Antifungal Drugs for the Treatment of Invasive Fungal Infections—A Limited Therapeutic Toolbox Facing Growing Resistances
Abstract
1. Introduction
2. Current Antifungal Substances Against Invasive Fungal Infections
2.1. Polyenes
2.2. Antimetabolites
2.3. Azoles
2.4. Echinocandins
3. Spectrum of Activity of Antifungal Substances and Resistances Thereto
3.1. Resistances to Polyenes
3.2. Resistances to 5-FC
3.3. Resistances to Azoles
3.4. Resistances to Echinocandines
4. Novel Antifungal Substances in Development
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gow, N.A.R.; Johnson, C.; Berman, J.; Coste, A.T.; Cuomo, C.A.; Perlin, D.S.; Bicanic, T.; Harrison, T.S.; Wiederhold, N.; Bromley, M.; et al. The importance of antimicrobial resistance in medical mycology. Nat. Commun. 2022, 13, 5352. [Google Scholar] [CrossRef] [PubMed]
- Hanafy, D.M.; Leaver, D.J. Is a Fungal Apocalypse Inevitable or Just a Hallucination? An Overview of the Antifungal Armamentarium Used in the Fight against Pathogenic Fungi. ACS Med. Chem. Lett. 2025, 16, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bills, G.F.; An, Z. Advances in the treatment of invasive fungal disease. PLoS Pathog. 2023, 19, e1011322. [Google Scholar] [CrossRef]
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef] [PubMed]
- Hibbett, D.; Nagy, L.G.; Nilsson, R.H. Fungal diversity, evolution, and classification. Curr. Biol. 2025, 35, R463–R469. [Google Scholar] [CrossRef]
- Drexler, M. How Infection Works. In What You Need to Know About Infectious Disease; National Academies Press (US): Washington, DC, USA, 2010. Available online: https://www.ncbi.nlm.nih.gov/books/NBK209710/ (accessed on 9 October 2023).
- Pappas, P.G.; Chen, S.C.-A.; Donnelly, J.P. The evidence supporting the revised EORTC/MSGERC definitions for invasive fungal infections. Clin. Infect. Dis. 2021, 72 (Suppl. S2), S77–S78. [Google Scholar] [CrossRef]
- Bassetti, M.; Azoulay, E.; Kullberg, B.-J.; Ruhnke, M.; Shoham, S.; Vazquez, J.; Giacobbe, D.R.; Calandra, T. EORTC/MSGERC definitions of invasive fungal diseases: Summary of activities of the intensive care unit working group. Clin. Infect. Dis. 2021, 72 (Suppl. S2), S121–S127. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and update of the consensus definitions of invasive fungal disease from the European organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2019, 71, 1367–1376. [Google Scholar] [CrossRef]
- Cornely, O.A.; Sprute, R.; Bassetti, M.; Chen, S.C.-A.; Groll, A.H.; Kurzai, O.; Lass-Flörl, C.; Ostrosky-Zeichner, L.; Rautemaa-Richardson, R.; Revathi, G.; et al. Global guideline for the diagnosis and management of candidiasis: An initiative of the ECMM in cooperation with ISHAM and ASM. Lancet Infect. Dis. 2025, 25, e280–e293. [Google Scholar] [CrossRef]
- Brown, G.D.; Denning, D.W.; Levitz, S.M. Tackling human fungal infections. Science 2012, 336, 647. [Google Scholar] [CrossRef]
- Köhler, J.R.; Hube, B.; Puccia, R.; Casadevall, A.; Perfect, J.R. Fungi that infect humans. Microbiol. Spectr. 2017, 5, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases—Estimate precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-S.; Lee, S.S.-J.; Chen, W.-C.; Tseng, C.-H.; Lee, N.-Y.; Chen, P.-L.; Li, M.-C.; Syue, L.-S.; Lo, C.-L.; Ko, W.-C.; et al. COVID-19-associated candidiasis and the emerging concern of Candida auris infections. J. Microbiol. Immunol. Infect. 2023, 56, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Raut, A.; Huy, N.T. Rising incidence of mucormycosis in patients with COVID-19: Another challenge for India against the second wave? Lancet Respir. Med. 2021, 9, e77. [Google Scholar] [CrossRef]
- Rouzé, A.; Lemaitre, E.; Martin-Loeches, I.; Povoa, P.; Diaz, E.; Nyga, R.; Torres, A.; Metzelard, M.; Du Cheyron, D.; Lambiotte, F.; et al. Invasive pulmonary aspergillosis among intubated patients with SARS-CoV-2 or influenza pneumonia: A European multicenter comparative cohort study. Crit. Care 2022, 26, 11. [Google Scholar] [CrossRef]
- Kumar, V.; Huang, J.; Dong, Y.; Hao, G.-F. Targeting Fks1 proteins for novel antifungal drug discovery. Trends Pharmacol. Sci. 2024, 45, 366–384. [Google Scholar] [CrossRef]
- Fisher, M.C.; Denning, D.W. The WHO fungal priority pathogens list as a game-changer. Nat. Rev. Microbiol. 2023, 21, 211–212. [Google Scholar] [CrossRef]
- Firacative, C. Invasive fungal disease in humans: Are we aware of the real impact? Mem. Inst. Oswaldo Cruz 2020, 115, e200430. [Google Scholar] [CrossRef]
- de Hoog, S.; Walsh, T.J.; Ahmed, S.A.; Alastruey-Izquierdo, A.; Alexander, B.D.; Arendrup, M.C.; Babady, E.; Bai, F.-Y.; Balada-Llasat, J.-M.; Borman, A.; et al. A conceptual framework for nomenclatural stability and validity of medically important fungi: A proposed global consensus guideline for fungal name changes supported by ABP, ASM, CLSI, ECMM, ESCMID-EFISG, EUCAST-AFST, FDLC, IDSA, ISHAM, MMSA, and MSGERC. J. Clin. Microbiol. 2023, 61, e00873-23. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Sulaiman, T.; Al-Ahmed, S.H.; Buhaliqah, Z.A.; Buhaliqah, A.A.; AlYuosof, B.; Alfaresi, M.; Al Fares, M.A.; Alwarthan, S.; Alkathlan, M.S.; et al. Potential strategies to control the risk of antifungal resistance in humans: A comprehensive review. Antibiotics 2023, 12, 608. [Google Scholar] [CrossRef]
- Vanreppelen, G.; Wuyts, J.; Van Dijck, P.; Vandecruys, P. Sources of Antifungal Drugs. J. Fungi 2023, 9, 171. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Qasir, D.; Morris, A.C. Invasive pulmonary aspergillosis in hospital and ventilator-associated pneumonias. Semin. Respir. Crit. Care Med. 2022, 43, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Rusu, S.; Lavis, P.; Domingues Salgado, V.; Van Craynest, M.-P.; Creteur, J.; Salmon, I.; Brasseur, A.; Remmelink, M. Comparison of antemortem clinical diagnosis and post-mortem findings in intensive care unit patients. Virchows Arch. 2021, 479, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Giacobbe, D.R.; Grecchi, C.; Rebuffi, C.; Zuccaro, V.; Scudeller, L.; The FUNDICU Investigators. Performance of existing definitions and tests for the diagnosis of invasive aspergillosis in critically ill, adult patients: A systematic review with qualitative evidence synthesis. J. Infect. 2020, 81, 131–146. [Google Scholar] [CrossRef]
- Candoni, A.; Farina, F.; Perruccio, K.; Di Blasi, R.; Criscuolo, M.; Cattaneo, C.; Delia, M.; Zannier, M.E.; Dragonetti, G.; Fanci, R.; et al. Impact of invasive aspergillosis occurring during first induction therapy on outcome of acute myeloid leukaemia (SEIFEM-12B study). Mycoses 2020, 63, 1094–1100. [Google Scholar] [CrossRef]
- Fungal Disease Frequency|Gaffi—Global Action for Fungal Infections. Available online: https://gaffi.org/why/fungal-disease-frequency/ (accessed on 24 October 2023).
- Limper, A.H.; Adenis, A.; Le, T.; Harrison, T.S. Fungal infections in HIV/AIDS. Lancet Infect. Dis. 2017, 17, e334–e343. [Google Scholar] [CrossRef]
- Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect. Dis. 2017, 17, 873–881. [Google Scholar] [CrossRef]
- Howard, K.C.; Dennis, E.K.; Watt, D.S.; Garneau-Tsodikova, S. A comprehensive overview of the medicinal chemistry of antifungal drugs: Perspectives and promise. Chem. Soc. Rev. 2020, 49, 2426–2480. [Google Scholar] [CrossRef]
- Ostrosky-Zeichner, L.; Casadevall, A.; Galgiani, J.N.; Odds, F.C.; Rex, J.H. An insight into the antifungal pipeline: Selected new molecules and beyond. Nat. Rev. Drug Discov. 2010, 9, 719–727. [Google Scholar] [CrossRef]
- Carmo, A.; Rocha, M.; Pereirinha, P.; Tomé, R.; Costa, E. Antifungals: From pharmacokinetics to clinical practice. Antibiotics 2023, 12, 884. [Google Scholar] [CrossRef]
- Carolus, H.; Pierson, S.; Lagrou, K.; Van Dijck, P. Amphotericin B and other polyenes-discovery, clinical use, mode of action and drug resistance. J. Fungi 2020, 6, 321. [Google Scholar] [CrossRef]
- Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol. 2017, 133, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mohammad, I.S.; Fan, L.; Zhao, Z.; Nurunnabi, M.; Sallam, M.A.; Wu, J.; Chen, Z.; Yin, L.; He, W. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm. Sin. B 2021, 11, 2585–2604. [Google Scholar] [CrossRef] [PubMed]
- Matsumori, N.; Sawada, Y.; Murata, M. Mycosamine orientation of amphotericin B controlling interaction with ergosterol: Sterol-Dependent activity of conformation-restricted derivatives with an amino-carbonyl bridge. J. Am. Chem. Soc. 2005, 127, 10667–10675. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Saini, V.; Bajaj, A. Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Med. Chem. 2023, 14, 1603–1628. [Google Scholar] [CrossRef]
- Puumala, E.; Fallah, S.; Robbins, N.; Cowen, L.E. Advancements and challenges in antifungal therapeutic development. Clin. Microbiol. Rev. 2024, 37, e00142-23. [Google Scholar] [CrossRef]
- Cavassin, F.B.; Baú-Carneiro, J.L.; Vilas-Boas, R.R.; Queiroz-Telles, F. Sixty years of Amphotericin B: An Overview of the Main Antifungal Agent Used to Treat Invasive Fungal Infections. Infect. Dis. Ther. 2021, 10, 115–147. [Google Scholar] [CrossRef]
- Abraham, D.J.; Rotella, D. Burger’s Medicinal Chemistry, Drug Discovery and Development; John Wiley & Sons: Hoboken, NJ, USA, 2021; Volume 8, ISBN 978-1-119-53030-5. [Google Scholar]
- Hiemenz, J.W.; Walsh, T.J. Lipid formulations of amphotericin B: Recent progress and future directions. Clin. Infect. Dis. 1996, 22 (Suppl. S2), S133–S144. [Google Scholar] [CrossRef]
- Lee, J.S.F.; Cohen, R.M.; Khan, R.A.; Burry, J.; Casas, E.C.; Chung, H.Y.; Costa, L.H.; Ford, N.; Galvao, D.L.N.; Giron, N.; et al. Paving the way for affordable and equitable liposomal amphotericin B access worldwide. Lancet Glob. Health 2024, 12, e1552–e1559. [Google Scholar] [CrossRef]
- Cornely, O.A.; Alastruey-Izquierdo, A.; Arenz, D.; Chen, S.C.A.; Dannaoui, E.; Hochhegger, B.; Hoenigl, M.; Jensen, H.E.; Lagrou, K.; Lewis, R.E.; et al. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect. Dis. 2019, 19, e405–e421. [Google Scholar] [CrossRef]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Flörl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24 (Suppl. S1), e1–e38. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Diagnosing and Managing Disseminated Histoplasmosis Among People Living with HIV; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-000643-0. Available online: https://www.who.int/publications/i/item/9789240006430 (accessed on 6 December 2024).
- World Health Organization. Guidelines for Diagnosing, Preventing and Managing Cryptococcal Disease Among Adults, Adolescents and Children Living with HIV; World Health Organization: Geneva, Switzerland, 2016; ISBN 978-92-4-155027-7. Available online: https://www.who.int/publications/i/item/9789240052178 (accessed on 6 December 2024).
- Heidelberger, C.; Chaudhuri, N.K.; Danneberg, P.; Mooren, D.; Griesbach, L.; Duschinsky, R.; Schnitzer, R.J.; Pleven, E.; Scheiner, J. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 1957, 179, 663–666. [Google Scholar] [CrossRef]
- Tassel, D.; Madoff, M.A. Treatment of Candida sepsis and Cryptococcus meningitis with 5-fluorocytosine. A new antifungal agent. JAMA 1968, 206, 830–832. [Google Scholar] [CrossRef] [PubMed]
- Vermes, A.; Guchelaar, H.-J.; Dankert, J. Flucytosine: A review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother. 2000, 46, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Groll, A.H.; Piscitelli, S.C.; Walsh, T.J. Clinical pharmacology of systemic antifungal agents: A comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. In Advances in Pharmacology; August, J.T., Anders, M.W., Murad, F., Coyle, J.T., Eds.; Academic Press: Cambridge, UK, 1998; Volume 44, pp. 343–500. [Google Scholar] [CrossRef]
- Sigera, L.S.M.; Denning, D.W. Flucytosine and its clinical usage. Ther. Adv. Infect. Dis. 2023, 10, 20499361231161387. [Google Scholar] [CrossRef] [PubMed]
- Delma, F.Z.; Al-Hatmi, A.M.S.; Brüggemann, R.J.M.; Melchers, W.J.G.; de Hoog, S.; Verweij, P.E.; Buil, J.B. Molecular mechanisms of 5-fluorocytosine resistance in yeasts and filamentous fungi. J. Fungi 2021, 7, 909. [Google Scholar] [CrossRef]
- Gintjee, T.J.; Donnelley, M.A.; Thompson, G.R. Aspiring antifungals: Review of current antifungal pipeline developments. J. Fungi 2020, 6, 28. [Google Scholar] [CrossRef]
- Houšť, J.; Spížek, J.; Havlíček, V. Antifungal Drugs. Metabolites 2020, 10, 106. [Google Scholar] [CrossRef]
- AFECT (Association Française des Enseignants de Chimie Thérapeutique). Principaux Antifongiques et Antiparasitaires: Traité de Chimie Thérapeutique; Lavoisier-Technique et Documentation: Paris, France, 1996; Volume 5. [Google Scholar]
- Sheehan, D.J.; Hitchcock, C.A.; Sibley, C.M. Current and emerging azole antifungal agents. Clin. Microbiol. Rev. 1999, 12, 40–79. [Google Scholar] [CrossRef]
- European Medicines Agency. Ketoconazole-Containing Medicines—Referral; European Medicines Agency: Amsterdam, The Netherlands, 2014; Available online: https://www.ema.europa.eu/en/medicines/human/referrals/ketoconazole-containing-medicines (accessed on 7 December 2024).
- Como, J.A.; Dismukes, W.E. Oral azole drugs as systemic antifungal therapy. N. Engl. J. Med. 1994, 330, 263–272. [Google Scholar] [CrossRef]
- Dahiya, S.; Sharma, N.; Punia, A.; Choudhary, P.; Gulia, P.; Parmar, V.S.; Chhillar, A.K. Antimycotic drugs and their mechanisms of resistance to Candida Species. Curr. Drug Targets 2022, 23, 116–125. [Google Scholar] [CrossRef]
- Antimicrobial-Resistant Fungi|Fungal Diseases|CDC. Available online: https://www.cdc.gov/fungal/antimicrobial-resistant-fungi/index.html (accessed on 5 April 2023).
- Singh, A.; Singh, K.; Sharma, A.; Kaur, K.; Chadha, R.; Bedi, P.M.S. Recent advances in antifungal drug development targeting lanosterol 14α-demethylase (CYP51): A comprehensive review with structural and molecular insights. Chem. Biol. Drug Des. 2023, 102, 606–639. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Robbins, N.; Cowen, L.E. Molecular mechanisms governing antifungal drug resistance. NPJ Antimicrob. Resist. 2023, 1, 5. [Google Scholar] [CrossRef] [PubMed]
- Maertens, J.A. History of the development of azole derivatives. Clin. Microbiol. Infect. 2004, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Suh, J.W.; Kim, M.J. Evaluation of Fluconazole versus Echinocandins for Treatment of Candidemia Caused by Susceptible Common Candida Species: A Propensity Score Matching Analysis. J. Fungi 2023, 9, 539. [Google Scholar] [CrossRef]
- Cartau, T.; Chantepie, S.; Thuillier-Lecouf, A.; Langlois, B.; Bonhomme, J. Epidemiology, Clinical, Radiological and Biological Characteristics, and Outcomes of Mucormycosis: A Retrospective Study at a French University Hospital. J. Fungi 2024, 10, 884. [Google Scholar] [CrossRef]
- Hüttel, W. Echinocandins: Structural diversity, biosynthesis, and development of antimycotics. Appl. Microbiol. Biotechnol. 2021, 105, 55–66. [Google Scholar] [CrossRef]
- Benz, F.; Knüsel, F.; Nüesch, J.; Treichler, H.; Voser, W.; Nyfeler, R.; Keller-Schierlein, W. Stoffwechselprodukte von Mikroorganismen 143. Mitteilung. Echinocandin B, ein neuartiges Polypeptid-Antibioticum aus Aspergillus nidulans var. echinulatus: Isolierung und Bausteine. Helv. Chim. Acta 1974, 57, 2459–2477. [Google Scholar] [CrossRef]
- Balkovec, J.M.; Hughes, D.L.; Masurekar, P.S.; Sable, C.A.; Schwartz, R.E.; Singh, S.B. Discovery and development of first in class antifungal caspofungin (CANCIDAS®)—A case study. Nat. Prod. Rep. 2014, 31, 15–34. [Google Scholar] [CrossRef]
- Keller-Juslén, C.; Kuhn, M.; Loosli, H.R.; Petcher, T.J.; Weber, H.P.; von Wartburg, A. Struktur des cyclopeptid-antibiotikums sl 7810 (Echinocandin B). Tetrahedron Lett. 1976, 17, 4147–4150. [Google Scholar] [CrossRef]
- Kurtz, M.B.; Rex, J.H. Glucan synthase inhibitors as antifungal agents. In Advances in Protein Chemistry; Drug Discovery and Design; Academic Press: Cambridge, UK, 2001; Volume 56, pp. 423–475. [Google Scholar] [CrossRef]
- Keating, G.M.; Jarvis, B. Caspofungin. Drugs 2001, 61, 1121–1129; discussion 1130–1131. [Google Scholar] [CrossRef]
- Zaas, A.K.; Steinbach, W.J. Micafungin: The US perspective. Expert. Rev. Anti Infect. Ther. 2005, 3, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, J.A.; Sobel, J.D. Anidulafungin: A novel echinocandin. Clin. Infect. Dis. 2006, 43, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. Rezafungin: First Approval. Drugs 2023, 83, 833–840. [Google Scholar] [CrossRef]
- Douglas, C.M.; D’Ippolito, J.A.; Shei, G.J.; Meinz, M.; Onishi, J.; Marrinan, J.A.; Li, W.; Abruzzo, G.K.; Flattery, A.; Bartizal, K.; et al. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob. Agents Chemother. 1997, 41, 2471–2479. [Google Scholar] [CrossRef]
- Hu, X.; Yang, P.; Chai, C.; Liu, J.; Sun, H.; Wu, Y.; Zhang, M.; Zhang, M.; Liu, X.; Yu, H. Structural and mechanistic insights into fungal β-1,3-glucan synthase FKS1. Nature 2023, 616, 190–198. [Google Scholar] [CrossRef]
- Hussain, M.K.; Ahmed, S.; Khan, A.; Siddiqui, A.J.; Khatoon, S.; Jahan, S. Mucormycosis: A hidden mystery of fungal infection, possible diagnosis, treatment and development of new therapeutic agents. Eur. J. Med. Chem. 2023, 246, 115010. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A. Comparison of in vitro activities of the new triazole SCH56592 and the echinocandins MK-0991 (L-743,872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeasts. J. Clin. Microbiol. 1998, 36, 2950–2956. [Google Scholar] [CrossRef]
- Zhu, B.; Dong, Y.; Ma, J.; Chen, M.; Ruan, S.; Zhao, W.; Feng, J. The synthesis and activity evaluation of N-acylated analogs of echinocandin B with improved solubility and lower toxicity. J. Pept. Sci. 2020, 26, e3278. [Google Scholar] [CrossRef]
- de la Torre, P.; Reboli, A.C. Micafungin: An evidence-based review of its place in therapy. Core Evid. 2014, 9, 27–39. [Google Scholar] [CrossRef]
- Bormann, A.M.; Morrison, V.A. Review of the pharmacology and clinical studies of micafungin. Drug Des. Devel Ther. 2009, 3, 295–302. [Google Scholar] [CrossRef]
- European Medicines Agency. Mycamine|European Medicines Agency; European Medicines Agency: Amsterdam, The Netherlands, 2013; Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/mycamine (accessed on 24 March 2024).
- World Health Organization. Antifungal Agents in Clinical and Preclinical Development: Overview and Analysis; World Health Organization: Geneva, Switzerland, 2025; ISBN 978-92-4-010514-0. Available online: https://www.who.int/publications/i/item/9789240105140 (accessed on 3 April 2025).
- EUCAST: Breakpoints for Antifungals. Available online: https://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals (accessed on 2 April 2025).
- Clinical & Laboratory Standards Institute. Clinical & Laboratory Standards Institute: CLSI Guidelines. Available online: https://clsi.org/ (accessed on 6 May 2024).
- Otto, W.R.; Arendrup, M.C.; Fisher, B.T. A practical guide to Antifungal Susceptibility Testing. J. Pediatr. Infect. Dis. Soc. 2023, 12, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Gabaldón, T.; Garcia-Rubio, R.; Jenks, J.D.; Hoenigl, M.; Salzer, H.J.F.; Ilkit, M.; Lass-Flörl, C.; Perlin, D.S. Drug-resistant fungi: An emerging challenge threatening our limited sntifungal armamentarium. Antibiotics 2020, 9, 877. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Czajka, K.M.; Venkataraman, K.; Brabant-Kirwan, D.; Santi, S.A.; Verschoor, C.; Appanna, V.D.; Singh, R.; Saunders, D.P.; Tharmalingam, S. Molecular mechanisms associated with antifungal resistance in pathogenic Candida species. Cells 2023, 12, 2655. [Google Scholar] [CrossRef]
- Yang, D.-H.; Khanal Lamichhane, A.; Kwon-Chung, K.J.; Chang, Y.C. Factors influencing the nitrogen-source dependent flucytosine resistance in Cryptococcus species. mBio 2023, 14, e0345122. [Google Scholar] [CrossRef]
- Perlin, D.S. Mechanisms of echinocandin antifungal drug resistance. Ann. N. Y. Acad. Sci. 2015, 1354, 1–11. [Google Scholar] [CrossRef]
- Lotfali, E.; Fattahi, A.; Sayyahfar, S.; Ghasemi, R.; Rabiei, M.M.; Fathi, M.; Vakili, K.; Deravi, N.; Soheili, A.; Toreyhi, H.; et al. A review on molecular mechanisms of antifungal resistance in Candida glabrata: Update and recent advances. Microb. Drug Resist. 2021, 27, 1371–1388. [Google Scholar] [CrossRef]
- Huang, Y.; Su, Y.; Chen, X.; Xiao, M.; Xu, Y. Insight into virulence and mechanisms of Amphotericin B resistance in the Candida haemulonii complex. J. Fungi 2024, 10, 615. [Google Scholar] [CrossRef]
- Akinosoglou, K.; Rigopoulos, E.A.; Papageorgiou, D.; Schinas, G.; Polyzou, E.; Dimopoulou, E.; Gogos, C.; Dimopoulos, G. Amphotericin B in the era of new antifungals: Where Will It Stand? J. Fungi 2024, 10, 278. [Google Scholar] [CrossRef]
- De Francesco, M.A. Drug-resistant Aspergillus spp.: A literature review of its resistance mechanisms and its prevalence in Europe. Pathogens 2023, 12, 1305. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, P.; Ganapathy, D.; Sekaran, S.; Murthykumar, K.; Sundramoorthy, A.K.; Pitchiah, S.; Shanmugam, R. Molecular mechanisms of antifungal resistance in mucormycosis. BioMed. Res. Int. 2022, 2022, 6722245. [Google Scholar] [CrossRef] [PubMed]
- Lass-Flörl, C.; Steixner, S. The changing epidemiology of fungal infections. Mol. Asp. Med. 2023, 94, 101215. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species From 1997–2016. Open Forum Infect. Dis. 2019, 6, S79–S94. [Google Scholar] [CrossRef]
- Odoj, K.; Garlasco, J.; Pezzani, M.D.; Magnabosco, C.; Ortiz, D.; Manco, F.; Galia, L.; Foster, S.K.; Arieti, F.; Tacconelli, E. Tracking candidemia trends and antifungal resistance patterns across Europe: An in-depth analysis of surveillance systems and surveillance studies. J. Fungi 2024, 10, 685. [Google Scholar] [CrossRef]
- Sanguinetti, M.; Posteraro, P.; Posteraro, B. Echinocandin antifungal drug resistance in Candida species: A cause for concern? Curr. Infect. Dis. Rep. 2010, 12, 437–443. [Google Scholar] [CrossRef]
- Mroczyńska, M.; Brillowska-Dąbrowska, A. Review on current status of echinocandins use. Antibiotics 2020, 9, 227. [Google Scholar] [CrossRef]
- Rasheed, M.; Battu, A.; Kaur, R. Host-pathogen interaction in Candida glabrata infection: Current knowledge and implications for antifungal therapy. Expert. Rev. Anti Infect. Ther. 2020, 18, 1093–1103. [Google Scholar] [CrossRef]
- Jospe-Kaufman, M.; Fridman, M. Illuminating antifungal mode of action and resistance with fluorescent probes. Curr. Opin. Chem. Biol. 2025, 85, 102570. [Google Scholar] [CrossRef]
- Cass, L.; Murray, A.; Davis, A.; Woodward, K.; Albayaty, M.; Ito, K.; Strong, P.; Ayrton, J.; Brindley, C.; Prosser, J.; et al. Safety and nonclinical and clinical pharmacokinetics of PC945, a novel inhaled triazole antifungal agent. Pharmacol. Res. Perspect. 2020, 9, e00690. [Google Scholar] [CrossRef]
- Hoenigl, M.; Sprute, R.; Egger, M.; Arastehfar, A.; Cornely, O.A.; Krause, R.; Lass-Flörl, C.; Prattes, J.; Spec, A.; Thompson, G.R.; et al. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021, 81, 1703–1729. [Google Scholar] [CrossRef]
- Pulmocide Ltd. A Double-Blind, Randomized, Placebo-Controlled Study to Assess the Safety and Efficacy of Nebulized PC945 When Added to Systemic Antifungal Therapy for the Treatment of Refractory Invasive Pulmonary Aspergillosis (OPERA-T Study); ClinicalTrials.gov: Bethesda, MD, USA, 2024. Available online: https://clinicaltrials.gov/study/NCT05238116 (accessed on 1 January 2024).
- Nishimoto, A.T.; Wiederhold, N.P.; Flowers, S.A.; Zhang, Q.; Kelly, S.L.; Morschhäuser, J.; Yates, C.M.; Hoekstra, W.J.; Schotzinger, R.J.; Garvey, E.P.; et al. In vitro activities of the novel investigational tetrazoles VT-1161 and VT-1598 compared to the triazole antifungals against azole-resistant strains and clinical isolates of Candida albicans. Antimicrob. Agents Chemother. 2019, 63, e00341-19. [Google Scholar] [CrossRef]
- Wiederhold, N.P.; Najvar, L.K.; Garvey, E.P.; Brand, S.R.; Xu, X.; Ottinger, E.A.; Alimardanov, A.; Cradock, J.; Behnke, M.; Hoekstra, W.J.; et al. The fungal Cyp51 inhibitor VT-1129 Is efficacious in an experimental model of Cryptococcal meningitis. Antimicrob. Agents Chemother. 2018, 62, e01071-18. [Google Scholar] [CrossRef] [PubMed]
- Wiederhold, N.P.; Shubitz, L.F.; Najvar, L.K.; Jaramillo, R.; Olivo, M.; Catano, G.; Trinh, H.T.; Yates, C.M.; Schotzinger, R.J.; Garvey, E.P.; et al. The novel fungal Cyp51 inhibitor VT-1598 is efficacious in experimental models of central nervous system coccidioidomycosis caused by Coccidioides posadasii and Coccidioides immitis. Antimicrob. Agents Chemother. 2018, 62, e02258-17. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.D.; Sibley, G.E.M.; Beckmann, N.; Dobb, K.S.; Slater, M.J.; McEntee, L.; du Pré, S.; Livermore, J.; Bromley, M.J.; Wiederhold, N.P.; et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc. Natl. Acad. Sci. USA 2016, 113, 12809–12814. [Google Scholar] [CrossRef] [PubMed]
- Wiederhold, N.P. Review of the novel investigational antifungal olorofim. J. Fungi 2020, 6, 122. [Google Scholar] [CrossRef]
- F2G Biotech GmbH. Phase IIb Study of F901318 as Treatment of Invasive Fungal Infections Due to Lomentospora Prolificans, Scedosporium spp., Aspergillus spp., and Other Resistant Fungi in Patients Lacking Suitable Alternative Treatment Options; ClinicalTrials.gov: Bethesda, MD, USA, 2022. Available online: https://clinicaltrials.gov/study/NCT03583164 (accessed on 1 January 2024).
- F2G Biotech GmbH. Phase III, Adjudicator-Blinded, Randomised Study to Evaluate Efficacy and Safety of Treatment with Olorofim Versus Treatment with AmBisome® Followed by Standard of Care in Patients with Invasive Fungal Disease Caused by Aspergillus Species; ClinicalTrials.gov: Bethesda, MD, USA, 2024. Available online: https://clinicaltrials.gov/study/NCT05101187 (accessed on 1 January 2024).
- Shaw, K.J.; Ibrahim, A.S. Fosmanogepix: A Review of the First-in-Class Broad Spectrum Agent for the Treatment of Invasive Fungal Infections. J. Fungi 2020, 6, 239. [Google Scholar] [CrossRef]
- Covel, J.; Soltow, Q.; Kapoor, M.; Moloney, M.; Webb, P.; Trzoss, M.; Sharp, M.; Shaw, K. The discovery of Manogepix/Fosmanogepix and other Gwt1 inhibitors for the treatment of invasive fungal infections. In 2019 Medicinal Chemistry Reviews; Trzoss, M., Ed.; American Chemical Society: Washington, DC, USA, 2019; pp. 221–237. [Google Scholar]
- Pfizer. An Open-Label Study to Evaluate the Efficacy and Safety of APX001 in Patients with Candidemia and/or Invasive Candidiasis Caused by Candida Auris; ClinicalTrials.gov: Bethesda, MD, USA, 2023. Available online: https://clinicaltrials.gov/study/NCT04148287 (accessed on 1 January 2024).
- Basilea Pharmaceutica. An Interventional Efficacy and Safety Phase 3 Double-Blind 2-Arm Study to Investigate IV Followed by Oral Fosmanogepix Compared with IV Caspofungin Followed by Oral Fluconazole in Adult Participants with Candidemia and/or Invasive Candidiasis; ClinicalTrials.gov: Bethesda, MD, USA, 2024. Available online: https://clinicaltrials.gov/study/NCT05421858 (accessed on 1 January 2024).
- Davis, M.R.; Donnelley, M.A.; Thompson, G.R. Ibrexafungerp: A novel oral glucan synthase inhibitor. Med. Mycol. 2020, 58, 579–592. [Google Scholar] [CrossRef]
- Lee, A. Ibrexafungerp: First Approval. Drugs 2021, 81, 1445–1450. [Google Scholar] [CrossRef]
- Scynexis, Inc. Open-Label Study to Evaluate the Efficacy and Safety of SCY-078 (Ibrexafungerp) in Patients with Fungal Diseases That Are Refractory to or Intolerant of Standard Antifungal Treatment (FURI); ClinicalTrials.gov: Bethesda, MD, USA, 2024. Available online: https://clinicaltrials.gov/study/NCT03059992 (accessed on 1 January 2024).
- Stenland, C.J.; Lis, L.G.; Schendel, F.J.; Hahn, N.J.; Smart, M.A.; Miller, A.L.; von Keitz, M.G.; Gurvich, V.J. A practical and scalable manufacturing process for an anti-fungal agent, Nikkomycin Z. Org. Process Res. Dev. 2013, 17, 265–272. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, M.; Yang, Y.; Ding, X.; Yang, P.; Huang, K.; Hu, X.; Zhang, M.; Liu, X.; Yu, H. Structures and mechanism of chitin synthase and its inhibition by antifungal drug Nikkomycin Z. Cell Discov. 2022, 8, 129. [Google Scholar] [CrossRef]
- University of Arizona. Phase I/II Evaluation of the Safety, Pharmacokinetics, and Preliminary Effectiveness of Nikkomycin Z in the Treatment of Patients with Uncomplicated Coccidioides Pneumonia; ClinicalTrials.gov: Bethesda, MD, USA, 2013. Available online: https://clinicaltrials.gov/study/NCT00614666 (accessed on 1 January 2024).
- Zhou, M.; Liu, L.; Cong, Z.; Jiang, W.; Xiao, X.; Xie, J.; Luo, Z.; Chen, S.; Wu, Y.; Xue, X.; et al. A dual-targeting antifungal is effective against multidrug-resistant human fungal pathogens. Nat. Microbiol. 2024, 9, 1325–1339. [Google Scholar] [CrossRef]
- Shekhar-Guturja, T.; Gunaherath, G.M.K.B.; Wijeratne, E.M.K.; Lambert, J.-P.; Averette, A.F.; Lee, S.C.; Kim, T.; Bahn, Y.-S.; Tripodi, F.; Ammar, R.; et al. Dual action antifungal small molecule modulates multidrug efflux and TOR signaling. Nat. Chem. Biol. 2016, 12, 867–875. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Qi, G.; Qian, Y.; Li, B.; Shi, L.; Liu, B. Combating Fungal Infections and Resistance with a Dual-Mechanism Luminogen to Disrupt Membrane Integrity and Induce DNA Damage. J. Am. Chem. Soc. 2024, 146, 31656–31664. [Google Scholar] [CrossRef]
- Yu, S.; He, Y.-Q.; Liu, Y.; Ji, S.; Wang, Y.; Sun, B. Construction and Activity Evaluation of Novel Bifunctional Inhibitors and a COF Carrier Based on a Fungal Infection Microenvironment. J. Med. Chem. 2024, 67, 8420–8444. [Google Scholar] [CrossRef]
- Cellini, B.; Pampalone, G.; Camaioni, E.; Pariano, M.; Catalano, F.; Zelante, T.; Dindo, M.; Macchioni, L.; Di Veroli, A.; Galarini, R.; et al. Dual species sphingosine-1-phosphate lyase inhibitors to combine antifungal and anti-inflammatory activities in cystic fibrosis: A feasibility study. Sci. Rep. 2023, 13, 22692. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xie, J.; Cai, Y.; Wang, N.; Wang, Y.; Zhang, L.; Li, Y.; Yu, J.; Li, Y.; Wang, H.; et al. Efficacy and Safety of Combination Antifungals as Empirical, Preemptive, and Targeted Therapies for Invasive Fungal Infections in Intensive-Care Units. Infect. Drug Resist. 2022, 15, 5331–5344. [Google Scholar] [CrossRef] [PubMed]
- Toepfer, S.; Keniya, M.V.; Lackner, M.; Monk, B.C. Azole Combinations and Multi-Targeting Drugs That Synergistically Inhibit Candidozyma auris. J. Fungi 2024, 10, 698. [Google Scholar] [CrossRef] [PubMed]
Antifungals | Resistance Mechanisms | Documented Fungal Strains | References |
---|---|---|---|
Polyenes | Mutations in ergosterol biosynthesis genes, Accumulation of alternate sterols, Cell stress responses. | Candida spp., C. neoformans | [62] |
Azoles | Mutations in drug target, Drug target overexpression, Efflux transporters overexpression, Cell stress responses. | C. albicans, C. auris, A. fumigatus | [62,89] |
5-FC | Membrane cytosine permease mutation, Cytosine deaminase mutation. | Cryptococcus spp. | [50,53,90] |
Echinocandins | Mutations in drug target, Cell stress responses (e.g., chitin synthase upregulation). | Candida spp., Cryptococcus spp., Aspergillus spp., Saccharomyces cerevisiae | [62,91,92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Susan, V.; Lang, M.; Sabou, M.; Bourel-Bonnet, L. Antifungal Drugs for the Treatment of Invasive Fungal Infections—A Limited Therapeutic Toolbox Facing Growing Resistances. Pharmaceuticals 2025, 18, 1220. https://doi.org/10.3390/ph18081220
Susan V, Lang M, Sabou M, Bourel-Bonnet L. Antifungal Drugs for the Treatment of Invasive Fungal Infections—A Limited Therapeutic Toolbox Facing Growing Resistances. Pharmaceuticals. 2025; 18(8):1220. https://doi.org/10.3390/ph18081220
Chicago/Turabian StyleSusan, Victoria, Mylène Lang, Marcela Sabou, and Line Bourel-Bonnet. 2025. "Antifungal Drugs for the Treatment of Invasive Fungal Infections—A Limited Therapeutic Toolbox Facing Growing Resistances" Pharmaceuticals 18, no. 8: 1220. https://doi.org/10.3390/ph18081220
APA StyleSusan, V., Lang, M., Sabou, M., & Bourel-Bonnet, L. (2025). Antifungal Drugs for the Treatment of Invasive Fungal Infections—A Limited Therapeutic Toolbox Facing Growing Resistances. Pharmaceuticals, 18(8), 1220. https://doi.org/10.3390/ph18081220