Molecular Basis of BRAF Inhibitor Resistance in Melanoma: A Systematic Review
Abstract
1. Introduction
1.1. Rationale
1.2. Objectives
2. Methods
2.1. Search Strategy
2.2. Data Collection
3. Results
3.1. Search Results
3.2. Study Characteristics
4. BRAF Overview
5. Targeted Therapies: Drug Mechanisms and Treatment Options
6. Type of Resistance
6.1. Primary (Intrinsic) Resistance: Genetic Mechanisms of Resistance
6.1.1. Loss of the Phosphatase and TENsin Homolog (PTEN) Gene
6.1.2. Role of CCND1 Amplification
6.1.3. COT (MAP3K8) Overexpression
6.1.4. Role of Loss of NF1 Gene Activity
6.1.5. RAC1 Mutation
6.1.6. Loss of the USP28-FBW7
6.2. Primary (Intrinsic) Resistance: Epigenetic and Transcriptomic Mechanisms
6.2.1. DNA Methylation
6.2.2. Histone Modifications
6.2.3. Transcriptome Regulation
6.3. Secondary Resistance
6.3.1. Adaptive Resistance
Reactivation of the ERK1/2 Pathway
Receptor Tyrosine Kinases (RTKs)
MIcrophthalmia-Associated Transcription Factor (MITF)
SOX10
6.3.2. Acquired Resistance
NLRP1 in MAPK/ERK Pathway
NRAS Mutations
BRAF Paradox and RAF Proteins Dimerization
BRAF Gene Amplification and Splicing Variants
MEK1/2
The Tyrosine Kinase Receptor (RTK)
PI3K/AKT Pathway
STAG2 or STAG3 Expression and YAP/TAZ Pathway
The Expression of Dual-Specificity MAPK Phosphatases (DUSPs)
The Expression of Ring Finger Protein 125 (RNF125)
6.4. Immune Mechanisms
6.5. Metabolic Pathway
7. Strategies to Overcome BRAF Inhibitor Resistance in Melanoma
7.1. Mechanistic Insights into Resistance
7.1.1. Approved Targeted Therapies
7.1.2. Mechanism of Resistance
7.1.3. Clinical Strategies to Overcome BRAFi/MEKi Resistance
7.1.4. Combining BRAFi/MEKi with Other Targeted Agents
7.1.5. Personalized Combination Therapies
7.1.6. Future Directions
7.2. Biomarker-Guided Strategies and Emerging Therapeutic Approaches
7.2.1. Real-Time Biomarkers and Longitudinal Monitoring
7.2.2. Targeting Bypass Signaling and Pathway Reactivation
7.2.3. Integrating Targeted Therapy and Immunotherapy
7.2.4. Tumor Microenvironment and Metabolic Vulnerabilities
7.2.5. From Fixed Sequences to Adaptive Algorithms
8. Discussion, Conclusions, and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Cancer Society. Cancer Facts and Figures 2021; American Cancer Society: Atlanta, GA, USA, 2021. [Google Scholar]
- Huang, J.; Chan, S.C.; Ko, S.; Lok, V.; Zhang, L.; Lin, X.; Lucero-Prisno, D.E.; Xu, W.; Zheng, Z.J.; Elcarte, E.; et al. Global Incidence, Mortality, Risk Factors and Trends of Melanoma: A Systematic Analysis of Registries. Am. J. Clin. Dermatol. 2023, 24, 965–975. [Google Scholar] [CrossRef]
- American Cancer Society. Survival Rates for Melanoma Skin Cancer 2022; American Cancer Society: Atlanta, GA, USA, 2022. [Google Scholar]
- Shinozaki, M.; Fujimoto, A.; Morton, D.L.; Hoon, D.S.B. Incidence of BRAF Oncogene Mutation and Clinical Relevance for Primary Cutaneous Melanomas. Clin. Cancer Res. 2004, 10, 1753–1757. [Google Scholar] [CrossRef]
- Griffin, M.; Scotto, D.; Josephs, D.H.; Mele, S.; Crescioli, S.; Bax, H.J.; Pellizzari, G.; Wynne, M.D.; Nakamura, M.; Hoffmann, R.M.; et al. BRAF Inhibitors: Resistance and the Promise of Combination Treatments for Melanoma. Oncotarget 2017, 8, 78174. [Google Scholar] [CrossRef]
- McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.T.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; et al. Roles of the Raf/MEK/ERK Pathway in Cell Growth, Malignant Transformation and Drug Resistance. Biochim. Biophys. Acta Mol. Cell. Res. 2007, 1773, 1263–1284. [Google Scholar] [CrossRef]
- Cohen, C.; Zavala-Pompa, A.; Sequeira, J.H.; Shoji, M.; Sexton, D.G.; Cotsonis, G.; Cerimele, F.; Govindarajan, B.; Macaron, N.; Arbiser, J.L. Mitogen-Actived Protein Kinase Activation Is an Early Event in Melanoma Progression. Clin. Cancer Res. 2002, 8, 3728–3733. [Google Scholar]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF Gene in Human Cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Florent, L.; Saby, C.; Slimano, F.; Morjani, H. BRAF V600-Mutated Metastatic Melanoma and Targeted Therapy Resistance: An Update of the Current Knowledge. Cancers 2023, 15, 2607. [Google Scholar] [CrossRef]
- Ottaviano, M.; Giunta, E.F.; Tortora, M.; Curvietto, M.; Attademo, L.; Bosso, D.; Cardalesi, C.; Rosanova, M.; De Placido, P.; Pietroluongo, E.; et al. BRAF Gene and Melanoma: Back to the Future. Int. J. Mol. Sci. 2021, 22, 3474. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Lopez-Beltran, A.; Massari, F.; Maclennan, G.T.; Montironi, R. Molecular Testing for BRAF Mutations to Inform Melanoma Treatment Decisions: A Move toward Precision Medicine. Mod. Pathol. 2018, 31, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Liu, S.; Zhang, G.; Kwong, L.N.; Zhu, Y.; Miller, J.P.; Hu, Y.; Zhong, W.; Zeng, J.; Wu, L.; et al. Oncogenic BRAF-Mediated Melanoma Cell Invasion. Cell Rep. 2016, 15, 2012–2024. [Google Scholar] [CrossRef]
- Poulikakos, P.I.; Rosen, N. Mutant BRAF Melanomas-Dependence and Resistance. Cancer Cell 2011, 19, 11–15. [Google Scholar] [CrossRef]
- Flaherty, K.T. BRAF Inhibitors and Melanoma. Cancer J. 2011, 17, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Delord, J.P.; Robert, C.; Nyakas, M.; McArthur, G.A.; Kudchakar, R.; Mahipal, A.; Yamada, Y.; Sullivan, R.; Arance, A.; Kefford, R.F.; et al. Phase I Dose-Escalation and -Expansion Study of the BRAF Inhibitor Encorafenib (LGX818) in Metastatic BRAF-Mutant Melanoma. Clin. Cancer Res. 2017, 23, 5339–5348. [Google Scholar] [CrossRef] [PubMed]
- Korn, E.L.; Liu, P.Y.; Lee, S.J.; Chapman, J.A.W.; Niedzwiecki, D.; Suman, V.J.; Moon, J.; Sondak, V.K.; Atkins, M.B.; Eisenhauer, E.A.; et al. Meta-Analysis of Phase II Cooperative Group Trials in Metastatic Stage IV Melanoma to Determine Progression-Free and Overall Survival Benchmarks for Future Phase II Trials. J. Clin. Oncol. 2008, 26, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Hugo, W.; Kong, X.; Hong, A.; Koya, R.C.; Moriceau, G.; Chodon, T.; Guo, R.; Johnson, D.B.; Dahlman, K.B.; et al. Acquired Resistance and Clonal Evolution in Melanoma during BRAF Inhibitor Therapy. Cancer Discov. 2014, 4, 80–93. [Google Scholar] [CrossRef]
- Robert, C.; Grob, J.J.; Stroyakovskiy, D.; Karaszewska, B.; Hauschild, A.; Levchenko, E.; Chiarion Sileni, V.; Schachter, J.; Garbe, C.; Bondarenko, I.; et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N. Engl. J. Med. 2019, 381, 626–636. [Google Scholar] [CrossRef]
- Grob, J.J.; Amonkar, M.M.; Karaszewska, B.; Schachter, J.; Dummer, R.; Mackiewicz, A.; Stroyakovskiy, D.; Drucis, K.; Grange, F.; Chiarion-Sileni, V.; et al. Comparison of Dabrafenib and Trametinib Combination Therapy with Vemurafenib Monotherapy on Health-Related Quality of Life in Patients with Unresectable or Metastatic Cutaneous BRAF Val600-Mutation-Positive Melanoma (COMBI-v): Results of a Phase 3, Open-Label, Randomised Trial. Lancet Oncol. 2015, 16, 1389–1398. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Dreno, B.; Larkin, J.; Ribas, A.; Liszkay, G.; Maio, M.; Mandala, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L.; et al. 5-Year Outcomes with Cobimetinib plus Vemurafenib in BRAFV600 Mutation⇓positive Advanced Melanoma: Extended Follow-up of the CoBRIM Study. Clin. Cancer Res. 2021, 27, 5225–5235. [Google Scholar] [CrossRef]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; De Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al. Dabrafenib and Trametinib versus Dabrafenib and Placebo for Val600 BRAF-Mutant Melanoma: A Multicentre, Double-Blind, Phase 3 Randomised Controlled Trial. The Lancet 2015, 386, 444–451. [Google Scholar] [CrossRef]
- Hamid, O.; Cowey, C.L.; Offner, M.; Faries, M.; Carvajal, R.D. Efficacy, Safety, and Tolerability of Approved Combination BRAF and MEK Inhibitor Regimens for BRAF-Mutant Melanoma. Cancers 2019, 11, 1642. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Dummer, R.; Gogas, H.J.; Flaherty, K.T.; Arance, A.; Mandala, M.; Liszkay, G.; Garbe, C.; Schadendorf, D.; Krajsova, I.; et al. Update on Tolerability and Overall Survival in COLUMBUS: Landmark Analysis of a Randomised Phase 3 Trial of Encorafenib plus Binimetinib vs Vemurafenib or Encorafenib in Patients with BRAF V600–Mutant Melanoma. Eur. J. Cancer 2020, 126, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Yacoub, N.; Mishra, R.; White, A.; Yuan, L.; Alanazi, S.; Garrett, J.T. Current Advances in the Treatment of Braf-Mutant Melanoma. Cancers 2020, 12, 482. [Google Scholar] [CrossRef]
- Amaral, T.; Sinnberg, T.; Meier, F.; Krepler, C.; Levesque, M.; Niessner, H.; Garbe, C. MAPK Pathway in Melanoma Part II-Secondary and Adaptive Resistance Mechanisms to BRAF Inhibition. Eur. J. Cancer 2017, 73, 93–101. [Google Scholar] [CrossRef]
- Long, G.V.; Fung, C.; Menzies, A.M.; Pupo, G.M.; Carlino, M.S.; Hyman, J.; Shahheydari, H.; Tembe, V.; Thompson, J.F.; Saw, R.P.; et al. Increased MAPK Reactivation in Early Resistance to Dabrafenib/Trametinib Combination Therapy of BRAF-Mutant Metastatic Melanoma. Nat. Commun. 2014, 5, 5694. [Google Scholar] [CrossRef] [PubMed]
- Van Allen, E.M.; Wagle, N.; Sucker, A.; Treacy, D.J.; Johannessen, C.M.; Goetz, E.M.; Place, C.S.; Taylor-Weiner, A.; Whittaker, S.; Kryukov, G.V.; et al. The Genetic Landscape of Clinical Resistance to RAF Inhibition in Metastatic Melanoma. Cancer Discov. 2014, 4, 94–109. [Google Scholar] [CrossRef]
- Steck, P.A.; Pershouse, M.A.; Jasser, S.A.; Yung, W.K.A.; Lin, H.; Ligon, A.H.; Langford, L.A.; Baumgard, M.L.; Hattier, T.; Davis, T.; et al. Identification of a Candidate Tumour Suppressor Gene, MMAC1, at Chromosome 10q23.3 That Is Mutated in Multiple Advanced Cancers. Nat. Genet. 1997, 15, 356–362. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, M.; Song, J.; Zheng, X.; Xu, G.; Bao, Y.; Lan, J.; Luo, D.; Hu, J.; Li, J.J.; et al. Integrin-Src-YAP1 Signaling Mediates the Melanoma Acquired Resistance to MAPK and PI3K/MTOR Dual Targeted Therapy. Mol. Biomed. 2020, 1, 12. [Google Scholar] [CrossRef]
- Stahl, J.M.; Cheung, M.; Sharma, A.; Trivedi, N.R.; Shanmugam, S.; Robertson, G.P. Loss of PTEN Promotes Tumor Development in Malignant Melanoma. Cancer Res. 2003, 63, 2881–2890. [Google Scholar]
- Paraiso, K.H.T.; Xiang, Y.; Rebecca, V.W.; Abel, E.V.; Chen, Y.A.; Munko, A.C.; Wood, E.; Fedorenko, I.V.; Sondak, V.K.; Anderson, A.R.A.; et al. PTEN Loss Confers BRAF Inhibitor Resistance to Melanoma Cells through the Suppression of BIM Expression. Cancer Res. 2011, 71, 2750–2760. [Google Scholar] [CrossRef]
- Liu, J.; Lin, J.; Wang, X.; Zheng, X.; Gao, X.; Huang, Y.; Chen, G.; Xiong, J.; Lan, B.; Chen, C.; et al. CCND1 Amplification Profiling Identifies a Subtype of Melanoma Associated With Poor Survival and an Immunosuppressive Tumor Microenvironment. Front. Immunol. 2022, 13, 725679. [Google Scholar] [CrossRef] [PubMed]
- Czarnecka, A.M.; Bartnik, E.; Fiedorowicz, M.; Rutkowski, P. Targeted Therapy in Melanoma and Mechanisms of Resistance. Int. J. Mol. Sci. 2020, 21, 4576. [Google Scholar] [CrossRef]
- Krauthammer, M.; Kong, Y.; Bacchiocchi, A.; Evans, P.; Pornputtapong, N.; Wu, C.; McCusker, J.P.; Ma, S.; Cheng, E.; Straub, R.; et al. Exome Sequencing Identifies Recurrent Mutations in NF1 and RASopathy Genes in Sun-Exposed Melanomas. Nat. Genet. 2015, 47, 996–1002. [Google Scholar] [CrossRef]
- Al Mahi, A.; Ablain, J. RAS Pathway Regulation in Melanoma. DMM Dis. Models Mech. 2022, 15, dmm049229. [Google Scholar] [CrossRef]
- Cannon, A.C.; Uribe-Alvarez, C.; Chernoff, J. RAC1 as a Therapeutic Target in Malignant Melanoma. Trends Cancer 2020, 6, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Vachtenheim, J.; Ondrušová, L. Many Distinct Ways Lead to Drug Resistance in BRAF- and NRAS-Mutated Melanomas. Life 2021, 11, 424. [Google Scholar] [CrossRef] [PubMed]
- Lodde, G.C.; Jansen, P.; Herbst, R.; Terheyden, P.; Utikal, J.; Pföhler, C.; Ulrich, J.; Kreuter, A.; Mohr, P.; Gutzmer, R.; et al. Characterisation and Outcome of RAC1 Mutated Melanoma. Eur. J. Cancer 2023, 183, 1–10. [Google Scholar] [CrossRef]
- Saei, A.; Palafox, M.; Benoukraf, T.; Kumari, N.; Jaynes, P.W.; Iyengar, P.V.; Muñoz-Couselo, E.; Nuciforo, P.; Cortés, J.; Nötzel, C.; et al. Loss of USP28-Mediated BRAF Degradation Drives Resistance to RAF Cancer Therapies. J. Exp. Med. 2018, 215, 1913–1928. [Google Scholar] [CrossRef]
- Khaliq, M.; Fallahi-Sichani, M. Epigenetic Mechanisms of Escape from BRAF Oncogene Dependency. Cancers 2019, 11, 1480. [Google Scholar] [CrossRef]
- Hangauer, M.J.; Viswanathan, V.S.; Ryan, M.J.; Bole, D.; Eaton, J.K.; Matov, A.; Galeas, J.; Dhruv, H.D.; Berens, M.E.; Schreiber, S.L.; et al. Drug-Tolerant Persister Cancer Cells Are Vulnerable to GPX4 Inhibition. Nature 2017, 551, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Pigliucci, M. Evolution of Phenotypic Plasticity: Where Are We Going Now? Trends Ecol. Evol. 2005, 20, 481–486. [Google Scholar] [CrossRef]
- Carreira, S.; Goodall, J.; Denat, L.; Rodriguez, M.; Nuciforo, P.; Hoek, K.S.; Testori, A.; Larue, L.; Goding, C.R. Mitf Regulation of Dia1 Controls Melanoma Proliferation and Invasiveness. Genes. Dev. 2006, 20, 3426–3439. [Google Scholar] [CrossRef]
- Lin, J.Y.; Fisher, D.E. Melanocyte Biology and Skin Pigmentation. Nature 2007, 445, 843–850. [Google Scholar] [CrossRef]
- Smith, M.P.; Rowling, E.J.; Miskolczi, Z.; Ferguson, J.; Spoerri, L.; Haass, N.K.; Sloss, O.; McEntegart, S.; Arozarena, I.; von Kriegsheim, A.; et al. Targeting Endothelin Receptor Signalling Overcomes Heterogeneity Driven Therapy Failure. EMBO Mol. Med. 2017, 9, 1011–1029. [Google Scholar] [CrossRef]
- Fallahi-Sichani, M.; Becker, V.; Izar, B.; Baker, G.J.; Lin, J.; Boswell, S.A.; Shah, P.; Rotem, A.; Garraway, L.A.; Sorger, P.K. Adaptive Resistance of Melanoma Cells to RAF Inhibition via Reversible Induction of a Slowly Dividing De-differentiated State. Mol. Syst. Biol. 2017, 13, 905. [Google Scholar] [CrossRef]
- Müller, J.; Krijgsman, O.; Tsoi, J.; Robert, L.; Hugo, W.; Song, C.; Kong, X.; Possik, P.A.; Cornelissen-Steijger, P.D.M.; Foppen, M.H.G.; et al. Low MITF/AXL Ratio Predicts Early Resistance to Multiple Targeted Drugs in Melanoma. Nat. Commun. 2014, 5, 5712. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Fisher, D.E.; Flaherty, K.T. Cell-State Dynamics and Therapeutic Resistance in Melanoma from the Perspective of MITF and IFNγ Pathways. Nat. Rev. Clin. Oncol. 2019, 16, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.N.; Niederst, M.J.; Archibald, H.L.; Gomez-Caraballo, M.; Siddiqui, F.M.; Mulvey, H.E.; Maruvka, Y.E.; Ji, F.; Bhang, H.E.C.; Radhakrishna, V.K.; et al. Tumor Cells Can Follow Distinct Evolutionary Paths to Become Resistant to Epidermal Growth Factor Receptor Inhibition. Nat. Med. 2016, 22, 262–269. [Google Scholar] [CrossRef]
- Shaffer, S.M.; Dunagin, M.C.; Torborg, S.R.; Torre, E.A.; Emert, B.; Krepler, C.; Beqiri, M.; Sproesser, K.; Brafford, P.A.; Xiao, M.; et al. Rare Cell Variability and Drug-Induced Reprogramming as a Mode of Cancer Drug Resistance. Nature 2017, 546, 431–435. [Google Scholar] [CrossRef] [PubMed]
- He, Y.F.; Li, B.Z.; Li, Z.; Liu, P.; Wang, Y.; Tang, Q.; Ding, J.; Jia, Y.; Chen, Z.; Li, N.; et al. Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA. Science 2011, 333, 1303–1307. [Google Scholar] [CrossRef]
- Ito, S.; Shen, L.; Dai, Q.; Wu, S.C.; Collins, L.B.; Swenberg, J.A.; He, C.; Zhang, Y. Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science 2011, 333, 1300–1303. [Google Scholar] [CrossRef]
- Micevic, G.; Theodosakis, N.; Bosenberg, M. Aberrant DNA Methylation in Melanoma: Biomarker and Therapeutic Opportunities. Clin. Epigenetics 2017, 9, 34. [Google Scholar] [CrossRef]
- Mirmohammadsadegh, A.; Marini, A.; Nambiar, S.; Hassan, M.; Tannapfel, A.; Ruzicka, T.; Hengge, U.R. Epigenetic Silencing of the PTEN Gene in Melanoma. Cancer Res. 2006, 66, 6546–6552. [Google Scholar] [CrossRef] [PubMed]
- Micevic, G.; Theodosakis, N.; Taube, J.M.; Bosenberg, M.W.; Rodić, N. Attenuation of Genome-Wide 5-Methylcytosine Level Is an Epigenetic Feature of Cutaneous Malignant Melanomas. Melanoma Res. 2017, 27, 85–96. [Google Scholar] [CrossRef]
- Serrano, M.; Lee, H.W.; Chin, L.; Cordon-Cardo, C.; Beach, D.; DePinho, R.A. Role of the INK4a Locus in Tumor Suppression and Cell Mortality. Cell 1996, 85, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, A.; Tuominen, R.; Grafström, E.; Hansson, J.; Egyhazi, S. High Frequency of P16 INK4A Promoter Methylation in NRAS-Mutated Cutaneous Melanoma. J. Investig. Dermatol. 2010, 130, 2809–2817. [Google Scholar] [CrossRef]
- Rastetter, M.; Schagdarsurengin, U.; Lahtz, C.; Fiedler, E.; Marsch, W.C.; Dammannn, R.; Helmbold, P. Frequent Intra-Tumoural Heterogeneity of Promoter Hypermethylation in Malignant Melanoma. Histol. Histopathol. 2007, 22, 11. [Google Scholar]
- Pomerantz, J.; Schreiber-Agus, N.; Liégeois, N.J.; Silverman, A.; Alland, L.; Chin, L.; Potes, J.; Chen, K.; Orlow, I.; Lee, H.W.; et al. The Ink4a Tumor Suppressor Gene Product, P19Arf, Interacts with MDM2 and Neutralizes MDM2’s Inhibition of P53. Cell 1998, 92, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Freedberg, D.E.; Rigas, S.H.; Russak, J.; Gai, W.; Kaplow, M.; Osman, I.; Turner, F.; Randerson-Moor, J.A.; Houghton, A.; Busam, K.; et al. Frequent P16-Independent Inactivation of P14ARF in Human Melanoma. J. Natl. Cancer Inst. 2008, 100, 784–795. [Google Scholar] [CrossRef]
- Yi, M.; Yang, J.; Chen, X.; Li, J.; Li, X.; Wang, L.; Tan, Y.; Xiong, W.; Zhou, M.; Mccarthy, J.B.; et al. RASSF1A Suppresses Melanoma Development by Modulating Apoptosis and Cell-Cycle Progression. J. Cell Physiol. 2011, 226, 2360–2369. [Google Scholar] [CrossRef]
- de Unamuno Bustos, B.; Murria Estal, R.; Pérez Simó, G.; Simarro Farinos, J.; Pujol Marco, C.; Navarro Mira, M.; Alegre de Miquel, V.; Ballester Sánchez, R.; Sabater Marco, V.; Llavador Ros, M.; et al. Aberrant DNA Methylation Is Associated with Aggressive Clinicopathological Features and Poor Survival in Cutaneous Melanoma. Br. J. Dermatol. 2018, 179, 394–404. [Google Scholar] [CrossRef]
- Hoon, D.S.B.; Spugnardi, M.; Kuo, C.; Huang, S.K.; Morton, D.L.; Taback, B. Profiling Epigenetic Inactivation of Tumor Suppressor Genes in Tumors and Plasma from Cutaneous Melanoma Patients. Oncogene 2004, 23, 4014–4022. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, A.P.; Vogelstein, B. Hypomethylation Distinguishes Genes of Some Human Cancers from Their Normal Counterparts. Nature 1983, 301, 89–92. [Google Scholar] [CrossRef]
- Ecsedi, S.I.; Hernandez-Vargas, H.; Lima, S.C.; Herceg, Z.; Adany, R.; Balazs, M. Transposable Hypomethylation Is Associated with Metastatic Capacity of Primary Melanomas. Int. J. Clin. Exp. Pathol. 2013, 6, 2943. [Google Scholar] [PubMed]
- Vizoso, M.; Ferreira, H.J.; Lopez-Serra, P.; Carmona, F.J.; Martínez-Cardús, A.; Girotti, M.R.; Villanueva, A.; Guil, S.; Moutinho, C.; Liz, J.; et al. Epigenetic Activation of a Cryptic TBC1D16 Transcript Enhances Melanoma Progression by Targeting EGFR. Nat. Med. 2015, 21, 741–750. [Google Scholar] [CrossRef]
- Yu, Y.; Schleich, K.; Yue, B.; Ji, S.; Lohneis, P.; Kemper, K.; Silvis, M.R.; Qutob, N.; van Rooijen, E.; Werner-Klein, M.; et al. Targeting the Senescence-Overriding Cooperative Activity of Structurally Unrelated H3K9 Demethylases in Melanoma. Cancer Cell 2018, 33, 322–336.e8. [Google Scholar] [CrossRef]
- Wagner, V.; Gil, J. An Epigenetic Switch: From Senescent Melanocytes to Malignant Melanoma (and Back). Cancer Cell 2018, 33, 162–163. [Google Scholar] [CrossRef]
- Roesch, A.; Fukunaga-Kalabis, M.; Schmidt, E.C.; Zabierowski, S.E.; Brafford, P.A.; Vultur, A.; Basu, D.; Gimotty, P.; Vogt, T.; Herlyn, M. A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma Cells Is Required for Continuous Tumor Growth. Cell 2010, 141, 583–594. [Google Scholar] [CrossRef]
- Menon, D.R.; Das, S.; Krepler, C.; Vultur, A.; Rinner, B.; Schauer, S.; Kashofer, K.; Wagner, K.; Zhang, G.; Bonyadi Rad, E.; et al. A Stress-Induced Early Innate Response Causes Multidrug Tolerance in Melanoma. Oncogene 2015, 34, 4545. [Google Scholar] [CrossRef]
- Strub, T.; Ghiraldini, F.G.; Carcamo, S.; Li, M.; Wroblewska, A.; Singh, R.; Goldberg, M.S.; Hasson, D.; Wang, Z.; Gallagher, S.J.; et al. SIRT6 Haploinsufficiency Induces BRAFV600E Melanoma Cell Resistance to MAPK Inhibitors via IGF Signalling. Nat. Commun. 2018, 9, 3440. [Google Scholar] [CrossRef]
- Perou, C.M.; Sørile, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; Ress, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular Portraits of Human Breast Tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Villicaña, C.; Cruz, G.; Zurita, M. The Basal Transcription Machinery as a Target for Cancer Therapy. Cancer Cell Int. 2014, 14, 18. [Google Scholar] [CrossRef]
- Garraway, L.A.; Widlund, H.R.; Rubin, M.A.; Getz, G.; Berger, A.J.; Ramaswamy, S.; Beroukhim, R.; Milner, D.A.; Granter, S.R.; Du, J.; et al. Integrative Genomic Analyses Identify MITF as a Lineage Survival Oncogene Amplified in Malignant Melanoma. Nature 2005, 436, 117–122. [Google Scholar] [CrossRef]
- Gupta, R.; Janostiak, R.; Wajapeyee, N. Transcriptional Regulators and Alterations That Drive Melanoma Initiation and Progression. Oncogene 2020, 39, 7093–7105. [Google Scholar] [CrossRef]
- Levy, C.; Khaled, M.; Fisher, D.E. MITF: Master Regulator of Melanocyte Development and Melanoma Oncogene. Trends Mol Med 2006, 12, 406–414. [Google Scholar] [CrossRef]
- Yokoyama, S.; Woods, S.L.; Boyle, G.M.; Aoude, L.G.; MacGregor, S.; Zismann, V.; Gartside, M.; Cust, A.E.; Haq, R.; Harland, M.; et al. A Novel Recurrent Mutation in MITF Predisposes to Familial and Sporadic Melanoma. Nature 2011, 480, 99–103. [Google Scholar] [CrossRef]
- Murakami, H.; Arnheiter, H. Sumoylation Modulates Transcriptional Activity of MITF in a Promoter-Specific Manner. Pigment. Cell Res. 2005, 18, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Mansky, K.C.; Sankar, U.; Han, J.; Ostrowski, M.C. Microphthalmia Transcription Factor Is a Target of the P38 MAPK Pathway in Response to Receptor Activator of NF-ΚB Ligand Signaling. J. Biol. Chem. 2002, 277, 11077–11083. [Google Scholar] [CrossRef]
- Pusch, C.; Hustert, E.; Pfeifer, D.; Südbeck, P.; Kist, R.; Roe, B.; Wang, Z.; Balling, R.; Blin, N.; Scherer, G. The SOX10/Sox10 Gene from Human and Mouse: Sequence, Expression, and Transactivation by the Encoded HMG Domain Transcription Factor. Hum. Genet. 1998, 103, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Ren, Y.; He, W.; Liu, H.; Zhi, Z.; Zhu, X.; Yang, T.; Rong, Y.; Ma, B.; Purwin, T.J.; et al. ERK-Mediated Phosphorylation Regulates SOX10 Sumoylation and Targets Expression in Mutant BRAF Melanoma. Nat. Commun. 2018, 9, 28. [Google Scholar] [CrossRef]
- Freed-Pastor, W.A.; Prives, C. Mutant P53: One Name, Many Proteins. Genes. Dev. 2012, 26, 1268–1286. [Google Scholar] [CrossRef] [PubMed]
- Sen, N.; Satija, Y.K.; Das, S. PGC-1α, a Key Modulator of P53, Promotes Cell Survival upon Metabolic Stress. Mol. Cell 2011, 44, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Gu, W. P53 Post-Translational Modification: Deregulated in Tumorigenesis. Trends. Mol. Med. 2010, 16, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Jin, C.; Zhang, Y.; Jiang, Y.; Wang, J.; Zheng, L. Identification of BRAF, CCND1, and MYC Mutations in a Patient with Multiple Primary Malignant Tumors: A Case Report and Review of the Literature. World J. Surg. Oncol. 2023, 21, 158. [Google Scholar] [CrossRef]
- Liu, D.; Liu, X.; Xing, M. Activities of Multiple Cancer-Related Pathways Are Associated with BRAF Mutation and Predict the Resistance to BRAF/MEK Inhibitors in Melanoma Cells. Cell Cycle 2014, 13, 208–219. [Google Scholar] [CrossRef]
- Mukherjee, N.; Amato, C.M.; Skees, J.; Todd, K.J.; Lambert, K.A.; Robinson, W.A.; Van Gulick, R.; Weight, R.M.; Dart, C.R.; Tobin, R.P.; et al. Simultaneously Inhibiting Bcl2 and Mcl1 Is a Therapeutic Option for Patients with Advanced Melanoma. Cancers 2020, 12, 2182. [Google Scholar] [CrossRef]
- Sale, M.J.; Minihane, E.; Monks, N.R.; Gilley, R.; Richards, F.M.; Schifferli, K.P.; Andersen, C.L.; Davies, E.J.; Vicente, M.A.; Ozono, E.; et al. Targeting Melanoma’s MCL1 Bias Unleashes the Apoptotic Potential of BRAF and ERK1/2 Pathway Inhibitors. Nat. Commun. 2019, 10, 5167. [Google Scholar] [CrossRef]
- Lee, E.F.; Harris, T.J.; Tran, S.; Evangelista, M.; Arulananda, S.; John, T.; Ramnac, C.; Hobbs, C.; Zhu, H.; Gunasingh, G.; et al. BCL-XL and MCL-1 Are the Key BCL-2 Family Proteins in Melanoma Cell Survival. Cell Death Dis. 2019, 10, 342. [Google Scholar] [CrossRef]
- Sahoo, A.; Sahoo, S.K.; Joshi, P.; Lee, B.; Perera, R.J. MicroRNA-211 Loss Promotes Metabolic Vulnerability and BRAF Inhibitor Sensitivity in Melanoma. J. Investig. Dermatol. 2019, 139, 167–176. [Google Scholar] [CrossRef]
- Lee, B.; Sahoo, A.; Sawada, J.; Marchica, J.; Sahoo, S.; Layng, F.I.A.L.; Finlay, D.; Mazar, J.; Joshi, P.; Komatsu, M.; et al. MicroRNA-211 Modulates the DUSP6-ERK5 Signaling Axis to Promote BRAFV600E-Driven Melanoma Growth In Vivo and BRAF/MEK Inhibitor Resistance. J. Investig. Dermatol. 2021, 141, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Kunhiraman, H.; Perera, R.J. The Paradoxical Behavior of MicroRNA-211 in Melanomas and Other Human Cancers. Front. Oncol. 2021, 10, 628367. [Google Scholar] [CrossRef]
- Bai, M.; Zhang, H.; Si, L.; Yu, N.; Zeng, A.; Zhao, R. Upregulation of Serum MiR-10b Is Associated with Poor Prognosis in Patients with Melanoma. J. Cancer 2017, 8, 2487. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, G.; Elshaw, S.; Sachs, P.; Alharbi, H.; Shah, P.; Jothi, A.; Pringle, J.H. MicroRNA-10b Is a Prognostic Biomarker for Melanoma. Mod. Pathol. 2016, 29, 112–121. [Google Scholar] [CrossRef]
- Yao, Z.; Torres, N.M.; Tao, A.; Gao, Y.; Luo, L.; Li, Q.; de Stanchina, E.; Abdel-Wahab, O.; Solit, D.B.; Poulikakos, P.I.; et al. BRAF Mutants Evade ERK-Dependent Feedback by Different Mechanisms That Determine Their Sensitivity to Pharmacologic Inhibition. Cancer Cell 2015, 28, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Wagle, N.; Van Allen, E.M.; Treacy, D.J.; Frederick, D.T.; Cooper, Z.A.; Taylor-Weiner, A.; Rosenberg, M.; Goetz, E.M.; Sullivan, R.J.; Farlow, D.N.; et al. MAP Kinase Pathway Alterations in BRAF -Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition. Cancer Discov. 2014, 4, 61–68. [Google Scholar] [CrossRef]
- Pietrobono, S.; De Paolo, R.; Mangiameli, D.; Marranci, A.; Battisti, I.; Franchin, C.; Arrigoni, G.; Melisi, D.; Poliseno, L.; Stecca, B. P38 MAPK-Dependent Phosphorylation of Transcription Factor SOX2 Promotes an Adaptive Response to BRAF Inhibitors in Melanoma Cells. J. Biol. Chem. 2022, 298, 102353. [Google Scholar] [CrossRef]
- Czyz, M.; Holzmann, K. Fibroblast Growth Factor Receptor Signaling in Skin Cancers. Cells 2019, 8, 540. [Google Scholar] [CrossRef]
- Tzahar, E.; Waterman, H.; Chen, X.; Levkowitz, G.; Karunagaran, D.; Lavi, S.; Ratzkin, B.J.; Yarden, Y. A Hierarchical Network of Interreceptor Interactions Determines Signal Transduction by Neu Differentiation Factor/Neuregulin and Epidermal Growth Factor. Mol. Cell Biol. 1996, 16, 5276–5287. [Google Scholar] [CrossRef]
- Ruggiero, C.F.; Malpicci, D.; Fattore, L.; Madonna, G.; Vanella, V.; Mallardo, D.; Liguoro, D.; Salvati, V.; Capone, M.; Bedogni, B.; et al. ErbB3 Phosphorylation as Central Event in Adaptive Resistance to Targeted Therapy in Metastatic Melanoma: Early Detection in CTCs during Therapy and Insights into Regulation by Autocrine Neuregulin. Cancers 2019, 11, 1425. [Google Scholar] [CrossRef]
- Rossi, A.; Roberto, M.; Panebianco, M.; Botticelli, A.; Mazzuca, F.; Marchetti, P. Drug Resistance of BRAF-Mutant Melanoma: Review of up-to-Date Mechanisms of Action and Promising Targeted Agents. Eur. J. Pharmacol. 2019, 862, 172621. [Google Scholar] [CrossRef] [PubMed]
- Alver, T.N.; Heintz, K.M.; Hovig, E.; Bøe, S.L. Cooperative Induction of Receptor Tyrosine Kinases Contributes to Adaptive MAPK Drug Resistance in Melanoma through the PI3K Pathway. Cancer Rep. 2023, 6, e1736. [Google Scholar] [CrossRef]
- Hartman, M.L.; Czyz, M. MITF in Melanoma: Mechanisms behind Its Expression and Activity. Cell. Mol. Life Sci. 2015, 72, 1249–1260. [Google Scholar] [CrossRef]
- Kozar, I.; Margue, C.; Rothengatter, S.; Haan, C.; Kreis, S. Many Ways to Resistance: How Melanoma Cells Evade Targeted Therapies. Biochim. Biophys. Acta Rev. Cancer 2019, 1871, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Wang, H.; Li, C. Signal Pathways of Melanoma and Targeted Therapy. Signal Transduct. Target. Ther. 2021, 6, 424. [Google Scholar] [CrossRef]
- Lo, R.S.; Shi, H. Detecting Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma. In Molecular Diagnostics for Melanoma; Humana Press: Totowa, NJ, USA, 2014; Volume 1102, pp. 163–174. [Google Scholar] [CrossRef]
- Proietti, I.; Skroza, N.; Bernardini, N.; Tolino, E.; Balduzzi, V.; Marchesiello, A.; Michelini, S.; Volpe, S.; Mambrin, A.; Mangino, G.; et al. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers 2020, 12, 2801. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Vaddi, P.K.; Samson, J.M.; Takegami, T.; Fujita, M. NLRP1 Functions Downstream of the MAPK/ERK Signaling via ATF4 and Contributes to Acquired Targeted Therapy Resistance in Human Metastatic Melanoma. Pharmaceuticals 2020, 14, 23. [Google Scholar] [CrossRef]
- Nazarian, R.; Shi, H.; Wang, Q.; Kong, X.; Koya, R.C.; Lee, H.; Chen, Z.; Lee, M.K.; Attar, N.; Sazegar, H.; et al. Melanomas Acquire Resistance to B-RAF(V600E) Inhibition by RTK or N-RAS Upregulation. Nature 2010, 468, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Bradley, W.D.; Wang, Q.; Yang, H.; Xu, L.; Higgins, B.; Kolinsky, K.; Packman, K.; Kim, M.J.; Trunzer, K.; et al. Resistance to Selective BRAF Inhibition Can Be Mediated by Modest Upstream Pathway Activation. Cancer Res. 2012, 72, 969–978. [Google Scholar] [CrossRef]
- Randic, T.; Magni, S.; Philippidou, D.; Margue, C.; Grzyb, K.; Preis, J.R.; Wroblewska, J.P.; Nazarov, P.V.; Mittelbronn, M.; Frauenknecht, K.B.M.; et al. Single-Cell Transcriptomics of NRAS-Mutated Melanoma Transitioning to Drug Resistance Reveals P2RX7 as an Indicator of Early Drug Response. Cell Rep. 2023, 42, 112696. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.; Di Michele, M.; Stes, E.; Vandermarliere, E.; Martens, L.; Gevaert, K.; Van Heerde, E.; Linders, J.T.M.; Brehmer, D.; Jacoby, E.; et al. Structural Investigation of B-Raf Paradox Breaker and Inducer Inhibitors. J. Med. Chem. 2015, 58, 1818–1831. [Google Scholar] [CrossRef] [PubMed]
- Poudel, M.; Kim, G.; Bhattarai, P.Y.; Shin, S.; Zaraei, S.O.; Oh, C.H.; Choi, H.S. Potent Imidazothiazole-Based Inhibitor of BRAF V600E Overcomes Acquired Resistance via Inhibition of RAF Dimerization in PLX4032-Resistant Melanoma. Anticancer. Res. 2022, 42, 2911–2921. [Google Scholar] [CrossRef]
- Aya, F.; Lanuza-Gracia, P.; González-Pérez, A.; Bonnal, S.; Mancini, E.; López-Bigas, N.; Arance, A.; Valcárcel, J. Genomic Deletions Explain the Generation of Alternative BRAF Isoforms Conferring Resistance to MAPK Inhibitors in Melanoma. Cell Rep. 2024, 43, 114048. [Google Scholar] [CrossRef]
- Corcoran, R.B.; Dias-Santagata, D.; Bergethon, K.; Iafrate, A.J.; Settleman, J.; Engelman, J.A. BRAF Gene Amplification Can Promote Acquired Resistance to MEK Inhibitors in Cancer Cells Harboring the BRAF V600E Mutation. Sci. Signal 2010, 3, ra84. [Google Scholar] [CrossRef]
- Emery, C.M.; Vijayendran, K.G.; Zipser, M.C.; Sawyer, A.M.; Niu, L.; Kim, J.J.; Hatton, C.; Chopra, R.; Oberholzer, P.A.; Karpova, M.B.; et al. MEK1 Mutations Confer Resistance to MEK and B-RAF Inhibition. Proc. Natl. Acad. Sci. USA 2009, 106, 20411–20416. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, J.; Infante, J.R.; Krepler, C.; Reyes-Uribe, P.; Samanta, M.; Chen, H.Y.; Li, B.; Swoboda, R.K.; Wilson, M.; Vultur, A.; et al. Concurrent MEK2 Mutation and BRAF Amplification Confer Resistance to BRAF and MEK Inhibitors in Melanoma. Cell Rep. 2013, 4, 1090–1099. [Google Scholar] [CrossRef]
- Hayward, N.K.; Wilmott, J.S.; Waddell, N.; Johansson, P.A.; Field, M.A.; Nones, K.; Patch, A.M.; Kakavand, H.; Alexandrov, L.B.; Burke, H.; et al. Whole-Genome Landscapes of Major Melanoma Subtypes. Nature 2017, 545, 175–180. [Google Scholar] [CrossRef]
- Tufail, M.; Wan, W.D.; Jiang, C.; Li, N. Targeting PI3K/AKT/MTOR Signaling to Overcome Drug Resistance in Cancer. Chem. Biol. Interact. 2024, 396, 111055. [Google Scholar] [CrossRef]
- Shen, C.H.; Kim, S.H.; Trousil, S.; Frederick, D.T.; Piris, A.; Yuan, P.; Cai, L.; Gu, L.; Li, M.; Lee, J.H.; et al. Loss of Cohesin Complex Components STAG2 or STAG3 Confers Resistance to BRAF Inhibition in Melanoma. Nat. Med. 2016, 22, 1056–1061. [Google Scholar] [CrossRef]
- Winder, M.; Virós, A. Mechanisms of Drug Resistance in Melanoma. In Handbook of Experimental Pharmacology; Springer: Cham, Switzerland, 2018; Volume 249, pp. 91–108. [Google Scholar] [CrossRef]
- Singh, M.K.; Altameemi, S.; Lares, M.; Newton, M.A.; Setaluri, V. Role of Dual Specificity Phosphatases (DUSPs) in Melanoma Cellular Plasticity and Drug Resistance. Sci. Rep. 2022, 12, 14395. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Frederick, D.T.; Levesque, M.P.; Cooper, Z.A.; Feng, Y.; Krepler, C.; Brill, L.; Samuels, Y.; Hayward, N.K.; Perlina, A.; et al. Downregulation of the Ubiquitin Ligase RNF125 Underlies Resistance of Melanoma Cells to BRAF Inhibitors via JAK1 Deregulation. Cell Rep. 2015, 11, 1458–1473. [Google Scholar] [CrossRef]
- Smith, M.P.; Sanchez-Laorden, B.; O’brien, K.; Brunton, H.; Ferguson, J.; Young, H.; Dhomen, N.; Flaherty, K.T.; Frederick, D.T.; Cooper, Z.A.; et al. The Immune Microenvironment Confers Resistance to MAPK Pathway Inhibitors through Macrophage-Derived TNF. Cancer Discov. 2014, 4, 1214–1229. [Google Scholar] [CrossRef] [PubMed]
- Frederick, D.T.; Piris, A.; Cogdill, A.P.; Cooper, Z.A.; Lezcano, C.; Ferrone, C.R.; Mitra, D.; Boni, A.; Newton, L.P.; Liu, C.; et al. BRAF Inhibition Is Associated with Enhanced Melanoma Antigen Expression and a More Favorable Tumor Microenvironment in Patients with Metastatic Melanoma. Clin. Cancer Res. 2013, 19, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.M.; Reuben, A.; Wargo, J.A. Influences of BRAF Inhibitors on the Immune Microenvironment and the Rationale for Combined Molecular and Immune Targeted Therapy. Curr. Oncol. Rep. 2016, 18, 42. [Google Scholar] [CrossRef]
- Dobreva, Z.G.; Miteva, L.D.; Stanilova, S.A. The Inhibition of JNK and P38 MAPKs Downregulates IL-10 and Differentially Affects c-Jun Gene Expression in Human Monocytes. Immunopharmacol. Immunotoxicol. 2009, 31, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Peng, W.; Xu, C.; Lou, Y.; Zhang, M.; Wargo, J.A.; Chen, J.Q.; Li, H.S.; Watowich, S.S.; Yang, Y.; et al. BRAF Inhibition Increases Tumor Infiltration by T Cells and Enhances the Antitumor Activity of Adoptive Immunotherapy in Mice. Clin. Cancer Res. 2013, 19, 393–403. [Google Scholar] [CrossRef]
- Sumimoto, H.; Imabayashi, F.; Iwata, T.; Kawakami, Y. The BRAF-MAPK Signaling Pathway Is Essential for Cancer-Immune Evasion in Human Melanoma Cells. J. Exp. Med. 2006, 203, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Bradley, S.D.; Chen, Z.; Melendez, B.; Talukder, A.; Khalili, J.S.; Rodriguez-Cruz, T.; Liu, S.; Whittington, M.; Deng, W.; Li, F.; et al. BRAFV600E Co-Opts a Conserved MHC Class I Internalization Pathway to Diminish Antigen Presentation and CD8+ T-Cell Recognition of Melanoma. Cancer Immunol. Res. 2015, 3, 602–609. [Google Scholar] [CrossRef]
- Ilieva, K.M.; Correa, I.; Josephs, D.H.; Karagiannis, P.; Egbuniwe, I.U.; Cafferkey, M.J.; Spicer, J.F.; Harries, M.; Nestle, F.O.; Lacy, K.E.; et al. Effects of BRAF Mutations and BRAF Inhibition on Immune Responses to Melanoma. Mol. Cancer Ther. 2014, 13, 2769–2783. [Google Scholar] [CrossRef]
- Wilmott, J.S.; Long, G.V.; Howle, J.R.; Haydu, L.E.; Sharma, R.N.; Thompson, J.F.; Kefford, R.F.; Hersey, P.; Scolyer, R.A. Selective BRAF Inhibitors Induce Marked T-Cell Infiltration into Human Metastatic Melanoma. Clin. Cancer Res. 2012, 18, 1386–1394. [Google Scholar] [CrossRef]
- Cooper, Z.A.; Juneja, V.R.; Sage, P.T.; Frederick, D.T.; Piris, A.; Mitra, D.; Lo, J.A.; Hodi, F.S.; Freeman, G.J.; Bosenberg, M.W.; et al. Responseto BRAF Inhibitionin Melanoma Is Enhanced When Combined with Immune Checkpoint Blockade. Cancer Immunol. Res. 2014, 2, 643–654. [Google Scholar] [CrossRef]
- Ott, P.A.; Henry, T.; Baranda, S.J.; Frleta, D.; Manches, O.; Bogunovic, D.; Bhardwaj, N. Inhibition of Both BRAF and MEK in BRAFV600E Mutant Melanoma Restores Compromised Dendritic Cell (DC) Function While Having Differential Direct Effects on DC Properties. Cancer Immunol. Immunother. 2013, 62, 811–822. [Google Scholar] [CrossRef]
- De Andrade, L.F.; Ngiow, S.F.; Stannard, K.; Rusakiewicz, S.; Kalimutho, M.; Khanna, K.K.; Tey, S.K.; Takeda, K.; Zitvogel, L.; Martinet, L.; et al. Natural Killer Cells Are Essential for the Ability of BRAF Inhibitors to Control BRAFV600E-Mutant Metastatic Melanoma. Cancer Res. 2014, 74, 7298–7308. [Google Scholar] [CrossRef] [PubMed]
- Khalili, J.S.; Liu, S.; Rodríguez-Cruz, T.G.; Whittington, M.; Wardell, S.; Liu, C.; Zhang, M.; Cooper, Z.A.; Frederick, D.T.; Li, Y.; et al. Oncogenic BRAF(V600E) Promotes Stromal Cell-Mediated Immunosuppression via Induction of Interleukin-1 in Melanoma. Clin. Cancer Res. 2012, 18, 5329–5340. [Google Scholar] [CrossRef]
- Li, M.; Knight, D.A.; Snyder, L.A.; Smyth, M.J.; Stewart, T.J. A Role for CCL2 in Both Tumor Progression and Immunosurveillance. Oncoimmunology 2013, 2, e25474. [Google Scholar] [CrossRef]
- Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage Polarization: Tumor-Associated Macrophages as a Paradigm for Polarized M2 Mononuclear Phagocytes. Trends Immunol. 2002, 23, 549–555. [Google Scholar] [CrossRef]
- Mosser, D.M.; Edwards, J.P. Exploring the Full Spectrum of Macrophage Activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- Jiang, X.; Zhou, J.; Giobbie-Hurder, A.; Wargo, J.; Hodi, F.S. The Activation of MAPK in Melanoma Cells Resistant to BRAF Inhibition Promotes PD-L1 Expression That Is Reversible by MEK and PI3K Inhibition. Clin. Cancer Res. 2013, 19, 598–609. [Google Scholar] [CrossRef]
- Heiden, M.G.V.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Vandyck, H.H.; Hillen, L.M.; Bosisio, F.M.; van den Oord, J.; zur Hausen, A.; Winnepenninckx, V. Rethinking the Biology of Metastatic Melanoma: A Holistic Approach. Cancer Metastasis Rev. 2021, 40, 603–624. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Guo, W. A Review of the Molecular Pathways Involved in Resistance to BRAF Inhibitors in Patients with Advanced-Stage Melanoma. Med. Sci. Monit. 2020, 26, e920957. [Google Scholar] [CrossRef]
- Vazquez, F.; Lim, J.H.; Chim, H.; Bhalla, K.; Girnun, G.; Pierce, K.; Clish, C.B.; Granter, S.R.; Widlund, H.R.; Spiegelman, B.M.; et al. PGC1α Expression Defines a Subset of Human Melanoma Tumors with Increased Mitochondrial Capacity and Resistance to Oxidative Stress. Cancer Cell 2013, 23, 287–301. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.K.; Parmenter, T.; Kleinschmidt, M.; Kusnadi, E.P.; Kang, J.; Martin, C.A.; Lau, P.; Patel, R.; Lorent, J.; Papadopoli, D.; et al. Adaptive Translational Reprogramming of Metabolism Limits the Response to Targeted Therapy in BRAFV600 Melanoma. Nat. Commun. 2022, 13, 1100. [Google Scholar] [CrossRef]
- Santiappillai, N.T.; Abuhammad, S.; Slater, A.; Kirby, L.; McArthur, G.A.; Sheppard, K.E.; Smith, L.K. Cdk4/6 Inhibition Reprograms Mitochondrial Metabolism in Brafv600 Melanoma via a P53 Dependent Pathway. Cancers 2021, 13, 524. [Google Scholar] [CrossRef]
- Soumoy, L.; Schepkens, C.; Krayem, M.; Najem, A.; Tagliatti, V.; Ghanem, G.E.; Saussez, S.; Colet, J.M.; Journe, F. Metabolic Reprogramming in Metastatic Melanoma with Acquired Resistance to Targeted Therapies: Integrative Metabolomic and Proteomic Analysis. Cancers 2020, 12, 1323. [Google Scholar] [CrossRef]
- Das Thakur, M.; Salangsang, F.; Landman, A.S.; Sellers, W.R.; Pryer, N.K.; Levesque, M.P.; Dummer, R.; McMahon, M.; Stuart, D.D. Modelling Vemurafenib Resistance in Melanoma Reveals a Strategy to Forestall Drug Resistance. Nature 2013, 494, 251–255. [Google Scholar] [CrossRef]
- Gonzalez-Cao, M.; Mayo de las Casas, C.; Oramas, J.; Berciano-Guerrero, M.A.; de la Cruz, L.; Cerezuela, P.; Arance, A.; Muñoz-Couselo, E.; Espinosa, E.; Puertolas, T.; et al. Intermittent BRAF Inhibition in Advanced BRAF Mutated Melanoma Results of a Phase II Randomized Trial. Nat. Commun. 2021, 12, 7008. [Google Scholar] [CrossRef] [PubMed]
- Algazi, A.P.; Othus, M.; Daud, A.I.; Lo, R.S.; Mehnert, J.M.; Truong, T.G.; Conry, R.; Kendra, K.; Doolittle, G.C.; Clark, J.I.; et al. Continuous versus Intermittent BRAF and MEK Inhibition in Patients with BRAF-Mutated Melanoma: A Randomized Phase 2 Trial. Nat. Med. 2020, 26, 1564–1568. [Google Scholar] [CrossRef] [PubMed]
- Hu-Lieskovan, S.; Mok, S.; Homet Moreno, B.; Tsoi, J.; Robert, L.; Goedert, L.; Pinheiro, E.M.; Koya, R.C.; Graeber, T.G.; Comin-Anduix, B.; et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci. Transl. Med. 2015, 7, 279ra41. [Google Scholar] [CrossRef]
- Boni, A.; Cogdill, A.P.; Dang, P.; Udayakumar, D.; Njauw, C.N.J.; Sloss, C.M.; Ferrone, C.R.; Flaherty, K.T.; Lawrence, D.P.; Fisher, D.E.; et al. Selective BRAFV600E Inhibition Enhances T-Cell Recognition of Melanoma without Affecting Lymphocyte Function. Cancer Res. 2010, 70, 5213–5219. [Google Scholar] [CrossRef]
- Dummer, R.; Ascierto, P.A.; Nathan, P.; Robert, C.; Schadendorf, D. Rationale for Immune Checkpoint Inhibitors plus Targeted Therapy in Metastatic Melanoma: A Review. JAMA Oncol. 2020, 6, 1957–1966. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Hodi, F.S.; Callahan, M.; Konto, C.; Wolchok, J. Hepatotoxicity with Combination of Vemurafenib and Ipilimumab. N. Engl. J. Med. 2013, 368, 1365–1366. [Google Scholar] [CrossRef]
- Minor, D.R.; Puzanov, I.; Callahan, M.K.; Hug, B.A.; Hoos, A. Severe Gastrointestinal Toxicity with Administration of Trametinib in Combination with Dabrafenib and Ipilimumab. Pigment Cell Melanoma Res. 2015, 28, 611. [Google Scholar] [CrossRef]
- Gutzmer, R.; Stroyakovskiy, D.; Gogas, H.; Robert, C.; Lewis, K.; Protsenko, S.; Pereira, R.P.; Eigentler, T.; Rutkowski, P.; Demidov, L.; et al. Atezolizumab, Vemurafenib, and Cobimetinib as First-Line Treatment for Unresectable Advanced BRAFV600 Mutation-Positive Melanoma (IMspire150): Primary Analysis of the Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet 2020, 395, 1835–1844. [Google Scholar] [CrossRef]
- Ferrucci, P.F.; Di Giacomo, A.M.; Del Vecchio, M.; Atkinson, V.; Schmidt, H.; Schachter, J.; Queirolo, P.; Long, G.V.; Stephens, R.; Svane, I.M.; et al. KEYNOTE-022 Part 3: A Randomized, Double-Blind, Phase 2 Study of Pembrolizumab, Dabrafenib, and Trametinib in BRAF-Mutant Melanoma. J. Immunother. Cancer 2020, 8, e001806. [Google Scholar] [CrossRef]
- Dummer, R.; Long, G.V.; Robert, C.; Tawbi, H.A.; Flaherty, K.T.; Ascierto, P.A.; Nathan, P.D.; Rutkowski, P.; Leonov, O.; Dutriaux, C.; et al. Randomized Phase III Trial Evaluating Spartalizumab Plus Dabrafenib and Trametinib for BRAF V600-Mutant Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2022, 40, 1428–1438. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Stroyakovskiy, D.; Gogas, H.; Robert, C.; Lewis, K.; Protsenko, S.; Pereira, R.P.; Eigentler, T.; Rutkowski, P.; Demidov, L.; et al. Overall Survival with First-Line Atezolizumab in Combination with Vemurafenib and Cobimetinib in BRAFV600 Mutation-Positive Advanced Melanoma (IMspire150): Second Interim Analysis of a Multicentre, Randomised, Phase 3 Study. Lancet Oncol. 2023, 24, 33–44. [Google Scholar] [CrossRef]
- Acquaviva, J.; Smith, D.L.; Jimenez, J.P.; Zhang, C.; Sequeira, M.; He, S.; Sang, J.; Bates, R.C.; Proia, D.A. Overcoming Acquired BRAF Inhibitor Resistance in Melanoma via Targeted Inhibition of Hsp90 with Ganetespib. Mol. Cancer Ther. 2014, 13, 353–363. [Google Scholar] [CrossRef]
- Belli, V.; Napolitano, S.; De Falco, V.; Suarato, G.; Perrone, A.; Guerrera, L.P.; Martini, G.; Della Corte, C.M.; Martinelli, E.; Morgillo, F.; et al. Targeting EphA2 and DDR Signaling Can Overcome the BRAF and MEK Inhibitors Acquired Resistance in Melanoma Cell Lines. Transl. Med. Commun. 2023, 8, 3. [Google Scholar] [CrossRef]
- Pópulo, H.; Domingues, B.; Sampaio, C.; Lopes, J.M.; Soares, P. Combinatorial Therapies to Overcome Braf/Mek Inhibitors Resistance in Melanoma Cells: An in Vitro Study. J. Exp. Pharmacol. 2021, 13, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, S.; Flashner-Abramson, E.; Alkhatib, H.; Roy Chowdhury, S.; Adejumobi, I.A.; Vilenski, D.; Stefansky, S.; Rubinstein, A.M.; Kravchenko-Balasha, N. Overcoming Resistance to BRAFV600E Inhibition in Melanoma by Deciphering and Targeting Personalized Protein Network Alterations. NPJ Precis. Oncol. 2021, 5, 50. [Google Scholar] [CrossRef]
- Colakoglu Bergel, C.; Eryilmaz, I.E.; Cecener, G.; Egeli, U. Second-Generation BRAF Inhibitor Encorafenib Resistance Is Regulated by NCOA4-Mediated Iron Trafficking in the Drug-Resistant Malignant Melanoma Cells. Sci. Rep. 2025, 15, 2422. [Google Scholar] [CrossRef] [PubMed]
- Caksa, S.; Baqai, U.; Aplin, A.E. The Future of Targeted Kinase Inhibitors in Melanoma. Pharmacol. Ther. 2022, 239, 108200. [Google Scholar] [CrossRef] [PubMed]
- Sarif, Z.; Tolksdorf, B.; Fechner, H.; Eberle, J. Mcl-1 Targeting Strategies Unlock the Proapoptotic Potential of TRAIL in Melanoma Cells. Mol. Carcinog. 2020, 59, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, A.; Abnous, K.; Taghdisi, S.M.; Vakili-Azghandi, M.; Ramezani, M.; Alibolandi, M. Robust Aptamer-Targeted CRISPR/Cas9 Delivery Using Mesenchymal Stem Cell Membrane –Liposome Hybrid: BIRC5 Gene Knockout against Melanoma. Nanomedicine 2024, 62, 102778. [Google Scholar] [CrossRef]
- Moras, B.; Sissi, C. Unravelling the Regulatory Roles of LncRNAs in Melanoma: From Mechanistic Insights to Target Selection. Int. J. Mol. Sci. 2025, 26, 2126. [Google Scholar] [CrossRef] [PubMed]
- Algazi, A.P.; Moon, J.; Lao, C.D.; Chmielowski, B.; Kendra, K.L.; Lewis, K.D.; Gonzalez, R.; Kim, K.; Godwin, J.E.; Curti, B.D.; et al. A Phase 1 Study of Triple-Targeted Therapy with BRAF, MEK, and AKT Inhibitors for Patients with BRAF-Mutated Cancers. Cancer 2024, 130, 1784–1796. [Google Scholar] [CrossRef]
- Castellani, G.; Buccarelli, M.; Arasi, M.B.; Rossi, S.; Pisanu, M.E.; Bellenghi, M.; Lintas, C.; Tabolacci, C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers 2023, 15, 4026. [Google Scholar] [CrossRef]
- Imani, S.; Roozitalab, G.; Emadi, M.; Moradi, A.; Behzadi, P.; Kaboli, P.J. The Evolution of BRAF-Targeted Therapies in Melanoma: Overcoming Hurdles and Unleashing Novel Strategies. Cancer Rev. 2024, 130, 211–223. [Google Scholar] [CrossRef]
- Marsavela, G.; Johansson, P.A.; Pereira, M.R.; McEvoy, A.C.; Reid, A.L.; Robinson, C.; Warburton, L.; Khattak, M.A.; Meniawy, T.M.; Amanuel, B.; et al. The Prognostic Impact of Circulating Tumour Dna in Melanoma Patients Treated with Systemic Therapies—Beyond Braf Mutant Detection. Cancers 2020, 12, 3793. [Google Scholar] [CrossRef]
- Welti, M.; Dimitriou, F.; Gutzmer, R.; Dummer, R. Triple Combination of Immune Checkpoint Inhibitors and BRAF/MEK Inhibitors in BRAFV600 Melanoma: Current Status and Future Perspectives. Cancers 2022, 14, 5489. [Google Scholar] [CrossRef]
- Scaini, M.C.; Catoni, C.; Poggiana, C.; Pigozzo, J.; Piccin, L.; Leone, K.; Scarabello, I.; Facchinetti, A.; Menin, C.; Elefanti, L.; et al. A Multiparameter Liquid Biopsy Approach Allows to Track Melanoma Dynamics and Identify Early Treatment Resistance. NPJ Precis. Oncol. 2024, 8, 78. [Google Scholar] [CrossRef]
- Krebs, F.S.; Moura, B.; Missiaglia, E.; Aedo-Lopez, V.; Michielin, O.; Tsantoulis, P.; Bisig, B.; Trimech, M.; Zoete, V.; Homicsko, K. Response and Resistance to Trametinib in MAP2K1-Mutant Triple-Negative Melanoma. Int. J. Mol. Sci. 2023, 24, 4520. [Google Scholar] [CrossRef]
- Padovano, F.; Villa, C. The Development of Drug Resistance in Metastatic Tumours under Chemotherapy: An Evolutionary Perspective. J. Theor. Biol. 2024, 595, 111957. [Google Scholar] [CrossRef]
- Taghizadeh, R.; Noh, M.; Huh, Y.H.; Ciusani, E.; Sigalotti, L.; Maio, M.; Arosio, B.; Nicotra, M.R.; Natali, P.; Sherley, J.L.; et al. Cxcr6, a Newly Defined Biomarker of Tissue-Specific Stem Cell Asymmetric Self-Renewal, Identifies More Aggressive Human Melanoma Cancer Stem Cells. PLoS ONE 2010, 5, e15183. [Google Scholar] [CrossRef] [PubMed]
- Mirek, J.; Bal, W.; Olbryt, M. Melanoma Genomics—Will We Go beyond BRAF in Clinics? Cancer Res. Clin. Oncol. 2024, 150, 433. [Google Scholar] [CrossRef] [PubMed]
- Sobczuk, P.; Kozak, K.; Kopeć, S.; Rogala, P.; Świtaj, T.; Koseła-Paterczyk, H.; Gos, A.; Tysarowski, A.; Rutkowski, P. The Use of CtDNA for BRAF Mutation Testing in Routine Clinical Practice in Patients with Advanced Melanoma. Cancers 2022, 14, 777. [Google Scholar] [CrossRef] [PubMed]
BRAFi + MEKi | Setting | Oral Administration | Registrative Studies | FDA Approval |
---|---|---|---|---|
Vemurafenib + Cobimetinib | Advanced melanoma | 960 mg BID + 60 mg QD | coBRIM [11] | 2011; 2015 |
Dabrafenib + Trametinib | Advanced melanoma | 150 mg BID + 2 mg QD | COMBI-d [9] COMBI-v [10] | 2013; 2018 |
Encorafenib + Binimetinib | Advanced melanoma | 450 mg QD + 45 mg BID | COLUMBUS [8] | 2018 |
References | Resistance Mechanism | Experimental Model | Key Findings |
---|---|---|---|
[28] | RAC1 mutation | Study on RAC1 mutations in melanoma | Identification of RAC1 as a therapeutic target in resistant melanomas |
[29] | MMAC1/PTEN mutation | Identification of MMAC1, a tumor suppressor gene at 10q23.3 | Mutations in MMAC1 in advanced cancers, including melanoma |
[30] | MAPK/PI3K inhibition | Study of resistance pathways in melanoma treated with targeted therapies | Acquired resistance to therapy due to activation of YAP1 pathway |
[31] | Loss of PTEN | Review of biochemical and clinical implications of PTEN loss | Resistance to melanoma treatments following PTEN loss |
[32] | Loss of PTEN | Preclinical study in melanoma models | PTEN loss promotes the development of malignant melanoma |
[33] | Loss of PTEN | Study on molecular mechanisms of BRAF inhibitor resistance | Resistance to BRAF inhibitors due to PTEN loss |
[34] | CCND1 amplification | Profiling of CCND1 amplification in melanoma | Identification of a melanoma subtype with poor prognosis |
[35] | Mutations in NF1 and RAS | Exome sequencing in sun-exposed melanomas | Identification of recurrent mutations in NF1 and RAS-related genes |
[36] | Mutations in RAS | Analysis of RAS pathway regulation in melanoma | Description of RAS pathway regulation and its impact on resistance |
[37] | Mutations in RAF pathway | Genetic sequencing in melanoma resistant to RAF inhibitors | Analysis of clinical resistance to RAF inhibitors |
[38] | BRAF and NRAS mutation | Review on resistance mechanisms in BRAF- and NRAS-mutated melanomas | Multiple resistance pathways in BRAF/NRAS mutated melanomas |
[39] | RAC1 mutation | Study on melanomas with RAC1 mutations | Characterization and outcomes of RAC1 mutated melanomas |
[40] | Loss of USP28 | Study on resistance mechanisms mediated by USP28 loss | USP28 loss drives resistance to RAF inhibitors |
References | Resistance Mechanism | Experimental Model | Key Findings |
---|---|---|---|
(a) | |||
[41] | Epigenetic escape from BRAF dependency | Review of epigenetic mechanisms | Epigenetic alterations contribute to therapy resistance in BRAF-mutant melanoma |
[42] | Persister cells | Experimental in vitro/in vivo | Persister cells show vulnerability to GPX4 inhibition |
[43] | Phenotypic plasticity | Theoretical biology review | Phenotypic plasticity is an adaptive feature in tumor evolution |
[44] | MITF-related resistance | Functional studies | MITF regulates genes controlling proliferation/invasiveness |
[45] | Melanocyte biology | Review | Background on melanocyte function and pigmentation pathways |
[46] | Endothelin receptor-mediated resistance | Functional, signaling pathway analysis | Blocking endothelin signaling reduces heterogeneity-driven resistance |
[47] | Dedifferentiation-mediated resistance | Single-cell profiling | Reversible dedifferentiation leads to RAF inhibitor resistance |
[48] | MITF/AXL ratio | Transcriptomic profiling | Low MITF/high AXL linked to resistance to targeted therapies |
[49] | Cell state and signaling interaction | Review | MITF and IFNγ pathways modulate resistance-related cell states |
[50] | Multiple resistance trajectories | Longitudinal single-cell studies | Multiple evolutionary paths lead to drug resistance |
[51] | Rare cell variability | Single-cell transcriptomics | Rare subpopulations and reprogramming fuel resistance |
[52] | Epigenetic modification enzymes | Biochemical assays | TET enzymes mediate DNA demethylation, impacting gene regulation |
[53] | TET protein activity | Biochemistry/molecular biology | TET proteins modify methylcytosine, impacting epigenetic state |
[54] | Aberrant methylation | Review | Methylation changes as biomarkers and therapeutic targets |
[55] | PTEN methylation | Methylation analysis | PTEN methylation associated with prognosis |
[56] | PTEN silencing | Promoter methylation assays | PTEN is epigenetically inactivated in melanoma |
[57] | Global hypomethylation | Genome-wide methylation analysis | Melanomas show reduced global 5-mC levels |
[58] | INK4a locus | Genetic knockout models | INK4a critical for cell cycle control and tumor suppression |
[59] | P16 methylation | Methylation-specific PCR | P16 frequently methylated in NRAS-mutant melanomas |
(b) | |||
[60] | EGFR pathway activation via epigenetic reprogramming | DNA methylation profiling, expression analysis, functional assays | A cryptic transcript of TBC1D16 activated by hypomethylation promotes melanoma progression through EGFR pathway activation. |
[61] | Epigenetic escape from senescence via H3K9 demethylases | CRISPR-Cas9 screening, pharmacological inhibition, transcriptomics | Multiple H3K9 demethylases cooperate to suppress senescence and support melanoma cell proliferation; targeting them restores senescence. |
[62] | Loss of senescence as an epigenetic switch | Review (summary of epigenetic changes from senescence to melanoma) | Highlights the reversibility and significance of senescence bypass in melanoma development and its epigenetic regulation. |
[63] | Slow-cycling cell subpopulation promoting drug tolerance | In vivo melanoma xenografts, BrdU labeling, flow cytometry | Identifies a JARID1B+ slow-cycling subpopulation critical for sustained melanoma growth and therapy resistance. |
[64] | Multidrug tolerance via stress-induced innate immunity | Transcriptomics, cell viability assays, in vivo models | Stress responses activate reversible drug-tolerant states; inhibition of inflammatory signaling pathways restores drug sensitivity. |
[65] | Resistance to MAPKi via IGF pathway activation (SIRT6 loss) | SIRT6 knockdown, signaling pathway analysis, BRAF inhibitor response | SIRT6 deficiency activates IGF signaling, driving resistance to MAPK-targeted therapy in BRAF-mutant melanoma. |
[66] | Not melanoma-focused; background reference | Microarray gene expression profiling | Establishes molecular subtypes of breast cancer, foundational for molecular classification methods applied in other cancers including melanoma. |
[67] | Transcriptional dysregulation | Literature review | Proposes targeting basal transcription components (e.g., general transcription factors) as a cancer therapy approach. |
[68] | MITF amplification conferring survival advantage | Genomic copy number analysis, gene expression, functional validation | MITF amplification promotes melanoma cell survival; MITF functions as a lineage-specific oncogene. |
(c) | |||
[69] | Dysregulation of transcriptional programs | Literature review, functional genomics | Highlights key transcription factors and epigenetic modulators contributing to melanoma resistance and progression |
[70] | MITF overexpression and plasticity | Molecular biology, transcriptional analysis | MITF functions as a lineage-specific oncogene involved in survival and resistance pathways |
[71] | Germline MITF mutation (E318K) | Genetic sequencing, family-based studies | Mutation increases melanoma susceptibility and may alter transcriptional responses to therapy |
[72] | MITF activity modulation via SUMO | Promoter-reporter assays, mutagenesis | SUMO modification influences promoter-specific MITF function, potentially affecting resistance profiles |
[73] | MAPK signaling influences MITF | Signal transduction studies | P38 MAPK regulates MITF in response to external signals, linking environmental cues to transcriptional resistance |
[74] | SOX10 as a lineage-specific TF | Gene sequencing, transactivation assays | SOX10 plays a key role in melanocyte lineage and can contribute to resistance via transcriptional control |
[75] | Post-translational regulation of SOX10 | Phospho-proteomics, cell-based assays | ERK regulates SOX10 via phosphorylation and SUMOylation, linking BRAF signaling to transcriptional responses |
[76] | Mutant p53 gain-of-function | Review of p53 biology | Mutant p53 can acquire oncogenic functions, contributing to therapy resistance in diverse cancers including melanoma |
[77] | Metabolic stress-mediated resistance | Molecular cell biology | PGC-1α supports survival under metabolic stress via modulation of p53, promoting resistance pathways |
[78] | Aberrant p53 modifications | Review | Highlights how PTMs of p53 affect its tumor-suppressive functions, leading to resistance |
[79] | Cross-talk among signaling pathways | Bioinformatics and gene expression profiling | Resistance to BRAF/MEK inhibitors linked to activity in additional cancer-related pathways |
[80] | Apoptosis evasion | Drug screening, in vitro studies | Co-targeting Bcl2 and Mcl1 can overcome resistance and induce apoptosis in melanoma cells |
[81] | Anti-apoptotic bias toward MCL1 | Functional genomics, drug assays | MCL1 dependence confers resistance; its inhibition sensitizes cells to MAPK inhibitors |
[82] | Apoptosis inhibition | CRISPR knockout screens | BCL-XL and MCL1 are essential for melanoma survival, representing resistance mechanisms |
[83] | miR-211 loss and BRAF inhibitor sensitivity | MicroRNA profiling, metabolic assays | Loss of miR-211 increases vulnerability to metabolic stress and enhances BRAF inhibitor response |
[84] | miR-211 reprograms ERK signaling | In vivo mouse models, miRNA overexpression | miR-211 promotes resistance by reactivating ERK signaling via DUSP6-ERK5 axis |
[85] | Dual role of miR-211 in resistance and sensitivity | Literature synthesis | miR-211 can either promote or inhibit resistance depending on cellular context |
[86] | miR-10b linked to aggressive melanoma | qRT-PCR in patient serum | miR-10b is upregulated in melanoma and associated with poor outcomes and possible resistance |
[87] | miR-10b as a biomarker of resistance and progression | Clinical biomarker study | miR-10b expression correlates with melanoma aggressiveness and prognosis |
References | Resistance Mechanism | Experimental Model | Key Findings |
---|---|---|---|
[76] | Dysregulation of transcriptional programs | Literature review, functional genomics | Highlights key transcription factors and epigenetic modulators contributing to melanoma resistance and progression |
[77] | MITF overexpression and plasticity | Molecular biology, transcriptional analysis | MITF functions as a lineage-specific oncogene involved in survival and resistance pathways |
[78] | Germline MITF mutation (E318K) | Genetic sequencing, family-based studies | Mutation increases melanoma susceptibility and may alter transcriptional responses to therapy |
[79] | MITF activity modulation via SUMO | Promoter-reporter assays, mutagenesis | SUMO modification influences promoter-specific MITF function, potentially affecting resistance profiles |
[80] | MAPK signaling influences MITF | Signal transduction studies | P38 MAPK regulates MITF in response to external signals, linking environmental cues to transcriptional resistance |
[81] | SOX10 as a lineage-specific TF | Gene sequencing, transactivation assays | SOX10 plays a key role in melanocyte lineage and can contribute to resistance via transcriptional control |
[82] | Post-translational regulation of SOX10 | Phospho-proteomics, cell-based assays | ERK regulates SOX10 via phosphorylation and SUMOylation, linking BRAF signaling to transcriptional responses |
[83] | Mutant p53 gain-of-function | Review of p53 biology | Mutant p53 can acquire oncogenic functions, contributing to therapy resistance in diverse cancers including melanoma |
[84] | Metabolic stress-mediated resistance | Molecular cell biology | PGC-1α supports survival under metabolic stress via modulation of p53, promoting resistance pathways |
[85] | Aberrant p53 modifications | Review | Highlights how PTMs of p53 affect its tumor-suppressive functions, leading to resistance |
[86] | Cross-talk among signaling pathways | Bioinformatics and gene expression profiling | Resistance to BRAF/MEK inhibitors linked to activity in additional cancer-related pathways |
[87] | Apoptosis evasion | Drug screening, in vitro studies | Co-targeting Bcl2 and Mcl1 can overcome resistance and induce apoptosis in melanoma cells |
[88] | Anti-apoptotic bias toward MCL1 | Functional genomics, drug assays | MCL1 dependence confers resistance; its inhibition sensitizes cells to MAPK inhibitors |
[89] | Apoptosis inhibition | CRISPR knockout screens | BCL-XL and MCL1 are essential for melanoma survival, representing resistance mechanisms |
[90] | miR-211 loss and BRAF inhibitor sensitivity | MicroRNA profiling, metabolic assays | Loss of miR-211 increases vulnerability to metabolic stress and enhances BRAF inhibitor response |
[91] | miR-211 reprograms ERK signaling | In vivo mouse models, miRNA overexpression | miR-211 promotes resistance by reactivating ERK signaling via DUSP6-ERK5 axis |
[92] | Dual role of miR-211 in resistance and sensitivity | Literature synthesis | miR-211 can either promote or inhibit resistance depending on cellular context |
[93] | miR-10b linked to aggressive melanoma | qRT-PCR in patient serum | miR-10b is upregulated in melanoma and associated with poor outcomes and possible resistance |
[94] | miR-10b as a biomarker of resistance and progression | Clinical biomarker study | miR-10b expression correlates with melanoma aggressiveness and prognosis |
References | Resistance Mechanism | Experimental Model | Key Findings |
---|---|---|---|
[124] | Loss of RNF125 leads to JAK1 deregulation | Cell models, Western blot, gene silencing | Loss of RNF125 promotes BRAF inhibitor resistance through increased JAK1 signaling |
[125] | TNF from macrophages induces resistance | In vitro models, cytokine profiling | Macrophage-derived TNF sustains survival signals during MAPK inhibitor treatment |
[126] | Microenvironment modulation | Patient tumor biopsies, gene expression | BRAF inhibition promotes a more immune-permissive tumor environment |
[127] | Immune modulation | Literature review | BRAF inhibitors affect tumor immunity; rationale for combining with immunotherapy |
[128] | MAPK inhibition impacts cytokine regulation | In vitro cytokine assays | JNK and p38 inhibition reduces IL-10, affecting immune responses |
[129] | Immune cell recruitment post-inhibition | Mouse models, immunotherapy studies | BRAF inhibition increases CD8+ T-cell infiltration and improves immunotherapy |
[130] | MAPK signaling suppresses immune recognition | siRNA, antigen presentation assays | BRAF-MAPK pathway contributes to immune evasion via MHC downregulation |
[131] | Antigen presentation suppression | Imaging, immunology assays | BRAFV600E promotes MHC-I internalization to evade CD8+ T-cell killing |
[132] | Immune modulation by mutation/inhibition | Patient samples, immune profiling | BRAF mutations/inhibition alter immune activity and antigen expression |
[133] | T-cell recruitment via MAPK inhibition | Patient tumor samples, IHC | BRAF inhibitors lead to increased T-cell infiltration in metastatic melanoma |
[134] | Synergy with immune checkpoint therapy | Preclinical models, combination treatments | Combining BRAF inhibition with PD-1/CTLA-4 blockade improves tumor control |
[135] | DC function recovery with dual inhibition | Dendritic cell assays, melanoma models | Dual BRAF/MEK inhibition reverses DC dysfunction in BRAFV600E melanoma |
[136] | NK cell involvement in treatment efficacy | NK cell depletion studies | NK cells necessary for full therapeutic response to BRAF inhibitors |
[137] | IL-1-mediated immunosuppression | Cytokine assays, co-culture models | BRAF mutation increases IL-1, promoting immunosuppressive stroma |
[138] | CCL2-mediated immune modulation | In vivo models, cytokine analysis | CCL2 promotes both tumor growth and immune surveillance, showing dual roles |
[139] | TAMs as M2-polarized immunosuppressive cells | Literature review | M2 macrophages support tumor progression and inhibit immune responses |
[140] | Macrophage polarization spectrum | Review | Discusses plasticity of macrophage activation from pro- to anti-inflammatory roles |
References | Resistance Mechanism | Experimental Model | Key Findings |
---|---|---|---|
[141] | MAPK-driven PD-L1 upregulation | In vitro assays, pharmacologic inhibition | MAPK reactivation promotes immune evasion via PD-L1 expression, reversible by MEK/PI3K inhibition |
[142] | Warburg effect/metabolic adaptation | Review | Explains how altered cancer metabolism supports proliferation, indirectly linked to resistance mechanisms |
[143] | Multiple, including microenvironmental influences | Review | Emphasizes holistic view of metastasis and resistance, including immune and stromal interactions |
[144] | Multiple pathways (MAPK reactivation, metabolic rewiring) | Literature review | Comprehensive overview of mechanisms of resistance to BRAF inhibitors |
[145] | PGC1α-mediated mitochondrial adaptation | Gene expression, oxidative stress assays | High PGC1α defines tumors resistant to oxidative stress, associated with poor therapy response |
[146] | Metabolic adaptation through translational reprogramming | Transcriptomics, metabolic assays | Melanoma cells reprogram metabolism at the translational level to evade BRAF-targeted therapy |
[147] | p53-dependent mitochondrial reprogramming | Pharmacologic inhibition, metabolic profiling | CDK4/6 inhibitors rewire metabolism via p53, suggesting metabolic vulnerabilities in resistant cells |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosci, I.; Salizzato, V.; Del Fiore, P.; Pigozzo, J.; Guarneri, V.; Mocellin, S.; Ferlin, A.; Mathlouthi, S.; Piccin, L.; Garofalo, M. Molecular Basis of BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Pharmaceuticals 2025, 18, 1235. https://doi.org/10.3390/ph18081235
Cosci I, Salizzato V, Del Fiore P, Pigozzo J, Guarneri V, Mocellin S, Ferlin A, Mathlouthi S, Piccin L, Garofalo M. Molecular Basis of BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Pharmaceuticals. 2025; 18(8):1235. https://doi.org/10.3390/ph18081235
Chicago/Turabian StyleCosci, Ilaria, Valentina Salizzato, Paolo Del Fiore, Jacopo Pigozzo, Valentina Guarneri, Simone Mocellin, Alberto Ferlin, Sara Mathlouthi, Luisa Piccin, and Mariangela Garofalo. 2025. "Molecular Basis of BRAF Inhibitor Resistance in Melanoma: A Systematic Review" Pharmaceuticals 18, no. 8: 1235. https://doi.org/10.3390/ph18081235
APA StyleCosci, I., Salizzato, V., Del Fiore, P., Pigozzo, J., Guarneri, V., Mocellin, S., Ferlin, A., Mathlouthi, S., Piccin, L., & Garofalo, M. (2025). Molecular Basis of BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Pharmaceuticals, 18(8), 1235. https://doi.org/10.3390/ph18081235