Evaluating Potential Therapeutic Targets and Drug Repurposing Based on the Esophageal Cancer Subtypes
Abstract
1. Introduction
2. Results
2.1. Identification of Common DEGs in EAC and/or ESCC Datasets
2.2. GO and KEGG Pathway Enrichment Analysis of Common DEGs from EAC, ESCC, and EAC&ESCC Datasets
2.3. Protein–Protein Interaction Network Construction and Identification of Hub Genes
2.4. Survival and Expression Analysis of Hub Genes in TCGA Dataset
2.5. Computational Screening of Potential Drug Candidates for EC
3. Discussion
4. Materials and Methods
4.1. Data Acquisition
4.2. Identification of Common DEGs Based on Esophageal Cancer Subtypes
4.3. Functional and Pathway Enrichment Analysis
4.4. Protein–Protein Interaction Network Analysis
4.5. Survival and Expression Analysis of Hub Genes
4.6. Drug Repurposing Analysis Based on the Esophageal Cancer Subtypes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BP | Biological Process |
CAF | Cancer-Associated Fibroblast |
CC | Cellular Component |
CI | Confidence Interval |
DEG | Differentially Expressed Gene |
EAC | Esophageal Adenocarcinoma |
EC | Esophageal Cancer |
ECM | Extracellular Matrix |
EMT | Epithelial–Mesenchymal Transition |
ERK | Extracellular Signal-Regulated Kinase |
ESCC | Esophageal Squamous Cell Carcinoma |
FAK | Focal Adhesion Kinase |
FDA | U.S. Food and Drug Administration |
FDR | False Discovery Rate |
GEO | Gene Expression Omnibus |
GO | Gene Ontology |
HR | Hazard Ratio |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
L1000CDS2 | L1000 Characteristic Direction Signature Search Engine |
L1000FWD | L1000 Fireworks Display |
LINCS | Library of Integrated Network-based Cellular Signatures |
MCODE | Molecular Complex Detection |
MEK | Mitogen-Activated Protein Kinase Kinase |
MF | Molecular Function |
OS | Overall Survival |
PAR-1 | Protease-Activated Receptor-1 |
PPI | Protein–Protein Interaction |
STRING | Search Tool for the Retrieval of Interacting Genes/Proteins |
TCGA | The Cancer Genome Atlas |
UALCAN | University of Alabama at Birmingham Cancer data analysis portal |
References
- Deboever, N.; Jones, C.M.; Yamashita, K.; Ajani, J.A.; Hofstetter, W.L. Advances in diagnosis and management of cancer of the esophagus. BMJ 2024, 385, e074962. [Google Scholar] [CrossRef]
- Sheikh, M.; Roshandel, G.; McCormack, V.; Malekzadeh, R. Current Status and Future Prospects for Esophageal Cancer. Cancers 2023, 15, 765. [Google Scholar] [CrossRef]
- Shah, M.A.; Kennedy, E.B.; Catenacci, D.V.; Deighton, D.C.; Goodman, K.A.; Malhotra, N.K.; Willett, C.; Stiles, B.; Sharma, P.; Tang, L.; et al. Treatment of Locally Advanced Esophageal Carcinoma: ASCO Guideline. J. Clin. Oncol. 2020, 38, 2677–2694. [Google Scholar] [CrossRef]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef]
- Xi, M.; Yang, Y.; Zhang, L.; Yang, H.; Merrell, K.W.; Hallemeier, C.L.; Shen, R.K.; Haddock, M.G.; Hofstetter, W.L.; Maru, D.M.; et al. Multi-institutional Analysis of Recurrence and Survival After Neoadjuvant Chemoradiotherapy of Esophageal Cancer: Impact of Histology on Recurrence Patterns and Outcomes. Ann. Surg. 2019, 269, 663–670. [Google Scholar] [CrossRef]
- Eyck, B.M.; van Lanschot, J.J.B.; Hulshof, M.; van der Wilk, B.J.; Shapiro, J.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; van Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; et al. Ten-Year Outcome of Neoadjuvant Chemoradiotherapy Plus Surgery for Esophageal Cancer: The Randomized Controlled CROSS Trial. J. Clin. Oncol. 2021, 39, 1995–2004. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Min, Q.; Zhang, W.; Teng, H.; Li, C.; Zhang, K.; Shi, L.; Wang, B.; Zhan, Q. Comparative transcriptome characterization of esophageal squamous cell carcinoma and adenocarcinoma. Comput. Struct. Biotechnol. J. 2023, 21, 3841–3853. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, L.; Xu, Y.; Xie, Y.; Li, S. Comprehensive Analysis and Identification of Key Driver Genes for Distinguishing Between Esophageal Adenocarcinoma and Squamous Cell Carcinoma. Front. Cell Dev. Biol. 2021, 9, 676156. [Google Scholar] [CrossRef] [PubMed]
- King, R.J.; Qiu, F.; Yu, F.; Singh, P.K. Metabolic and Immunological Subtypes of Esophageal Cancer Reveal Potential Therapeutic Opportunities. Front. Cell Dev. Biol. 2021, 9, 667852. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; Liu, H.; Guo, H.; Lin, H.; Song, X.; Jin, Y.; Liu, Y.; Guo, H.; Liang, S.; Song, R.; et al. Identification of Hub Genes Associated with Development and Microenvironment of Hepatocellular Carcinoma by Weighted Gene Co-expression Network Analysis and Differential Gene Expression Analysis. Front. Genet. 2020, 11, 615308. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.-Q.; Zhang, J.-Q.; Zhang, S.-X.; Qiao, J.; Qiu, M.-T.; Liu, X.-R.; Chen, X.-X.; Gao, C.; Zhang, H.-H. Identification of novel hub genes associated with gastric cancer using integrated bioinformatics analysis. BMC Cancer 2021, 21, 697. [Google Scholar] [CrossRef]
- Xu, W.; Xu, J.; Wang, Z.; Jiang, Y. Weighted Gene Correlation Network Analysis Identifies Specific Functional Modules and Genes in Esophageal Cancer. J. Oncol. 2021, 2021, 8223263. [Google Scholar] [CrossRef]
- Corsello, S.M.; Nagari, R.T.; Spangler, R.D.; Rossen, J.; Kocak, M.; Bryan, J.G.; Humeidi, R.; Peck, D.; Wu, X.; Tang, A.A.; et al. Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 2020, 1, 235–248. [Google Scholar] [CrossRef]
- Bennett, A.N.; Huang, R.X.; He, Q.; Lee, N.P.; Sung, W.K.; Chan, K.H.K. Drug repositioning for esophageal squamous cell carcinoma. Front. Genet. 2022, 13, 991842. [Google Scholar] [CrossRef]
- Hughes, R.E.; Elliott, R.J.R.; Munro, A.F.; Makda, A.; O’Neill, J.R.; Hupp, T.; Carragher, N.O. High-Content Phenotypic Profiling in Esophageal Adenocarcinoma Identifies Selectively Active Pharmacological Classes of Drugs for Repurposing and Chemical Starting Points for Novel Drug Discovery. SLAS Discov. 2020, 25, 770–782. [Google Scholar] [CrossRef]
- Yang, P.; Liu, J.; Yang, T.; Zhang, L.; Gong, P.; Li, B.; Zhou, X. Construction and Investigation of MicroRNA-mRNA Regulatory Network of Gastric Cancer with Helicobacter pylori Infection. Biochem. Res. Int. 2020, 2020, 6285987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Wang, R.C.; Cheng, K.; Ring, B.Z.; Su, L. Roles of Rap1 signaling in tumor cell migration and invasion. Cancer Biol. Med. 2017, 14, 90–99. [Google Scholar] [CrossRef]
- Jeon, H.; Kang, Y.H.; Yoo, S.M.; Park, M.J.; Park, J.B.; Lee, S.H.; Lee, M.S. Kaposi’s Sarcoma-Associated Herpesvirus Infection Modulates the Proliferation of Glioma Stem-Like Cells. J. Microbiol. Biotechnol. 2018, 28, 165–174. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target Ther. 2021, 6, 425. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.; Xing, Y.; Zhu, W.; Liu, D.; Ma, X.; Wang, Y.; Jia, Y. PKP2 induced by YAP/TEAD4 promotes malignant progression of gastric cancer. Mol. Carcinog. 2024, 63, 1654–1668. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, J.; Qiu, X.-l.; He, J.; Cheng, C.; Sang, Y. Low expression of miR-7-5p promotes resistance to radiotherapy in lung cancer through direct upregulation of PKP2 expression. Sci. Rep. 2025, 15, 16847. [Google Scholar] [CrossRef]
- Liu, X.; Bian, H.; Shi, Y.; Du, T. Scavenger receptor class B member 1 promotes lung cancer growth and metastasis through enhanced twist family BHLH transcription factor 1 signaling in vitro and in vivo: Exploration of RPPNs as a therapeutic Strategy. Cytojournal 2025, 22, 23. [Google Scholar] [CrossRef]
- Chen, W.; Bao, L.; Ren, Q.; Zhang, Z.; Yi, L.; Lei, W.; Yang, Z.; Lu, Y.; You, B.; You, Y.; et al. SCARB1 in extracellular vesicles promotes NPC metastasis by co-regulating M1 and M2 macrophage function. Cell Death Discov. 2023, 9, 323. [Google Scholar] [CrossRef]
- Mooberry, L.K.; Sabnis, N.A.; Panchoo, M.; Nagarajan, B.; Lacko, A.G. Targeting the SR-B1 Receptor as a Gateway for Cancer Therapy and Imaging. Front. Pharmacol. 2016, 7, 466. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Huang, X.; Zhao, Y.; Yang, I.; Guo, W. SERPINH1 enhances the malignancy of osteosarcoma via PI3K-Akt signaling pathway. Transl. Oncol. 2024, 39, 101802. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Yao, Z.; Li, T.; Fang, X.; Xu, X.; Hu, S.; Yang, Y.; Jin, C.; Fei, Y.; Liu, C.; et al. SERPINH1 secretion by cancer-associated fibroblasts promotes hepatocellular carcinoma malignancy through SENP3-mediated SP1/SQLE pathway. Int. Immunopharmacol. 2025, 150, 114259. [Google Scholar] [CrossRef]
- Wang, Q.; Peng, D.; Zhu, S.; Chen, Z.; Hu, T.; Soutto, M.; Saad, R.; Zhang, S.; Ei-Rifai, W. Regulation of Desmocollin3 Expression by Promoter Hypermethylation is Associated with Advanced Esophageal Adenocarcinomas. J. Cancer 2014, 5, 457–464. [Google Scholar] [CrossRef]
- Fang, W.K.; Liao, L.D.; Zeng, F.M.; Zhang, P.X.; Wu, J.Y.; Shen, J.; Xu, L.Y.; Li, E.M. Desmocollin-2 affects the adhesive strength and cytoskeletal arrangement in esophageal squamous cell carcinoma cells. Mol. Med. Rep. 2014, 10, 2358–2364. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.K.; Liao, L.D.; Li, L.Y.; Xie, Y.M.; Xu, X.E.; Zhao, W.J.; Wu, J.Y.; Zhu, M.X.; Wu, Z.Y.; Du, Z.P.; et al. Down-regulated desmocollin-2 promotes cell aggressiveness through redistributing adherens junctions and activating beta-catenin signalling in oesophageal squamous cell carcinoma. J. Pathol. 2013, 231, 257–270. [Google Scholar] [CrossRef]
- Lee, J.J.; Ng, K.Y.; Bakhtiar, A. Extracellular matrix: Unlocking new avenues in cancer treatment. Biomark. Res. 2025, 13, 78. [Google Scholar] [CrossRef]
- Janiszewska, M.; Primi, M.C.; Izard, T. Cell adhesion in cancer: Beyond the migration of single cells. J. Biol. Chem. 2020, 295, 2495–2505. [Google Scholar] [CrossRef]
- Su, H.; Hu, N.; Yang, H.H.; Wang, C.; Takikita, M.; Wang, Q.H.; Giffen, C.; Clifford, R.; Hewitt, S.M.; Shou, J.Z.; et al. Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes. Clin. Cancer Res. 2011, 17, 2955–2966. [Google Scholar] [CrossRef]
- Lo Buglio, G.; Lo Cicero, A.; Campora, S.; Ghersi, G. The Multifaced Role of Collagen in Cancer Development and Progression. Int. J. Mol. Sci. 2024, 25, 13523. [Google Scholar] [CrossRef]
- Fang, S.; Dai, Y.; Mei, Y.; Yang, M.; Hu, L.; Yang, H.; Guan, X.; Li, J. Clinical significance and biological role of cancer-derived Type I collagen in lung and esophageal cancers. Thorac. Cancer 2019, 10, 277–288. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X.; Zhang, S.; Fan, W.; Zhong, C.; Liu, T.; Cheng, G.; Zhu, L.; Liu, Q.; Xi, Y.; et al. Collagen 1-mediated CXCL1 secretion in tumor cells activates fibroblasts to promote radioresistance of esophageal cancer. Cell Rep. 2023, 42, 113270. [Google Scholar] [CrossRef] [PubMed]
- Niland, S.; Riscanevo, A.X.; Eble, J.A. Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int. J. Mol. Sci. 2021, 23, 146. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhang, B.; Pan, B. MMP1 Is a Prognostic-Related Biomarker and Correlated with Immune Infiltration in Breast Cancer. Health 2022, 14, 219–235. [Google Scholar] [CrossRef]
- Mustafa, S.; Koran, S.; AlOmair, L. Insights Into the Role of Matrix Metalloproteinases in Cancer and its Various Therapeutic Aspects: A Review. Front. Mol. Biosci. 2022, 9, 896099. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Koma, Y.I.; Kitamura, Y.; Tanigawa, K.; Azumi, Y.; Miyako, S.; Urakami, S.; Hosono, M.; Kodama, T.; Nishio, M.; et al. Matrix Metalloproteinase 9 Induced in Esophageal Squamous Cell Carcinoma Cells via Close Contact with Tumor-Associated Macrophages Contributes to Cancer Progression and Poor Prognosis. Cancers 2023, 15, 2987. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Tang, M.; Cai, Z. SPP1 promotes tumor progression in esophageal carcinoma by activating focal adhesion pathway. J. Gastrointest. Oncol. 2024, 15, 818–828. [Google Scholar] [CrossRef]
- Ma, W.; Yan, Y.; Bai, S.; Zhou, Y.; Wang, X.; Feng, Z.; Li, G.; Zhou, S.; Zhang, J.; Ren, J. SPARC expression in tumor microenvironment induces partial epithelial-to-mesenchymal transition of esophageal adenocarcinoma cells via cooperating with TGF-beta signaling. Cell Biol. Int. 2023, 47, 250–259. [Google Scholar] [CrossRef]
- Miyako, S.; Koma, Y.I.; Nakanishi, T.; Tsukamoto, S.; Yamanaka, K.; Ishihara, N.; Azumi, Y.; Urakami, S.; Shimizu, M.; Kodama, T.; et al. Periostin in Cancer-Associated Fibroblasts Promotes Esophageal Squamous Cell Carcinoma Progression by Enhancing Cancer and Stromal Cell Migration. Am. J. Pathol. 2024, 194, 828–848. [Google Scholar] [CrossRef]
- Underwood, T.J.; Hayden, A.L.; Derouet, M.; Garcia, E.; Noble, F.; White, M.J.; Thirdborough, S.; Mead, A.; Clemons, N.; Mellone, M.; et al. Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma. J. Pathol. 2015, 235, 466–477. [Google Scholar] [CrossRef]
- Dunbar, K.J.; Wong, K.K.; Rustgi, A.K. Cancer-Associated Fibroblasts in Esophageal Cancer. Cell Mol. Gastroenterol. Hepatol. 2024, 17, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, L.; Luo, B.; Chen, D.; Yin, C.; Jian, C.; You, Q.; Wang, J.; Fang, L.; Cai, D.; et al. Predicting potential therapeutic targets and small molecule drugs for early-stage lung adenocarcinoma. Biomed. Pharmacother. 2024, 174, 116528. [Google Scholar] [CrossRef] [PubMed]
- Khanjani, F.; Jafari, L.; Azadiyan, S.; Roozbehi, S.; Moradian, C.; Zahiri, J.; Hasannia, S.; Sajedi, R.H. Drug repositioning based on gene expression data for human HER2-positive breast cancer. Arch. Biochem. Biophys. 2021, 712, 109043. [Google Scholar] [CrossRef] [PubMed]
- Budak, B.; Tukel, E.Y.; Turanli, B.; Kiraz, Y. Integrated systems biology analysis of acute lymphoblastic leukemia: Unveiling molecular signatures and drug repurposing opportunities. Ann. Hematol. 2024, 103, 4121–4134. [Google Scholar] [CrossRef]
- Kubat Oktem, E. Biomarkers of Alzheimer’s Disease Associated with Programmed Cell Death Reveal Four Repurposed Drugs. J. Mol. Neurosci. 2024, 74, 51. [Google Scholar] [CrossRef]
- Liang, X.Z.; Liu, X.C.; Li, S.; Wen, M.T.; Chen, Y.R.; Luo, D.; Xu, B.; Li, N.H.; Li, G. IRF8 and its related molecules as potential diagnostic biomarkers or therapeutic candidates and immune cell infiltration characteristics in steroid-induced osteonecrosis of the femoral head. J. Orthop. Surg. Res. 2023, 18, 27. [Google Scholar] [CrossRef]
- Gareev, I.; Beylerli, O.; Musaev, E.; Wang, C.; Pavlov, V. Bioinformatics analysis of potential pathogenesis and risk genes of neuroinflammation-promoted brain injury in intracerebral hemorrhage. Brain Hemorrhages 2025, 6, 1–13. [Google Scholar] [CrossRef]
- Zhong, X.; Fan, X.G.; Chen, R. Repurposing Niclosamide as a Therapeutic Drug against Acute Liver Failure by Suppressing Ferroptosis. Pharmaceutics 2023, 15, 1950. [Google Scholar] [CrossRef]
- Pushparaj, P.N.; Abdulkareem, A.A.; Naseer, M.I. Identification of Novel Gene Signatures using Next-Generation Sequencing Data from COVID-19 Infection Models: Focus on Neuro-COVID and Potential Therapeutics. Front. Pharmacol. 2021, 12, 688227. [Google Scholar] [CrossRef]
- Yu, X.; Huang, M.; Yang, G. Long non-coding RNA BANCR promotes proliferation, invasion and migration in esophageal squamous cell carcinoma cells via the Raf/MEK/ERK signaling pathway. Mol. Med. Rep. 2021, 23, 465. [Google Scholar] [CrossRef]
- Grimm, M.; Lazariotou, M.; Kircher, S.; Stuermer, L.; Reiber, C.; Hofelmayr, A.; Gattenlohner, S.; Otto, C.; Germer, C.T.; von Rahden, B.H. MMP-1 is a (pre-)invasive factor in Barrett-associated esophageal adenocarcinomas and is associated with positive lymph node status. J. Transl. Med. 2010, 8, 99. [Google Scholar] [CrossRef]
- Sheng, J.; Deng, X.; Zhang, Q.; Liu, H.; Wang, N.; Liu, Z.; Dai, E.; Deng, Q. PAR-2 promotes invasion and migration of esophageal cancer cells by activating MEK/ERK and PI3K/Akt signaling pathway. Int. J. Clin. Exp. Pathol. 2019, 12, 787–797. [Google Scholar]
- Chenard-Poirier, M.; Hansen, A.R.; Gutierrez, M.E.; Rasco, D.; Xing, Y.; Chen, L.C.; Zhou, H.; Webber, A.L.; Freshwater, T.; Sharma, M.R. A phase 1 trial of the MEK inhibitor selumetinib in combination with pembrolizumab for advanced or metastatic solid tumors. Invest. New Drugs 2024, 42, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.T.; Kozarewa, I.; Kim, H.K.; Kim, K.; Mortimer, P.G.; Hollingsworth, S.J.; Lee, J.; Park, M.; Park, S.H.; et al. Selumetinib plus docetaxel as second-line chemotherapy in KRAS mutant, KRAS amplified or MEK signatured gastric cancer patients: First arm of the umbrella trial in GC though the molecular screening, VIKTORY trial. J. Clin. Oncol. 2018, 36, 4061. [Google Scholar] [CrossRef]
- Elbadawy, M.; Sato, Y.; Mori, T.; Goto, Y.; Hayashi, K.; Yamanaka, M.; Azakami, D.; Uchide, T.; Fukushima, R.; Yoshida, T.; et al. Anti-tumor effect of trametinib in bladder cancer organoid and the underlying mechanism. Cancer Biol. Ther. 2021, 22, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Myers, A.L.; Lin, L.; Nancarrow, D.J.; Wang, Z.; Ferrer-Torres, D.; Thomas, D.G.; Orringer, M.B.; Lin, J.; Reddy, R.M.; Beer, D.G.; et al. IGFBP2 modulates the chemoresistant phenotype in esophageal adenocarcinoma. Oncotarget 2015, 6, 25897–25916. [Google Scholar] [CrossRef]
- Piha-Paul, S.A.; Tseng, C.; Tran, H.T.; Gao, M.; Karp, D.D.; Subbiah, V.; Tsimberidou, A.M.; Kawedia, J.D.; Fu, S.; Pant, S.; et al. A phase I trial of the pan-ERBB inhibitor neratinib combined with the MEK inhibitor trametinib in patients with advanced cancer with EGFR mutation/amplification, HER2 mutation/amplification, HER3/4 mutation or KRAS mutation. Cancer Chemother. Pharmacol. 2023, 92, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, R.B.; Do, K.T.; Kim, J.E.; Cleary, J.M.; Parikh, A.R.; Yeku, O.O.; Xiong, N.; Weekes, C.D.; Veneris, J.; Ahronian, L.G.; et al. Phase I/II Study of Combined BCL-xL and MEK Inhibition with Navitoclax and Trametinib in KRAS or NRAS Mutant Advanced Solid Tumors. Clin. Cancer. Res. 2024, 30, 1739–1749. [Google Scholar] [CrossRef]
- Gilbert, C.J.; Longenecker, J.Z.; Accornero, F. ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth. Biology 2021, 10, 346. [Google Scholar] [CrossRef]
- Oddershede, J.K.; Meklenborg, I.K.; Bastholt, L.; Guldbrandt, L.M.; Schmidt, H.; Friis, R.B. Cardiotoxicity in patients with metastatic melanoma treated with BRAF/MEK inhibitors: A real-world analysis of incidence, risk factors, and reversibility. Acta. Oncol. 2025, 64, 507–515. [Google Scholar] [CrossRef]
- Borgia, P.; Piccolo, G.; Santangelo, A.; Chelleri, C.; Viglizzo, G.; Occella, C.; Minetti, C.; Striano, P.; Diana, M.C. Dermatologic Effects of Selumetinib in Pediatric Patients with Neurofibromatosis Type 1: Clinical Challenges and Therapeutic Management. J. Clin. Med. 2024, 13, 1792. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Liu, D.; Zhu, J.; Zhang, T. Common gene signatures and key pathways in hypopharyngeal and esophageal squamous cell carcinoma: Evidence from bioinformatic analysis. Medicine 2020, 99, e22434. [Google Scholar] [CrossRef] [PubMed]
- Lingamgunta, L.K.; Aloor, B.P.; Dasari, S.; Ramakrishnan, R.; Botlagunta, M.; Madikonda, A.K.; Gopal, S.; Sade, A. Identification of prognostic hub genes and therapeutic targets for selenium deficiency in chicks model through transcriptome profiling. Sci. Rep. 2023, 13, 8695. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xie, L.; Zeng, H.; Wu, Y. PDK4 inhibits osteoarthritis progression by activating the PPAR pathway. J. Orthop. Surg. Res. 2024, 19, 109. [Google Scholar] [CrossRef]
- Feng, Z.W.; Tang, Y.C.; Sheng, X.Y.; Wang, S.H.; Wang, Y.B.; Liu, Z.C.; Liu, J.M.; Geng, B.; Xia, Y.Y. Screening and identification of potential hub genes and immune cell infiltration in the synovial tissue of rheumatoid arthritis by bioinformatic approach. Heliyon 2023, 9, e12799. [Google Scholar] [CrossRef]
- Chen, Y.T.; Xie, J.Y.; Sun, Q.; Mo, W.J. Novel drug candidates for treating esophageal carcinoma: A study on differentially expressed genes, using connectivity mapping and molecular docking. Int. J. Oncol. 2019, 54, 152–166. [Google Scholar] [CrossRef]
- Biswas, B.; Sugimoto, M.; Hoque, M.A. Discovery of Genomic Targets and Therapeutic Candidates for Liver Cancer Using Single-Cell RNA Sequencing and Molecular Docking. Biology 2025, 14, 431. [Google Scholar] [CrossRef]
- Miao, C.; Chen, Y.; Fang, X.; Zhao, Y.; Wang, R.; Zhang, Q. Identification of the shared gene signatures and pathways between polycystic ovary syndrome and endometrial cancer: An omics data based combined approach. PLoS ONE 2022, 17, e0271380. [Google Scholar] [CrossRef]
- Kim, S.M.; Park, Y.Y.; Park, E.S.; Cho, J.Y.; Izzo, J.G.; Zhang, D.; Kim, S.B.; Lee, J.H.; Bhutani, M.S.; Swisher, S.G.; et al. Prognostic biomarkers for esophageal adenocarcinoma identified by analysis of tumor transcriptome. PLoS ONE 2010, 5, e15074. [Google Scholar] [CrossRef]
- Hu, N.; Wang, C.; Clifford, R.J.; Yang, H.H.; Su, H.; Wang, L.; Wang, Y.; Xu, Y.; Tang, Z.Z.; Ding, T.; et al. Integrative genomics analysis of genes with biallelic loss and its relation to the expression of mRNA and micro-RNA in esophageal squamous cell carcinoma. BMC Genom. 2015, 16, 732. [Google Scholar] [CrossRef]
- Yang, H.; Su, H.; Hu, N.; Wang, C.; Wang, L.; Giffen, C.; Goldstein, A.M.; Lee, M.P.; Taylor, P.R. Integrated analysis of genome-wide miRNAs and targeted gene expression in esophageal squamous cell carcinoma (ESCC) and relation to prognosis. BMC Cancer 2020, 20, 388. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, C.; Kemmner, W. Wdr66 is a novel marker for risk stratification and involved in epithelial-mesenchymal transition of esophageal squamous cell carcinoma. BMC Cancer 2013, 13, 137. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids. Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef]
- Yang, M.; Chen, T.; Liu, Y.X.; Huang, L. Visualizing set relationships: EVenn’s comprehensive approach to Venn diagrams. Imeta 2024, 3, e184. [Google Scholar] [CrossRef] [PubMed]
- Huang da, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Snel, B.; Lehmann, G.; Bork, P.; Huynen, M.A. STRING: A web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids. Res. 2000, 28, 3442–3444. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8 (Suppl. S4), S11. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome. Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2. [Google Scholar] [CrossRef]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.; Varambally, S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Koleti, A.; Terryn, R.; Stathias, V.; Chung, C.; Cooper, D.J.; Turner, J.P.; Vidovic, D.; Forlin, M.; Kelley, T.T.; D’Urso, A.; et al. Data Portal for the Library of Integrated Network-based Cellular Signatures (LINCS) program: Integrated access to diverse large-scale cellular perturbation response data. Nucleic Acids. Res. 2018, 46, D558–D566. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lachmann, A.; Keenan, A.B.; Ma’ayan, A. L1000FWD: Fireworks visualization of drug-induced transcriptomic signatures. Bioinformatics 2018, 34, 2150–2152. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Reid, S.P.; Clark, N.R.; Wang, Z.; Fernandez, N.F.; Rouillard, A.D.; Readhead, B.; Tritsch, S.R.; Hodos, R.; Hafner, M.; et al. L1000CDS(2): LINCS L1000 characteristic direction signatures search engine. NPJ Syst. Biol. Appl. 2016, 2, 16015. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, J.E.; Clarke, D.J.B.; Xie, Z.; Lachmann, A.; Jeon, M.; Chen, K.; Jagodnik, K.M.; Jenkins, S.L.; Kuleshov, M.V.; Wojciechowicz, M.L.; et al. SigCom LINCS: Data and metadata search engine for a million gene expression signatures. Nucleic Acids. Res. 2022, 50, W697–W709. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.; Han, J.; Lee, H. Evaluating Potential Therapeutic Targets and Drug Repurposing Based on the Esophageal Cancer Subtypes. Pharmaceuticals 2025, 18, 1181. https://doi.org/10.3390/ph18081181
Oh J, Han J, Lee H. Evaluating Potential Therapeutic Targets and Drug Repurposing Based on the Esophageal Cancer Subtypes. Pharmaceuticals. 2025; 18(8):1181. https://doi.org/10.3390/ph18081181
Chicago/Turabian StyleOh, Jongchan, Jongwon Han, and Heeyoung Lee. 2025. "Evaluating Potential Therapeutic Targets and Drug Repurposing Based on the Esophageal Cancer Subtypes" Pharmaceuticals 18, no. 8: 1181. https://doi.org/10.3390/ph18081181
APA StyleOh, J., Han, J., & Lee, H. (2025). Evaluating Potential Therapeutic Targets and Drug Repurposing Based on the Esophageal Cancer Subtypes. Pharmaceuticals, 18(8), 1181. https://doi.org/10.3390/ph18081181