0.78 c HbA1c, %: LSM (95% CI) 0.11 (−0.23, 0.44), p = 0.53 c | AST, %: Median −5 vs. −3 b, p = 0.60 ALT, %: Median −20 vs. −7 b, p = 0.18 ALP, %: Median 9 vs. −5 b, p < 0.001 GGT, %: Median −4 vs. −8 b, p = 0.13 | Median (IQR) −29 (−48, −12) vs. −8 (−18, 10) b, p = 0.002 47.8 vs. 15.4 p = 0.004 | MRE, %: Median (IQR) −6 (−17, 8) vs. −13 (−23, −2) b, p = 0.10 TE, %: Median (IQR) −7.2 (−32.6, 7.8) vs. 30.6 (4.5, 63.8) b, p = 0.032 TIMP-1, %: Median −7 vs. 1 b, p = 0.022 P-III-NP, %: Median −13 vs. −0.3 b, p = 0.011 HA, %: Median −6 vs. −15 b p = 0.39 |
3.3. Quality Assessment of Included Studies
3.4. Outcome Differences Between ACC Inhibitors and Placebo Groups on Steatosis, Fibrosis, and Liver Biochemistry Markers
3.4.1. MRI-PDFF and MRE
3.4.2. Liver Biochemistry
3.5. Safety Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACC | Acetyl-CoA carboxylase |
ALP | Alkaline phosphatase |
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
CK18M30 | Cytokeratin 18 M30 |
DNL | De novo lipogenesis |
ELF | Enhanced liver fibrosis |
GGT | Gamma-glutamyl transferase |
MASLD | Metabolic dysfunction-associated steatotic liver disease |
MRE | Magnetic resonance elastography |
MRI-PDFF | Magnetic resonance imaging proton density fat fraction |
NAFLD | Nonalcoholic fatty liver disease |
RCT | Randomized controlled trial |
SAE | Serious adverse events |
TE | Transient elastography |
TEAE | Treatment-emergent adverse event |
TELA | Treatment-emergent laboratory abnormalities |
TIMP-1 | Tissue Inhibitor of Metalloproteinases-1 |
VCTE | Vibration-controlled transient elastography |
References
- Wong, V.W.S.; Ekstedt, M.; Wong, G.L.H.; Hagström, H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J. Hepatol. 2023, 79, 842–852. [Google Scholar] [CrossRef]
- Xu, X.; Poulsen, K.L.; Wu, L.; Liu, S.; Miyata, T.; Song, Q.; Wei, Q.; Zhao, C.; Lin, C.; Yang, J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct. Target. Ther. 2022, 7, 287. [Google Scholar] [CrossRef]
- Chan, W.-K.; Chuah, K.-H.; Rajaram, R.B.; Lim, L.-L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J. Obes. Metab. Syndr. 2023, 32, 197–213. [Google Scholar] [CrossRef]
- Lekakis, V.; Papatheodoridis, G.V. Natural history of metabolic dysfunction-associated steatotic liver disease. Eur. J. Intern. Med. 2024, 122, 3–10. [Google Scholar] [CrossRef]
- Le, M.H.; Le, D.M.; Baez, T.C.; Dang, H.; Nguyen, V.H.; Lee, K.; Stave, C.D.; Ito, T.; Wu, Y.; Yeo, Y.H.; et al. Global incidence of adverse clinical events in nonalcoholic fatty liver disease: A systematic review and meta-analysis. Clin. Mol. Hepatol. 2024, 30, 235–246. [Google Scholar] [CrossRef]
- Tilg, H.; Adolph, T.E.; Moschen, A.R. Multiple Parallel Hits Hypothesis in Nonalcoholic Fatty Liver Disease: Revisited After a Decade. Hepatology 2021, 73, 833–842. [Google Scholar] [CrossRef]
- Bansal, S.K.; Bansal, M.B. Pathogenesis of MASLD and MASH—role of insulin resistance and lipotoxicity. Aliment. Pharmacol. Ther. 2024, 59, S10–S22. [Google Scholar] [CrossRef]
- Rao, G.; Peng, X.; Li, X.; An, K.; He, H.; Fu, X.; Li, S.; An, Z. Unmasking the enigma of lipid metabolism in metabolic dysfunction-associated steatotic liver disease: From mechanism to the clinic. Front. Med. 2023, 10, 1294267. [Google Scholar] [CrossRef]
- Tacke, F.; Puengel, T.; Loomba, R.; Friedman, S.L. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J. Hepatol. 2023, 79, 552–566. [Google Scholar] [CrossRef]
- Chandel, N.S. Lipid metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040576. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Li, S.; Guo, D.; He, J.; Wang, Y. Acetyl-CoA Carboxylases and Diseases. Front. Oncol. 2022, 12, 836058. [Google Scholar] [CrossRef]
- Ross, T.T.; Crowley, C.; Kelly, K.L.; Rinaldi, A.; Beebe, D.A.; Lech, M.P.; Martinez, R.V.; Carvajal-Gonzalez, S.; Boucher, M.; Hirenallur-Shanthappa, D.; et al. Acetyl-CoA Carboxylase Inhibition Improves Multiple Dimensions of NASH Pathogenesis in Model Systems. Cell. Mol. Gastroenterol. Hepatol. 2020, 10, 829–851. [Google Scholar] [CrossRef]
- Lally, J.S.; Ghoshal, S.; DePeralta, D.K.; Moaven, O.; Wei, L.; Masia, R.; Erstad, D.J.; Fujiwara, N.; Leong, V.; Houde, V.P.; et al. Inhibition of Acetyl-CoA Carboxylase by Phosphorylation or the Inhibitor ND-654 Suppresses Lipogenesis and Hepatocellular Carcinoma. Cell Metab. 2019, 29, 174–182.e5. [Google Scholar] [CrossRef]
- Goedeke, L.; Bates, J.; Vatner, D.F.; Perry, R.J.; Wang, T.; Ramirez, R.; Li, L.; Ellis, M.W.; Zhang, D.; Wong, K.E.; et al. Acetyl-CoA Carboxylase Inhibition Reverses NAFLD and Hepatic Insulin Resistance but Promotes Hypertriglyceridemia in Rodents. Hepatology 2018, 68, 2197–2211. [Google Scholar] [CrossRef]
- Tilg, H.; Byrne, C.D.; Targher, G. NASH drug treatment development: Challenges and lessons. Lancet Gastroenterol. Hepatol. 2023, 8, 943–954. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; Version 6.5. Cochrane. August 2024; Available online: www.training.cochrane.org/handbook (accessed on 24 September 2024).
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ. 2019, 366, l4898. [Google Scholar] [CrossRef]
- Gu, J.; Liu, S.; Du, S.; Zhang, Q.; Xiao, J.; Dong, Q.; Xin, Y. Diagnostic value of MRI-PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: A meta-analysis. Eur. Radiol. 2019, 29, 3564–3573. [Google Scholar] [CrossRef]
- Venkatesh, S.K.; Yin, M.; Ehman, R.L. Magnetic resonance elastography of liver: Technique, analysis, and clinical applications. J. Magn. Reson. Imaging 2013, 37, 544–555. [Google Scholar] [CrossRef]
- Loomba, R.; Noureddin, M.; Kowdley, K.V.; Kohli, A.; Sheikh, A.; Neff, G.; Bhandari, B.R.; Gunn, N.; Caldwell, S.H.; Goodman, Z.; et al. Combination Therapies Including Cilofexor and Firsocostat for Bridging Fibrosis and Cirrhosis Attributable to NASH. Hepatology 2021, 73, 625–643. [Google Scholar] [CrossRef]
- Calle, R.A.; Amin, N.B.; Carvajal-Gonzalez, S.; Ross, T.T.; Bergman, A.; Aggarwal, S.; Crowley, C.; Rinaldi, A.; Mancuso, J.; Aggarwal, N.; et al. ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: Two parallel, placebo-controlled, randomized phase 2a trials. Nat. Med. 2021, 27, 1836–1848. [Google Scholar] [CrossRef]
- Loomba, R.; Kayali, Z.; Noureddin, M.; Ruane, P.; Lawitz, E.J.; Bennett, M.; Wang, L.; Harting, E.; Tarrant, J.M.; McColgan, B.J.; et al. GS-0976 Reduces Hepatic Steatosis and Fibrosis Markers in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2018, 155, 1463–1473.e6. [Google Scholar] [CrossRef]
- Alkhouri, N.; Herring, R.; Kabler, H.; Kayali, Z.; Hassanein, T.; Kohli, A.; Huss, R.S.; Zhu, Y.; Billin, A.N.; Damgaard, L.H.; et al. Safety and efficacy of combination therapy with semaglutide, cilofexor and firsocostat in patients with non-alcoholic steatohepatitis: A randomised, open-label phase II trial. J. Hepatol. 2022, 77, 607–618. [Google Scholar] [CrossRef]
- Dandan, M.; Han, J.; Mann, S.; Kim, R.; Li, K.; Mohammed, H.; Chuang, J.-C.; Zhu, K.; Billin, A.N.; Huss, R.S.; et al. Acetyl-CoA carboxylase inhibitor increases LDL-apoB production rate in NASH with cirrhosis: Prevention by fenofibrate. J. Lipid Res. 2023, 64, 100339. [Google Scholar] [CrossRef]
- Lawitz, E.J.; Bhandari, B.R.; Ruane, P.J.; Kohli, A.; Harting, E.; Ding, D.; Chuang, J.-C.; Huss, R.S.; Chung, C.; Myers, R.P.; et al. Fenofibrate Mitigates Hypertriglyceridemia in Nonalcoholic Steatohepatitis Patients Treated With Cilofexor/Firsocostat. Clin. Gastroenterol. Hepatol. 2023, 21, 143–152.e3. [Google Scholar] [CrossRef]
- Stine, J.G.; Munaganuru, N.; Barnard, A.; Wang, J.L.; Kaulback, K.; Argo, C.K.; Singh, S.; Fowler, K.J.; Sirlin, C.B.; Loomba, R. Change in MRI-PDFF and Histologic Response in Patients With Nonalcoholic Steatohepatitis: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2021, 19, 2274–2283.e5. [Google Scholar] [CrossRef]
- Newsome, P.N.; Cramb, R.; Davison, S.M.; Dillon, J.F.; Foulerton, M.; Godfrey, E.M.; Hall, R.; Harrower, U.; Hudson, M.; Langford, A.; et al. Guidelines on the management of abnormal liver blood tests. Gut 2018, 67, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, P.; Saul, M.; Robinson, D.; King, L.E.; Amin, N.B. SomaLogic proteomics reveals new biomarkers and provides mechanistic, clinical insights into Acetyl coA Carboxylase (ACC) inhibition in Non-alcoholic Steatohepatitis (NASH). Sci. Rep. 2024, 14, 17072. [Google Scholar] [CrossRef]
- Lee, J.; Vali, Y.; Boursier, J.; Duffin, K.; Verheij, J.; Brosnan, M.J.; Zwinderman, K.; Anstee, Q.M.; Bossuyt, P.M.; Zafarmand, M.H.; et al. Accuracy of cytokeratin 18 (M30 and M65) in detecting non-alcoholic steatohepatitis and fibrosis: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0238717. [Google Scholar] [CrossRef]
- Tacke, F.; Horn, P.; Wong, V.W.-S.; Ratziu, V.; Bugianesi, E.; Francque, S.; Zelber-Sagi, S.; Valenti, L.; Roden, M.; Schick, F.; et al. EASL–EASD–EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef] [PubMed]
- Ratziu, V.; Francque, S.; Sanyal, A. Breakthroughs in therapies for NASH and remaining challenges. J. Hepatol. 2022, 76, 1263–1278. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, E.A.; Mózes, F.E.; Jayaswal, A.N.A.; Zafarmand, M.H.; Vali, Y.; Lee, J.A.; Levick, C.K.; Young, L.A.J.; Palaniyappan, N.; Liu, C.-H.; et al. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis. J. Hepatol. 2021, 75, 770–785. [Google Scholar] [CrossRef]
- Chen, G.; Banini, B.; Do, A.; Lim, J.K. The independent effect of exercise on biopsy-proven non-alcoholic fatty liver disease: A systematic review. Clin. Mol. Hepatol. 2023, 29 (Suppl. S1), S319–S332. [Google Scholar] [CrossRef]
- Jia, L.; Yang, Y.; Sun, F.; Tao, H.; Lu, C.; Yang, J.J. Mitochondrial quality control in liver fibrosis: Epigenetic hallmarks and therapeutic strategies. Cell. Signal. 2024, 115, 111035. [Google Scholar] [CrossRef]
- Kovalic, A.J.; Gozar, M.; Da, B.L.; Bernstein, D.; Satapathy, S.K. Pharmacotherapeutic efficacy on noninvasive fibrosis progression in nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 2023, 35, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.; Vijayakumar, A.; Ghoshal, S.; Marchand, B.; Yi, S.; Kornyeyev, D.; Zagorska, A.; Hollenback, D.; Walker, K.; Liu, K.; et al. Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation. J. Hepatol. 2020, 73, 896–905. [Google Scholar] [CrossRef]
- Kalas, M.A.; Chavez, L.; Leon, M.; Taweesedt, P.T.; Surani, S. Abnormal liver enzymes: A review for clinicians. World J. Hepatol. 2021, 13, 1688–1698. [Google Scholar] [CrossRef]
- Esler, W.P.; Cohen, D.E. Pharmacologic inhibition of lipogenesis for the treatment of NAFLD. J. Hepatol. 2024, 80, 362–377. [Google Scholar] [CrossRef]
- Kim, C.-W.; Addy, C.; Kusunoki, J.; Anderson, N.N.; Deja, S.; Fu, X.; Burgess, S.C.; Li, C.; Ruddy, M.; Chakravarthy, M.; et al. Acetyl CoA Carboxylase Inhibition Reduces Hepatic Steatosis but Elevates Plasma Triglycerides in Mice and Humans: A Bedside to Bench Investigation. Cell Metab. 2017, 26, 394–406.e6. [Google Scholar] [CrossRef]
- Hussain, A.; Ballantyne, C.M. 28-Evolving Therapeutic Targets: Apolipoprotein C-III. In Clinical Lipidology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Batchuluun, B.; Pinkosky, S.L.; Steinberg, G.R. Lipogenesis inhibitors: Therapeutic opportunities and challenges. Nat. Rev. Drug Discov. 2022, 21, 283–305. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Byrne, C.D.; Tilg, H. MASLD: A systemic metabolic disorder with cardiovascular and malignant complications. Gut 2024, 73, 691–702. [Google Scholar] [CrossRef]
- Mahmoud, A.; Mohamed, I.; Abuelazm, M.; Ahmed, A.A.S.; Saeed, A.; Elshinawy, M.; Almaadawy, O.; Abdelazeem, B. Efficacy of orlistat in obese patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. Bayl. Univ. Med. Cent. Proc. 2024, 37, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.; Cheng, Y.; Xia, Z.; Liao, Y.; Cao, J. Efficacy of orlistat in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Biomed. Rep. 2018, 9, 90–96. [Google Scholar] [CrossRef]
- Ratziu, V.; de Guevara, L.; Safadi, R.; Poordad, F.; Fuster, F.; Flores-Figueroa, J.; Arrese, M.; Fracanzani, A.L.; Ben Bashat, D.; Lackner, K.; et al. Aramchol in patients with nonalcoholic steatohepatitis: A randomized, double-blind, placebo-controlled phase 2b trial. Nat. Med. 2021, 27, 1825–1835. [Google Scholar] [CrossRef]
- Chen, J.; Talwalkar, J.A.; Yin, M.; Glaser, K.J.; Sanderson, S.O.; Ehman, R.L. Early detection of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease by using MR elastography. Radiology 2011, 259, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Waheed, A.M.; Gul, M.H.M.; Shabbir, M.U.M.; Raja, H.A.M.; Wardak, A.B.M.; Hussaini, H.; Shah, Y. FDA approves Resmetirom: Groundbreaking treatment for NASH liver scarring in moderate to advanced fibrosis. Ann. Med. Surg. 2025, 87, 1088–1091. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zou, W.; Zhou, Y.; Li, W.; Liao, W.; Li, T.; Zhang, Z. A systematic review and meta-analysis of efruxifermin’s efficacy in improving liver fibrosis in patients with NASH/MASH. Front. Pharmacol. 2025, 16, 1594091. [Google Scholar] [CrossRef]
- Suri, J.; Borja, S.; Lim, J.K. Combination strategies for pharmacologic treatment of nonalcoholic steatohepatitis. World J. Gastroenterol. 2022, 28, 5129–5140. [Google Scholar] [CrossRef]
- Younis, I.R.; Nelson, C.; Weber, E.J.; Shen, G.; Qin, A.R.; Xiao, D.; Watkins, T.R.; Othman, A.A. Pharmacokinetics and Safety of Cilofexor and Firsocostat in Healthy Japanese and Non-Japanese Participants. J. Clin. Pharmacol. 2024, 64, 1586–1593. [Google Scholar] [CrossRef]
- Neuschwander-Tetri, B.A.; Morris, H.L.; Mospan, A.R.; Yu, F.; Munoz, B.; Abraham, S.; Fried, M.W.; Barritt, A.S.; Al-Sayyed, L.; Sanyal, A.J.; et al. The Magnitude of Polypharmacy and Role of Disease Severity and Patient Sex in Medication Use Among Patients With MASLD Enrolled in TARGET-NASH. Aliment. Pharmacol. Ther. 2025. [Google Scholar] [CrossRef]
Author (Year) | Intervention | Control | Duration (Weeks) | TEAEs | TELAs | |||
---|---|---|---|---|---|---|---|---|
All-Cause Mortality n (%) | SAE n (%) | Others n (%) | Total n (%) | |||||
Al Khouri et al. (2022) [24] | Semaglutide 0.24–24 mg + Firsocostat 20 mg | Semaglutide 0.24–24 mg | 24 | - | 0 (0.0) vs. 1 (4.8) | 17 (77.3) vs. 16 (76.2) | 22 (86.4) vs. 21 (81.0) | Grade ≥ 3: 1 (4.5%) vs. 0 (0%), hypertriglyceridemia (575 mg/dL) triglyceride change, mg/dL: LSM (95% CI), 15 (−16, 46) vs. −28 (−60, 4) HDL change, mg/dL: LSM (95% CI) −5 (−8, −3) vs. −1 (−3, 2), p < 0.05 VLDL change, mg/dL: LSM (95% CI) 4 (0, 8) vs. −7 (−12, −2), p < 0.05 |
Calle et al. (2021 a) [22] | Clesacostat 25 mg | Placebo | 16 | - | 2 (3.4) vs. 0 (0.0) Cardiac disorders | 31 (53.4) vs. 27 (44.3) | 45 (78) vs. 41 (67) | total: 42 (72%) vs. 11 (18%) hypertriglyceridemia (≥400 mg/dL): 41 (71%) vs. (9 (15%) triglyceride change, %: LSM (80% CI), 86.8 (72.9, 101.9) vs. 4.8 (−3.0, 13.3) b |
Clesacostat 10 mg | - | 1 (1.6) vs. 0 (0.0) Upper respiratory infection Injury | 25 (40.3) vs. 27 (44.3) | 42 (68) vs. 41 (67) | total: 40 (64%) vs. 11 (18%) hypertriglyceridemia (≥400 mg/dL): 38 (61%) vs. (9 (15%) triglyceride change, %: LSM (80% CI), 59.2 (48.0, 71.2) vs. 4.8 (−3.0, 13.3) b | |||
Calle et al. (2021 b) [22] | Clesacostat 15mg + Ervogastat 300mg | Ervogastat 300mg | 6 | - | 1 (3.6) vs. 0 (0.0) jaw abscess | 1 (3.6) vs. 6 (21.4) | 10 (36) vs. 10 (36) | total: 3 (11%) vs. 4 (14%) hypertriglyceridemia (≥400 mg/dL): 3 (11%) vs. 3 (11%) triglyceride change, %: LSM (90% CI), 13.8 (2.3, 26.7) vs. −1.89 (−11.9, 9.3) b |
Clesacostat 15mg | Placebo | - | - | 6 (20.7) vs. 3 (21.4) | 10 (35) vs. 3 (21) | total: 17 (59%) vs. 3 (43%) hypertriglyceridemia (≥400 mg/dL): 18 (62%) vs. 3 (21%) triglyceride change, %: LSM (90% CI), 58.2 (41.8, 76.5) vs. 7.4 (−8.1, 25.4) b | ||
Clesacostat 15mg + Ervogastat 300mg | Placebo | - | 1 (3.6) vs. 0 (0.0) jaw abscess | 1 (3.6) vs. 3 (21.4) | 10 (36) vs. 3 (21) | total: 3 (11%) vs. 3 (21%) hypertriglyceridemia (≥400 mg/dL): 3 (11%) vs. 3 (21%) triglyceride change, %: LSM (90% CI), 13.8 (2.3, 26.7) vs. 7.4 (−8.1, 25.4) b | ||
Dandan et al. (2023) Lawitz et al. (2023) [25,26] | Firsocostat 20 mg | Selonsertib 18 mg | 12 | - | - | 6 (60) vs. 5 (50) | 6 (60) vs. 5 (50) | grade ≥3: 2 (20%) vs. 2 (20%) hypertriglyceridemia: 1 (10%) vs. 0 (0%) |
Firsocostat 20 mg | Cilofexor 30 mg | - | - | 6 (60) vs. 5 (50) | 6 (60) vs. 5 (50) | grade ≥ 3: 2 (20%) vs. 4 (40%) hypertriglyceridemia: 1 (10%) vs. 0 (0%) | ||
Selonsertib 18 mg + Firsocostat 20 mg | Selonsertib 18 mg | - | 1 (5) vs. 0 (0) Tooth abscess | 8 (40) vs. 5 (50) | 9 (45) vs. 5 (50) | grade ≥ 3: 4 (20%) vs. 2 (20%) hypertriglyceridemia: 1 (5%) vs. 0 (0%) | ||
Cilofexor 30 mg + Firsocostat 20 mg | Cilofexor 30 mg | - | 1 (5) vs. 0 (0) UTI | 10 (50) vs. 5 (50) | 11 (55) vs. 5 (50) | grade ≥ 3: 2 (10%) vs. 4 (40%) no hypertriglyceridemia | ||
Loomba et al. (2021) [21] | Firsocostat 20 mg | Placebo | 48 | - | 3 (7.5) vs. 2 (5) ITP; AMI Pyrexia | 30 (75) vs. 29 (74) | 34 (85) vs. 31 (80) | total: 40 (100%) vs. 37 (95%) hypertriglyceridemia (>500 mg/dL): 3 (8%) vs. 0 (0%) |
Cilofexor 30 mg + Firsocostat 20 mg | Cilofexor 30 mg | - | 8 (10) vs. 8 (20) AMI; Gastritis; Postprocedural hemorrhage; Hypoglycaemia; Diffuse large B-cell lymphoma; Cerebrovascular disorder; Urinary tract obstruction | 66 (85) vs. 34 (85) | 71 (91) vs. 37 (93) | total: 77 (100%) vs. 39 (97.5%) hypertriglyceridemia (>500 mg/dL): 3 (4%) vs. 0 (0%) | ||
Loomba et al. (2018) [23] | Firsocostat 20 mg | Placebo | 12 | - | 2 (4) vs. 0(0) Abdominal pain; Sepsis; Hepatic encephalopathy; Transient ischaemic attack; | 29 (59) vs. 11 (42) | 35 (71) vs. 16 (61) | hypertriglyceridemia (>500 mg/dL): 7 (14%) vs. 0 (0%) triglyceride change, mg/dL: LSM (95% CI), 97.2 (26.48, 168.97) a, p = 0.008 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasanatuludhhiyah, N.; Mustika, A.; Kalanjati, V.P.; Miftahussurur, M.; Uemura, N. Acetyl-CoA Carboxylase Inhibitors for Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pharmaceuticals 2025, 18, 1276. https://doi.org/10.3390/ph18091276
Hasanatuludhhiyah N, Mustika A, Kalanjati VP, Miftahussurur M, Uemura N. Acetyl-CoA Carboxylase Inhibitors for Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pharmaceuticals. 2025; 18(9):1276. https://doi.org/10.3390/ph18091276
Chicago/Turabian StyleHasanatuludhhiyah, Nurina, Arifa Mustika, Viskasari P. Kalanjati, Muhammad Miftahussurur, and Naoto Uemura. 2025. "Acetyl-CoA Carboxylase Inhibitors for Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials" Pharmaceuticals 18, no. 9: 1276. https://doi.org/10.3390/ph18091276
APA StyleHasanatuludhhiyah, N., Mustika, A., Kalanjati, V. P., Miftahussurur, M., & Uemura, N. (2025). Acetyl-CoA Carboxylase Inhibitors for Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pharmaceuticals, 18(9), 1276. https://doi.org/10.3390/ph18091276