Sustainable MnO2/MgO Bimetallic Nanoparticles Capped with Sword Fern Methanol Extract Attain Antioxidant/Anti-Biofilm Potential: A UPLC-ESI/LC/MS and Network Pharmacology-Supported Study
Abstract
1. Introduction
2. Results and Discussion
2.1. UPLC/MS Analysis for the Methanol Leaves Extract of Nephrolepis exaltata
2.2. MnO2-MgO BNPs Biosynthesis Using NEME
2.3. Characterization of the Biosynthesized MnO2-MgO BNPs
2.4. The In Vitro Antimicrobial Assay
2.5. Determination of MIC
2.6. The Antioxidant Activity
2.7. The Anti-Biofilm Activity
2.8. In Silico Biological Activity Predictions
2.9. Prediction of the Potential Targets
2.9.1. Prediction of the Potential E. coli Targets of the Annotated Compounds
2.9.2. Protein–Protein Interaction (PPI) Network Analysis
2.10. Gene Ontology (GO) Enrichment Analysis
2.11. KEGG Pathway Enrichment Analysis
2.12. Molecular Docking
2.13. Predicting the Role of MnO2-MgO BNPs in Antipseudomonal Bacterial Effect of Nephrolepis exaltata Extract
2.13.1. ASKCOS Prediction
2.13.2. Molecular Docking Simulation
3. Material and Methods
3.1. Chemicals and Reagents
3.2. Preparation of Nephrolepis exaltata Methanol Extract (NEME)
3.3. UPLC/MS Analysis of Nephrolepis exaltata Extract
3.4. Biosynthesis of MnO2-MgO BNPs of Nephrolepis exaltata Extract
3.5. Characterization of the Formed MnO2-MgO BNPs
3.6. Evaluation of the Antimicrobial and Anti-Biofilm Activity
3.6.1. Selection of the Isolates
3.6.2. The Antimicrobial Activity
3.6.3. Determination of the MIC
3.6.4. The Anti-Biofilm Assay
3.7. Antioxidant Assays (DPPH and APTS Scavenging Activities)
3.8. In Silico Biological Activity Predictions
3.9. Prediction of the Potential Protein Targets of the Annotated Compounds
3.10. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis
3.11. Molecular Docking
3.12. Predicting the Role of MnO2-MgO BNPs in Antipseudomonal Bacterial Effect of Nephrolepis exaltata Extract
3.13. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Rotavap | Rotary evaporator |
MnO2-MgO BNPs | Manganese dioxide-Magnesium oxide bimetallic Nanoparticles |
NEE | Nephrolepis exaltata extract |
SPR | Surface Plasmon Resonance |
TEM | Transmission electron microscope |
FTIR | Fourier transform infrared spectroscopy |
DLS | Dynamic Light Scattering |
SEM | Scanning electron microscope |
MHA | Mueller Hinton Agar |
PDA | Potato Dextrose Agar |
OD | Optical density |
MIC | Minimum inhibitory concentration |
IC50 | Inhibitory concentration of 50% of the microorganisms |
FCC | Face-centered cubic |
XRD | X-ray diffraction |
EDX | Energy-Dispersive X-ray |
References
- Gonçalves dos Santos, J.; Fernandes, C.C.; Dantas Miranda, M.L. Ferns with important ethnomedicinal value and chemical and biological aspects of Nephrolepis cordifolia: Brief review. Acta Sci. Biol. Sci. 2024, 46, e69341. [Google Scholar] [CrossRef]
- Oyawaluja, A.A.; Oyawaluja, B.O.; Aydogan, F.; Ali, Z.; Khan, I.A.; Zhao, J.; Odukoya, O.A.; Samuel, T.A.; Coker, H.A. Chemical constituents from the leaves of Nephrolepis exaltata. Biochem. Syst. Ecol. 2024, 112, 104772. [Google Scholar] [CrossRef]
- Dave, R.; Sharma, D.K.; Shah, K. RP-HPTLC fingerprinting of secondary metabolites from Nephrolepis exaltata and Cycas revoluta. J. Indian Chem. Soc. 2023, 100, 100941. [Google Scholar] [CrossRef]
- El-Tantawy, M.E.; Shams, M.M.; Afifi, M.S. Chemical composition and biological evaluation of the volatile constituents from the aerial parts of Nephrolepis exaltata (L.) and Nephrolepis cordifolia (L.) C. Presl grown in Egypt. Nat. Prod. Res. 2016, 30, 1197–1201. [Google Scholar] [CrossRef]
- Hagag, A.; Abd El-Kader, A.M.; Abdelwahab, M.F.; Ahmed, E.F.; Yahia, R.; Ghanem, N.; Abdel-Rahman, I.M.; Fouad, M.A.; Zahran, E.M. Antibiofilm potential of 6-methoxymellein from geranium-associated Aspergillus caespitosus endophyte against clinical isolates of dermatophytes: Phytochemical, in silico and in vitro investigation. South Afr. J. Bot. 2024, 167, 448–456. [Google Scholar] [CrossRef]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef] [PubMed]
- Alekshun, M.N.; Levy, S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell 2007, 128, 1037–1050. [Google Scholar] [CrossRef]
- Zahran, E.M.; Mohamad, S.A.; Yahia, R.; Badawi, A.M.; Sayed, A.M.; Abdelmohsen, U.R. Anti-otomycotic potential of nanoparticles of Moringa oleifera leaf extract: An integrated in vitro, in silico and phase 0 clinical study. Food Funct. 2022, 13, 11083–11096. [Google Scholar] [CrossRef]
- Zahran, E.M.; Mohyeldin, R.H.; Refaat, H.; Abou-Zied, H.A.; ElNaggar, M.H.; Abbas, G.M.; Maher, S.A.; Saber, E.A.; Zarka, M.A.; Elrehany, M.A. Sumac liposomes/mesenchymal stem cells fight methotrexate-induced nephrotoxicity in rats via regulating Nrf-2/Keap-1/HO-1 and apoptotic signaling pathways. Arch. Pharm. 2025, 358, e2400684. [Google Scholar]
- Elabbasy, M.T.; El Bayomi, R.M.; Abdelkarim, E.A.; Hafez, A.E.-S.E.; Othman, M.S.; Ghoniem, M.E.; Samak, M.A.; Alshammari, M.H.; Almarshadi, F.A.; Elsamahy, T. Antibacterial and Antibiofilm Activity of Green-Synthesized Zinc Oxide Nanoparticles Against Multidrug-Resistant Escherichia coli Isolated from Retail Fish. Molecules 2025, 30, 768. [Google Scholar] [CrossRef]
- Nadeem, F.; Fozia, F.; Aslam, M.; Ahmad, I.; Ahmad, S.; Ullah, R.; Almutairi, M.H.; Aleya, L.; Abdel-Daim, M.M. Characterization, antiplasmodial and cytotoxic activities of green synthesized iron oxide nanoparticles using Nephrolepis exaltata aqueous extract. Molecules 2022, 27, 4931. [Google Scholar] [CrossRef] [PubMed]
- Aboul-Soud, M.A.; Siddique, R.; Fozia, F.; Ullah, A.; Rashid, Y.; Ahmad, I.; Zaghloul, N.S.; Al-Rejaie, S.S.; Mohany, M. Antiplatelet, cytotoxic activities and characterization of green-synthesized zinc oxide nanoparticles using aqueous extract of Nephrolepis exaltata. Environ. Sci. Pollut. Res. 2023, 30, 73870–73880. [Google Scholar] [CrossRef] [PubMed]
- Elhawary, E.; Mostafa, N.; Shehata, A.; Labib, R. Comparative study of selected Rosa varieties’ metabolites through UPLC-ESI-MS/MS, chemometrics and investigation of their insecticidal activity against Culex pipiens L. Jordan J. Pharm. Sci. 2021, 14, 417–433. [Google Scholar]
- Nilofar; Bahadırlı, N.P.; Elhawary, E.A.; Eldahshan, O.; Singab, A.N.; Saka, E.; Cespedes-Acuna, C.L.; Andruch, V.; Kalyniukova, A.; Zengin, G. Exploring the chemical composition and biological effects of four Salvia hybrids: An innovative perspective on functional yields. eFood 2024, 5, e70012. [Google Scholar] [CrossRef]
- Abdel-Hady, H.; El-Sayed, M.M.; Abdel-Gawad, M.M.; El-Wakil, E.A.; Abdel-Hameed, E.-S.S.; Abdel-Lateef, E.E.-S. LC-ESI-MS analysis, antitumor and antioxidant activities of methanolic extract of Egyptian Allium kurrat. J. Appl. Pharm. Sci. 2018, 8, 085–092. [Google Scholar] [CrossRef]
- Attia, R.A.; El-Dahmy, S.I.; Abouelenein, D.; Abdel-Ghani, A.E.-S. LC-ESI-MS profile, cytotoxic, antioxidant, insecticidal and antimicrobial activities of wild and in vitro propagated Tanacetum sinaicum Del. ex DC. Zagazig J. Pharm. Sci. 2022, 31, 8–21. [Google Scholar] [CrossRef]
- Ağalar, H.G.; Çiftçi, G.A.; Göger, F.; Kırımer, N. Activity guided fractionation of Arum italicum miller tubers and the LC/MS-MS profiles. Rec. Nat. Prod. 2018, 12, 64–75. [Google Scholar] [CrossRef]
- Elgendi, S.; Ezzat, M.; Elsayed, A. HPLC-PDA-ESI-MS-MS Analysis of Acids Content of Lantana camara L. Flower Extract and Its Anticoagulant Activity. Egypt. J. Chem. 2023, 66, 249–256. [Google Scholar] [CrossRef]
- El Sayed, A.M.; Basam, S.M.; El-Naggar, E.B.A.; Marzouk, H.S.; El-Hawary, S. LC-MS/MS and GC-MS profiling as well as the antimicrobial effect of leaves of selected Yucca species introduced to Egypt. Sci. Rep. 2020, 10, 17778. [Google Scholar] [CrossRef]
- El-Tabakh, M.A.; Elhawary, E.A.; Hwihy, H.M.; Darweesh, K.F.; Shaapan, R.M.; Ghazala, E.A.; Mokhtar, M.M.; Waheeb, H.O.; Emam, D.E.; Bakr, N.A. UPLC/ESI/MS profiling of red algae Galaxaura rugosa extracts and its activity against malaria mosquito vector, Anopheles pharoensis, with reference to Danio rerio and Daphnia magna as bioindicators. Malar. J. 2023, 22, 368. [Google Scholar] [CrossRef]
- Gkioni, M.D.; Zeliou, K.; Dimaki, V.D.; Trigas, P.; Lamari, F.N. GC-MS and LC-DAD-MS Phytochemical Profiling for Characterization of Three Native Salvia Taxa from Eastern Mediterranean with Antiglycation Properties. Molecules 2022, 28, 93. [Google Scholar] [CrossRef]
- El-sayed, M.; Abbas, F.A.; Refaat, S.; El-Shafae, A.M.; Fikry, E. UPLC-ESI-MS/MS Profile of The Ethyl Acetate Fraction of Aerial Parts of Bougainvillea’Scarlett O’Hara’Cultivated in Egypt. Egypt. J. Chem. 2021, 64, 793–806. [Google Scholar]
- Rivera, S.M.; Christou, P.; Canela-Garayoa, R. Identification of carotenoids using mass spectrometry. Mass Spectrom. Rev. 2014, 33, 353–372. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.; Kharazian, N. Identification of flavonoids from Marrubium and Ballota species (Lamiaceae) and determination of chemotaxonomic markers using High Performance Liquid Chromatography Mass Spectrometer. J. Sci. Islam. Repub. Iran 2021, 32, 305–320. [Google Scholar]
- Zhong, B.; Robinson, N.A.; Warner, R.D.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. LC-ESI-QTOF-MS/MS characterization of seaweed phenolics and their antioxidant potential. Mar. Drugs 2020, 18, 331. [Google Scholar] [CrossRef]
- Afifi, A.; Ayoub, M.; Kutkat, O.; GabAllah, M.; Mohammed, R. Profiling The Phytochemicals and Anti-SARS CoV-2 activity of Different Ligustrum ovalifolium Hassk Aerial Part Extracts: An in vitro-in silico Study. Egypt. J. Chem. 2025, 68, 409–433. [Google Scholar] [CrossRef]
- Dincheva, I.; Badjakov, I.; Kondakova, V.; Dobson, P.; Mcdougall, G.; Stewart, D. Identification of the phenolic components in Bulgarian raspberry cultivars by LC-ESI-MSn. Int. J. Agric. Sci. Res. 2013, 3, 137–138. [Google Scholar]
- Abdelaziz, S.; Hassan, W.H.; Elhassanny, A.E.; Al-Yousef, H.M.; Elsayed, M.A.; Adel, R. Ultra performance liquid chromatography-tandem mass spectrometeric analysis of ethyl acetate fraction from saudi Lavandula coronopifolia Poir and evaluation of its cytotoxic and antioxidant activities. J. Herbmed Pharmacol. 2020, 9, 268–276. [Google Scholar] [CrossRef]
- Chettri, U.; Kumari, S.; Chettri, B. A review on anti-microbial and hepatoprotective properties of himalayan wild fern Nephrolepis cordifolia (Pani amla). Pharma Innov. 2020, 9, 572. [Google Scholar]
- Morsi, E.A.; Abdel-Hameed, E.-S.; El-Sayed, M.M.; Rabia, I.A. HPLC-ESI-MS characterization of certain compounds of methanolic extract of nerium oleander and its fractions as well as evaluation of their potential against Schistosomiasis mansoni. Egypt. J. Chem. 2022, 65, 133–143. [Google Scholar] [CrossRef]
- Elhawary, E.A.; Gad, M.E.; Hegazy, M.M.; Mostafa, R.M.; Gattan, H.S.; Alruhaili, M.H.; Selim, A.M.; Mashlawi, A.M.; Alkhaibari, A.M.; Alasmari, S.M. Study of the effect of dryness and storage on Ceratonia siliqua L. stem extracts and evaluation of their insecticidal activity. Sci. Rep. 2025, 15, 11123. [Google Scholar] [CrossRef]
- Elhawary, E.A.; Baz, M.M.; Mostafa, R.M.; Selim, A.M.; Alruhaili, M.H.; Gattan, H.S.; Gad, M.E. Seasonal variation effect on different Physalis peruviana L.(Solanaceae) waste extracts and investigation of their efficacy against Culex pipiens and Musca domestica. Sci. Rep. 2025, 15, 1–22. [Google Scholar] [CrossRef]
- Baz, M.M.; Elhawary, E.A.; Abdelhafiz, A.H.; Mostafa, R.M.; Alruhaili, M.H.; Gattan, H.S.; Selim, A.; Gad, M.E.; Abd-Elkhalek, H.F. Efficacy of Hot Capsicum annuum Extracts Against the Biological Activity of Culex pipiens and Musca domestica Larvae with their Phytochemical Profiles. Acta Parasitol. 2025, 70, 1–21. [Google Scholar] [CrossRef]
- Rani, D.; Khare, P.; Dantu, P. In vitro antibacterial and antifungal properties of aqueous and non-aqueous frond extracts of Psilotum nudum, Nephrolepis biserrata and Nephrolepis cordifolia. Indian J. Pharm. Sci. 2010, 72, 818. [Google Scholar]
- Oyeyemi, S.; Adebiyi, A.; Ojo, V. Phytochemical and nutritional evaluation of Nephrolepis cordifolia (L.) C. Presl., a tropical edible fern. East Afr. Sch. J. Biotechnol. Genet. 2019, 1, 91–98. [Google Scholar]
- Aly Khalil, A.M.; Saied, E.; Mekky, A.E.; Saleh, A.M.; Al Zoubi, O.M.; Hashem, A.H. Green biosynthesis of bimetallic selenium–gold nanoparticles using Pluchea indica leaves and their biological applications. Front. Bioeng. Biotechnol. 2024, 11, 1294170. [Google Scholar] [CrossRef]
- Abdelaziz, A.M.; Elshaer, M.A.; Abd-Elraheem, M.A.; Ali, O.M.O.M.; Haggag, M.I.; El-Sayyad, G.S.; Attia, M.S. Ziziphus spina-christi extract-stabilized novel silver nanoparticle synthesis for combating Fusarium oxysporum-causing pepper wilt disease: In vitro and in vivo studies. Arch. Microbiol. 2023, 205, 69. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Hou, P.; Dong, L.; Cai, L.; Chen, Z.; Zhao, M.; Li, J. Manganese dioxide nanosheets: From preparation to biomedical applications. Int. J. Nanomed. 2019, 14, 4781–4800. [Google Scholar] [CrossRef] [PubMed]
- David, A.; Kumar, R. Biogenesis of MnO2 Nanoparticles Using Momordica Charantia Leaf Extract. ECS Trans. 2022, 107, 747. [Google Scholar] [CrossRef]
- Farhan, H.H.; Mohammed, A.M. Biosynthesis and evaluation of MnO2 nanoparticles as anti-oxidant and anti-diabetic agents. Results Chem. 2024, 7, 101266. [Google Scholar] [CrossRef]
- Faisal, S.; Khan, S.; Abdullah; Zafar, S.; Rizwan, M.; Ali, M.; Ullah, R.; Albadrani, G.M.; Mohamed, H.R.H.; Akbar, F. Fagonia cretica-Mediated Synthesis of Manganese Oxide (MnO2) Nanomaterials Their Characterization and Evaluation of Their Bio-Catalytic and Enzyme Inhibition Potential for Maintaining Flavor and Texture in Apples. Catalysts 2022, 12, 558. [Google Scholar] [CrossRef]
- Dikshit, P.; Kumar, J.; Das, A.; Sadhu, S.; Sharma, S.; Singh, S.; Gupta, P.; Kim, B. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 2021, 11, 902. [Google Scholar] [CrossRef]
- Hassan, S.E.-D.; Fouda, A.; Saied, E.; Farag, M.M.S.; Eid, A.M.; Barghoth, M.G.; Awad, M.A.; Hamza, M.F.; Awad, M.F. Rhizopus oryzae-Mediated Green Synthesis of Magnesium Oxide Nanoparticles (MgO-NPs): A Promising Tool for Antimicrobial, Mosquitocidal Action, and Tanning Effluent Treatment. J. Fungi 2021, 7, 372. [Google Scholar] [CrossRef]
- Abdallah, Y.; Ogunyemi, S.O.; Abdelazez, A.; Zhang, M.; Hong, X.; Ibrahim, E.; Hossain, A.; Fouad, H.; Li, B.; Chen, J. The green synthesis of MgO nano-flowers using Rosmarinus officinalis L. (Rosemary) and the antibacterial activities against Xanthomonas oryzae pv. oryzae. BioMed Res. Int. 2019, 2019, 5620989. [Google Scholar] [CrossRef]
- Nguyen, D.T.C.; Dang, H.H.; Vo, D.-V.N.; Bach, L.G.; Nguyen, T.D.; Tran, T.V. Biogenic synthesis of MgO nanoparticles from different extracts (flower, bark, leaf) of Tecoma stans (L.) and their utilization in selected organic dyes treatment. J. Hazard. Mater. 2021, 404, 124146. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Yadav, P.; Sankaranarayanan, S.; Bhatia, D. Plant-Derived Nanomaterials for Targeted Biological Applications and Smart Agriculture. ChemistrySelect 2023, 8, e202303495. [Google Scholar] [CrossRef]
- Golia, S.S.; Zargar, R.A.; Arora, M. Synthesis and Characterization of Metal Oxide Nanoparticles for Antimicrobial Application. In Metal Oxide–Based Carbon Nanocomposites for Environmental Remediation and Safety; CRC Press: Boca Raton, FL, USA, 2023; pp. 1–20. [Google Scholar]
- Huber, M.J.; Ivleva, N.P.; Booth, A.M.; Beer, I.; Bianchi, I.; Drexel, R.; Geiss, O.; Mehn, D.; Meier, F.; Molska, A.; et al. Physicochemical characterization and quantification of nanoplastics: Applicability, limitations and complementarity of batch and fractionation methods. Anal. Bioanal. Chem. 2023, 415, 3007–3031. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, H.A.; Taha, A.; Ibrahim, H.-I.M.; Ahmed, E.A.; Mohamed, H.; Ahmed, H. Cytotoxic activity of bimetallic Ag@Se green synthesized nanoparticles using Jerusalem Thorn (Parkinsonia aculeata). Front. Chem. 2024, 12, 1343506. [Google Scholar] [CrossRef]
- Krishnan Sundarrajan, S.; Pottail, L. Green synthesis of bimetallic Ag@ Au nanoparticles with aqueous fruit latex extract of Artocarpus heterophyllus and their synergistic medicinal efficacies. Appl. Nanosci. 2021, 11, 971–981. [Google Scholar] [CrossRef]
- Hashem, A.H.; Abdel-Maksoud, M.A.; Fatima, S.; Almutairi, S.M.; Ghorab, M.A.; El-Batal, A.I.; El-Sayyad, G.S. Synthesis and characterization of innovative GA@ Ag-CuO nanocomposite with potent antimicrobial and anticancer properties. Sci. Rep. 2025, 15, 689. [Google Scholar] [CrossRef]
- Hashem, A.H.; Saied, E.; Ali, O.M.; Selim, S.; Al Jaouni, S.K.; Elkady, F.M.; El-Sayyad, G.S. Pomegranate peel extract stabilized selenium nanoparticles synthesis: Promising antimicrobial potential, antioxidant activity, biocompatibility, and hemocompatibility. Appl. Biochem. Biotechnol. 2023, 195, 5753–5776. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.; Hassan, S.E.-D.; Saied, E.; Hamza, M.F. Photocatalytic degradation of real textile and tannery effluent using biosynthesized magnesium oxide nanoparticles (MgO-NPs), heavy metal adsorption, phytotoxicity, and antimicrobial activity. J. Environ. Chem. Eng. 2021, 9, 105346. [Google Scholar] [CrossRef]
- Devaraj, S.; Munichandraiah, N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 2008, 112, 4406–4417. [Google Scholar] [CrossRef]
- Hasanin, M.S.; Hashem, A.H.; Al-Askar, A.A.; Haponiuk, J.; Saied, E. A novel nanocomposite based on mycosynthesized bimetallic zinc-copperoxide nanoparticles, nanocellulose and chitosan: Characterization, antimicrobial and photocatalytic activities. Electron. J. Biotechnol. 2023, 65, 45–55. [Google Scholar] [CrossRef]
- Zahran, E.M.; Mohamad, S.A.; Elsayed, M.M.; Hisham, M.; Maher, S.A.; Abdelmohsen, U.R.; Elrehany, M.; Desoukey, S.Y.; Kamel, M.S. Ursolic acid inhibits NF-κB signaling and attenuates MMP-9/TIMP-1 in progressive osteoarthritis: A network pharmacology-based analysis. RSC Adv. 2024, 14, 18296–18310. [Google Scholar] [CrossRef]
- Saieb, F.M.; Adley, C.; Bergin, A. Cell-to-cell communication in salmonella typhimurium DT104. Al-Azhar Bull. Sci. 2007, 18, 27–36. [Google Scholar] [CrossRef]
- Abdelmagied, O.R.; Mourad, M.H.; Ahmed, A.F.; Younis, A.M. In vitro Prospecting and characterization of antifungal extracted from some plants. Al-Azhar Bull. Sci. 2022, 33, 117–131. [Google Scholar] [CrossRef]
- Lynch, A.S.; Robertson, G.T. Bacterial and fungal biofilm infections. Annu. Rev. Med. 2008, 59, 415–428. [Google Scholar] [CrossRef]
- Hassanin, S.O.; Hegab, A.M.M.; Mekky, R.H.; Said, M.A.; Khalil, M.G.; Hamza, A.A.; Amin, A. Combining in vitro, in vivo, and network pharmacology assays to identify targets and molecular mechanisms of spirulina-derived biomolecules against breast cancer. Mar. Drugs 2024, 22, 328. [Google Scholar] [CrossRef]
- Elmaidomy, A.H.; Abdel-Maqsoud, N.M.R.; Tammam, O.Y.; Abdel-Rahman, I.M.; Elrehany, M.A.; Bakhsh, H.T.; Altemani, F.H.; Algehainy, N.A.; Alzubaidi, M.A.; Alsenani, F. Egyptian mandarin peel oil’s anti-scabies potential via downregulation-of-inflammatory/immune-cross-talk: GC–MS and PPI network studies. Sci. Rep. 2023, 13, 14192. [Google Scholar] [CrossRef]
- Ouir, S.; Lachenani, H.; Boudeffar, F.; Bouaoua, A.; Cheraga, H.; Zermane, F.; Benmaamar, Z.; Gabouze, N. Structural, morphological and optical characterization of CuO/ZnO nanocomposite films. Appl. Phys. A 2022, 129, 10. [Google Scholar] [CrossRef]
- Gunawardhana, B.; Gunathilake, C.; Dayananda, K.; Dissanayake, D.; Mantilaka, M.; Kalpage, C.; Rathnayake, R.; Rajapakse, R.; Manchanda, A.; Etampawala, T.N.B. Synthesis of hematite nanodiscs from natural laterites and investigating their adsorption capability of removing Ni2+ and Cd2+ ions from aqueous solutions. J. Compos. Sci. 2020, 4, 57. [Google Scholar] [CrossRef]
- Mwaheb, M.A.; Reda, N.M.; El-Wetidy, M.S.; Sheded, A.H.; Al-Otibi, F.; Al-Hamoud, G.A.; Said, M.A.; Aidy, E.A. Versatile properties of Opuntia ficus-indica (L.) Mill. flowers: In vitro exploration of antioxidant, antimicrobial, and anticancer activities, network pharmacology analysis, and In-silico molecular docking simulation. PLoS ONE 2024, 19, e0313064. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Choure, S.J.; Fong, M.H.; Roh, J.; Levin, I.; Yu, K.; Joung, J.F.; Morgan, N.; Li, S.-C.; Sun, X. ASKCOS: Open-Source, Data-Driven Synthesis Planning. Acc. Chem. Res. 2025, 58, 1764–1775. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Cho, Y.-H.; Lee, Y. Pyocyanin and 1-Hydroxyphenazine promote anaerobic killing of Pseudomonas aeruginosa via single-electron transfer with ferrous iron. Microbiol. Spectr. 2022, 10, e02312–e02322. [Google Scholar] [CrossRef]
- Zahran, E.M.; Abdelmohsen, U.R.; Shalash, M.M.; Salem, M.A.; Khalil, H.E.; Desoukey, S.Y.; Fouad, M.A.; Krischke, M.; Mueller, M.; Kamel, M.S. Local anaesthetic potential, metabolic profiling, molecular docking and in silico ADME studies of Ocimum forskolei, family Lamiaceae. Nat. Prod. Res. 2020, 35, 4757–4763. [Google Scholar] [CrossRef]
- Shehata, A.Z.; Elhawary, E.A.; Mokhtar, M.M.; Waheeb, H.O.; Fares, M.; Emam, D.E.; Bakr, N.A.; Sadek, A.M.; El-Tabakh, M.A. Molecular docking and insecticidal activity of Pyrus communis L. extracts against disease vector, Musca domestica L. (Diptera: Muscidae). Egypt. J. Basic Appl. Sci. 2023, 10, 800–811. [Google Scholar] [CrossRef]
- Sobeh, M.; ElHawary, E.; Peixoto, H.; Labib, R.M.; Handoussa, H.; Swilam, N.; El-Khatib, A.H.; Sharapov, F.; Mohamed, T.; Krstin, S. Identification of phenolic secondary metabolites from Schotia brachypetala Sond. (Fabaceae) and demonstration of their antioxidant activities in Caenorhabditis elegans. PeerJ 2016, 4, e2404. [Google Scholar] [CrossRef]
- Yagi, S.; Zengin, G.; Eldahshan, O.A.; Singab, A.N.B.; Selvi, S.; Cetiz, M.V.; Rodrigues, M.J.; Custodio, L.; Dall’Acqua, S.; Elhawary, E.A. Functional constituents of Colchicum lingulatum Boiss. & Spruner subsp. rigescens K. Perss. extracts and their biological activities with different perspectives. Food Biosci. 2024, 60, 104496. [Google Scholar] [CrossRef]
- Krishnan, A.; Sathishkumar, K.; Devi, O.R.; Agrawal, S.; Debnath, A.; Arasu, M.V.; Sundaram, T.; Subramanian, K.; Karunakaran, R. Metal oxides on the frontlines: Antimicrobial activity in plant-derived biometallic nanoparticles. Nanotechnol. Rev. 2024, 13, 20240106. [Google Scholar] [CrossRef]
- Roni, M.; Harilal, C.; Panneerselvam, C. Toxicity of Sonneratia caseolaris-derived silver nanomaterials and related histological changes in the dengue vector, Aedes albopictus. BioNanoScience 2024, 14, 5498–5512. [Google Scholar] [CrossRef]
- El-Didamony, S.E.; Kalaba, M.H.; Sharaf, M.H.; El-Fakharany, E.M.; Osman, A.; Sitohy, M.; Sitohy, B. Melittin alcalase-hydrolysate: A novel chemically characterized multifunctional bioagent; antibacterial, anti-biofilm and anticancer. Front. Microbiol. 2024, 15, 1419917. [Google Scholar] [CrossRef]
- Baazeem, A.; Almanea, A.; Manikandan, P.; Alorabi, M.; Vijayaraghavan, P.; Abdel-Hadi, A. In vitro antibacterial, antifungal, nematocidal and growth promoting activities of Trichoderma hamatum FB10 and its secondary metabolites. J. Fungi 2021, 7, 331. [Google Scholar] [CrossRef]
- Sharaf, M.H.; El-Sherbiny, G.M.; Moghannem, S.A.; Abdelmonem, M.; Elsehemy, I.A.; Metwaly, A.M.; Kalaba, M.H. New combination approaches to combat methicillin-resistant Staphylococcus aureus (MRSA). Sci. Rep. 2021, 11, 4240. [Google Scholar] [CrossRef]
- El-Sherbiny, G.M.; Kalaba, M.H.; Sharaf, M.H.; Moghannem, S.A.; Radwan, A.A.; Askar, A.A.; Ismail, M.K.; El-Hawary, A.S.; Abushiba, M.A. Biogenic synthesis of CuO-NPs as nanotherapeutics approaches to overcome multidrug-resistant Staphylococcus aureus (MDRSA). Artif. Cells Nanomed. Biotechnol. 2022, 50, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, M.H. Evaluation of the antivirulence activity of ethyl acetate extract of (Desf) against. Egypt. Pharm. J. 2020, 19, 188–196. [Google Scholar] [CrossRef]
- Al-Warhi, T.; Zahran, E.M.; Selim, S.; Al-Sanea, M.M.; Ghoneim, M.M.; Maher, S.A.; Mostafa, Y.A.; Alsenani, F.; Elrehany, M.A.; Almuhayawi, M.S. Antioxidant and wound healing potential of Vitis vinifera seeds supported by phytochemical characterization and docking studies. Antioxidants 2022, 11, 881. [Google Scholar] [CrossRef]
- Lee, K.J.; Oh, Y.C.; Cho, W.K.; Ma, J.Y. Antioxidant and anti-inflammatory activity determination of one hundred kinds of pure chemical compounds using offline and online screening HPLC assay. Evid.-Based Complement. Altern. Med. 2015, 2015, 165457. [Google Scholar] [CrossRef]
- Şahin, S. 3,4-difluoro-2-(((4-phenoxyphenyl) imino) methyl) phenol with in silico predictions: Synthesis, spectral analyses, ADME studies, targets and biological activity, toxicity and adverse effects, site of metabolism, taste activity. J. Mol. Struct. 2024, 1317, 139136. [Google Scholar] [CrossRef]
- Maher Zahran, E.; Abdelwahab, M.F.; Mohyeldin, R.H.; Tammam, O.Y.; Abdel-Maqsoud, N.M.R.; Altemani, F.H.; Algehainy, N.A.; Alanazi, M.A.; Jalal, M.M.; Elrehany, M.A. Combination of Callyspongia sp. and Stem Cells for Wound Repair and Skin Regeneration: In Vivo and in Silico Evidences. Chem. Biodivers. 2024, 21, e202400682. [Google Scholar] [CrossRef]
- Amen, Y.; Selim, M.A.; Suef, R.A.; Sayed, A.M.; Othman, A. Unveiling the Antiviral Efficacy of Forskolin: A Multifaceted In Vitro and In Silico Approach. Molecules 2024, 29, 704. [Google Scholar] [CrossRef]
- Zahran, E.M.; Mohyeldin, R.H.; Abd El-Mordy, F.M.; Maher, S.A.; Abdel-Maqsoud, N.M.R.; Altemani, F.H.; Algehainy, N.A.; Alanazi, M.A.; Jalal, M.M.; Elrehany, M.A. Wound healing potential of Cystoseira/mesenchymal stem cells in immunosuppressed rats supported by overwhelming immuno-inflammatory crosstalk. PLoS ONE 2024, 19, e0300543. [Google Scholar] [CrossRef]
- Khalil, A.H.; Aidy, E.A.; Said, M.A.; Kebeish, R.; Al-Badwy, A.H. Biochemical and molecular docking-based assessment of Spirulina platensis’s bioactive constituents for their potential application as natural anticancer drug. Algal Res. 2024, 82, 103624. [Google Scholar] [CrossRef]
No. | Component | Molecular Formula | Chemical Class | Rt (min.) | [M − H]− m/z | [M + H]+ m/z | Area % | Ref. |
---|---|---|---|---|---|---|---|---|
1 | Tetrahydroxy trimethoxy dihydroxyflavone | C19H18O10 | Flavonoid | 0.81 | 377 | 381 | 12.03 (18.13) | [13,14] |
2 | Kaempferol-di-hexoside | C42H45O22 | Flavonoid | 6.04 | 609 | - | 4.75 | [15] |
3 | Kaempferol-hexoside | C21H20O11 | Flavonoid | 6.64 | 447 | - | 2.82 | [15] |
4 | Afzelin * | C21H20O10 | Flavonoid | 7.08 | 431 | - | 2.23 | [2] |
5 | Quercetin-hexoside | C21H20O12 | Flavonoid | 7.65 | 463 | - | 8.15 | [15] |
6 | Kaempferol-hexuronoide | C27H30O16 | Flavonoid | 8.05 | 459 | - | 0.58 | [15] |
7 | Unidentified | - | - | 8.61 | - | 162 or 194 or 217 | 6.17 | - |
8 | Ethyl palmitate | C18H36O2 | Fatty acid | 11.52 | - | 285 | 2.04 | [16] |
9 | Unidentified | - | - | 14.35 | - | 277 or 353 or 393 | 0.75 | - |
10 | 9-oxo-Octadecadienoic acid | C18H32O3 | Fatty acid | 14.41 | 293 | - | 20.80 | [17,18] |
11 | Myricetin | C15H10O8 | Flavonoid | 15.48 | - | 319 | 0.69 | [16] |
12 | Myricetin-pentosyl pentoside | C27H30O16 | Flavonoid | 15.96 | 609 | 611 | 7.69 (1.49) | [16] |
13 | Chlorogenic acid | C16H18O9 | Phenolic acid | 16.44 | 353 | 355 | 5.49 (6.40) | [13,14,19] |
14 | Trihydroxy germacrenolide | - | Sesquiterpene lactone | 16.94 | - | 285 | 2.75 | [16] |
15 | p-Coumaroyl-hexoside | C15H14N2O3 | Phenolic acid | 17.36 | 325 | - | 11.43 | [16] |
16 | Caffeic acid hexoside | C9H8O4 | Phenolic acid | 19.13 | 341 | 347 | 6.22 (2.75) | [14,20] |
17 | Carnosic acid | C20H28O4 | Phenolic acid | 19.99 | - | 333 | 2.49 | [14,21] |
18 | Trigalloyl hexoside | C27H24O18 | Tannin | 20.99 | - | 637 | 1.10 | [22] |
19 | Malvidin | C17H15O7+ | Anthocyanin | 21.24 | - | 331 | 0.61 | [23] |
20 | Glycitein-hexouronide | C22H20O11 | Flavonoid | 22.73 | 459 | 461 | 0.29 (17.92) | [24,25] |
21 | Benzoyl caffeic acid rutinoside | - | Phenolic acid | 26.00 | 591 | - | 0.29 | [18] |
22 | Unidentified | - | - | 27.62 | - | 613 | 2.61 | - |
23 | Unidentified | - | - | 27.84 | - | 647 or 613 | 2.41 | - |
24 | Lutein (hydroxycarotenoid) | C40H56O2 | Carotenoid | 28.05 | - | 568 | 2.84 | [23] |
25 | Hyperoside | C21H20O12 | Flavonoid | 28.28 | - | 465 | 3.67 | [19] |
26 | Syringaresinol−acetyl hexose | C30H37O14 | Iridoid | 28.41 | 621 | 757 | 1.60 (2.85) | [26] |
27 | Unidentified | - | - | 28.89 | - | 445 | 4.48 | - |
28 | Galloyl-HHDP | C35H16O21 | Tannin | 29.28 | 481 | - | 0.56 | [27] |
29 | Methoxy ursolic acid | C31H51O4 | Triterpene | 29.54 | - | 487 | 2.83 | [28] |
30 | Oleanolic acid * | C30H48O3 | Triterpene | 29.71 | 457 | - | 2.78 | [29] |
31 | Methoxy benzoic acid (p-Anisic acid) | C8H8O3 | Phenolic acid | 30.07 | 313 | 315 | 1.05 (2.28) | [16] |
32 | Caffeoyl quinic acid dimer | C32H36O18 | Phenolic acid | 30.72 | 707 | - | 2.41 | [30] |
33 | Unidentified | - | - | 31.11 | 265 | - | 6.04 | - |
34 | Epigallocatechin * | C15H14O7 | Tannin | 31.34 | 305 | 307 | 0.76 (2.41) | [2] |
% identification | ||||||||
−ve mode | 91.93% | |||||||
+ve mode | 55.12% |
Microbial Strain | Diameter of Inhibition Zone (mm) | ||||
---|---|---|---|---|---|
Nephrolepis exaltata Extract | Magnesium Nanoparticle | Manganese Nanoparticle | MnO2-MgO BNPs | Chloramphenicol/ Clotrimazole | |
Pseudomonas aeruginosa | 16 ± 0.5 | 11.8 ± 0.4 | 12 ± 0.5 | 26 ± 0.5 | 15.3 ± 0.3 |
Klebsiella pneumonia (ATCC-9633) | 15 ± 0.5 | 17.1 ± 0.4 | 16 ± 0.5 | 22.6 ± 0.3 | 24.5 ± 0.2 |
Staphylococcus aureus (ATCC-6538) | 15.3 ± 0.3 | 16 ± 0.5 | 14.6 ± 0.3 | 19.3 ± 0.8 | 19 ± 0.5 |
Escherichia coli | 0 | 14.6 ± 0.3 | 12.1 ± 0.4 | 17 ± 0.5 | 21.3 ± 0.6 |
Bacillus cereus | 21 ± 0.5 | 17.5 ± 0.2 | 22.6 ± 0.3 | 16 ± 0.5 | 25.6 ± 0.3 |
Candida albicans (ATCC-10231) | 0 | 12.6 ± 0.3 | 0 | 13.3 ± 0.3 | 20 ± 0.5 |
Microbial Strain | MIC Values of MnO2-MgO BNPs (µg/mL) |
---|---|
Pseudomonas aeruginosa | 250 μg/mL |
Klebsiella pneumonia (ATCC-9633) | 500 μg/mL |
Staphylococcus aureus (ATCC-6538) | 500 μg/mL |
Escherichia coli | 500 μg/mL |
Bacillus cereus | 500 μg/mL |
Candida albicans (ATCC-10231) | 250 μg/mL |
Compound Pubchem CID | Pseudomonas aeruginosa Related Proteins | Uniprot ID |
---|---|---|
72277 (epigallocatechin) | Polypeptide deformylase | Q9I7A8 |
Quinolone signal response protein (pqsE) | P20581 | |
5281643 (hyperoside) | 3′-phosphoadenosine-5′-phosphosulfate reductase (PAPS reductase) | O05927 |
Active Metabolites PubChem Id (CID) | Target Protein (Isozyme) | Binding Score kcal/mol | Key Amino Acid Residues | Type of Binding | 2D Representation |
---|---|---|---|---|---|
CID 72277 | PDB IDs: 6JFF | −6.0270 | Trp100, Glu146, Gly102, Val142 | H-Bond H-Bond Hydrophobic Hydrophobic | |
CID 5281643 | PDB IDs: 6JFF | −5.0920 | Trp100 Glu146, His145 | H-Bond H-Bond Hydrophobic | |
CID 72277 | PDB IDs: 2GOY | −5.6139 | Arg242, Gly161 | H-Bond H-Bond | |
CID 5281643 | PDB IDs: 2GOY | −7.1013 | Gly161, Thr160, Ser60, Glu162, Leu85, Ser62, Arg242, Arg145 | H-Bond H-Bond 2x H-Bond H-Bond Hydrophobic Hydrophobic Ionic Ionic |
CID 72277 Oxidized Form | CID 5281643 Oxidized Form |
---|---|
Active Metabolites PubChem Id (CID) | Target Protein (Isozyme) | Binding Score kcal/mol | Key Amino Acid Residues | Type of Binding | 2D Representation |
---|---|---|---|---|---|
CID 72277 | PDB IDs: 3SY7 | −4.6547 | Ala199 Gly189, Gly188, Leu201 Leu152 | H-Bond H-Bond H-Bond H-Bond Hydrophobic | |
CID 5281643 | PDB IDs: 3SY7 | −5.7701 | Ile187 Leu152 Gly189, Leu201 | 2x H-Bond H-Bond H-Bond 2x Hydrophobic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhawary, E.A.; Soltane, R.; Moustafa, M.H.; Abdelaziz, A.M.; Said, M.A.; Zahran, E.M. Sustainable MnO2/MgO Bimetallic Nanoparticles Capped with Sword Fern Methanol Extract Attain Antioxidant/Anti-Biofilm Potential: A UPLC-ESI/LC/MS and Network Pharmacology-Supported Study. Pharmaceuticals 2025, 18, 1262. https://doi.org/10.3390/ph18091262
Elhawary EA, Soltane R, Moustafa MH, Abdelaziz AM, Said MA, Zahran EM. Sustainable MnO2/MgO Bimetallic Nanoparticles Capped with Sword Fern Methanol Extract Attain Antioxidant/Anti-Biofilm Potential: A UPLC-ESI/LC/MS and Network Pharmacology-Supported Study. Pharmaceuticals. 2025; 18(9):1262. https://doi.org/10.3390/ph18091262
Chicago/Turabian StyleElhawary, Esraa A., Raya Soltane, Mohamed H. Moustafa, Amer Morsy Abdelaziz, Mohamed A. Said, and Eman Maher Zahran. 2025. "Sustainable MnO2/MgO Bimetallic Nanoparticles Capped with Sword Fern Methanol Extract Attain Antioxidant/Anti-Biofilm Potential: A UPLC-ESI/LC/MS and Network Pharmacology-Supported Study" Pharmaceuticals 18, no. 9: 1262. https://doi.org/10.3390/ph18091262
APA StyleElhawary, E. A., Soltane, R., Moustafa, M. H., Abdelaziz, A. M., Said, M. A., & Zahran, E. M. (2025). Sustainable MnO2/MgO Bimetallic Nanoparticles Capped with Sword Fern Methanol Extract Attain Antioxidant/Anti-Biofilm Potential: A UPLC-ESI/LC/MS and Network Pharmacology-Supported Study. Pharmaceuticals, 18(9), 1262. https://doi.org/10.3390/ph18091262