Development of AGT-7: An Innovative 99mTc-Labeled Theranostic Platform for Glioblastoma Imaging and Therapy
Abstract
1. Introduction
2. Results
2.1. Rational Design of Technetium-99m AGT-7 ([99mTc]Tc-AGT-7) as a Multifunctional Compound Bearing a Therapeutic and Diagnostic Modality
2.2. Synthetic Route for AGT-7
2.3. Liquid Chromatography–Mass Spectrometry (LC-MS)-Based Plasma Stability of AGT-7
2.4. Cytotoxic Evaluation of AGT-7 in Glioma Cell Lines
2.5. Flow Cytometric Analysis of DNA Cell Cycle After Treatment with AGT-7
2.6. In Vivo Toxicity Evaluation and LD50 Evaluation of AGT-7 in Zebrafish Embryos
2.7. Radiolabeling and In Vitro Stability
2.8. Lipophilicity Studies—Determination of Partition Coefficient
2.9. Ex Vivo Biodistribution Evaluation of [99mTc]Tc-AGT-7 Compared to [99mTc]Tc-TF
3. Discussion
4. Materials and Methods
4.1. Workflow Diagram
4.2. Chemicals
4.3. Characterization
4.4. Synthesis
4.4.1. Synthesis of Tert-Butyl (4-(Bis(pyridin-2-Ylmethyl)amino)butyl)carbamate [43]
4.4.2. Synthesis of N1, N1-Bis(pyridin-2-Ylmethyl)butane-1,4-Diamine [43]
4.4.3. Synthesis of AGT-7
4.5. Plasma Stability
4.5.1. Sample Preparation
4.5.2. Chromatographic Analysis
4.5.3. Mass Spectrometric Detection
4.5.4. Data Acquisition and Processing
4.6. Evaluation of Cytotoxicity in Cancer Cell Lines
4.7. Flow Cytometric Analysis of DNA Cell Cycle
4.8. Zebrafish Maintenance, Breeding, and Toxicity Tests
4.8.1. Zebrafish Housing and Husbandry
4.8.2. Zebrafish Toxicity Testing
Lethal Dose (LD50) Determination
4.9. Radiolabeling of Myoview
4.9.1. Preparation of the Precursor [99mTc][Tc(H2O)3(CO)3]+
4.9.2. Radiolabeling with [99mTc][Tc(H2O)3(CO)3]+
4.10. In Vitro Stability Studies
4.11. Human Serum Stability
4.12. Lipophilicity Studies
4.13. Ex Vivo Biodistribution Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
18F | Fluorine-18 |
64Cu | Copper-64 |
68Ga | Gallium-68 |
99Mo | Molybdenum-99 |
99mTc | Technetium-99m |
[99mTc]Tc-AGT-7 | Technetium-99m AGT-7 |
[99mTc]Tc-TF | Technetium-99m Tetrofosmin |
111In | Indium-111 |
123I | Iodine-123 |
ACN | Acetonitrile |
BBB | Blood–brain barrier |
BER | Base Excision Repair |
CDCl3 | Deuterated chloroform |
CFW | Carworth Farms White |
CH2Cl2 | Dichloromethane |
CNS | Central Nervous System |
CT | Computed Tomography |
DCE | 1,2-dichloroethane |
DIPEA | N,N-Diisopropylethylamine |
DMF | Dimethylformamide |
DMSO | Dimethylsulfoxide |
DMSO-d6 | Deuterated dimethylsulfoxide |
DNA | Deoxyribonucleic acid |
ESI-MS | Electrospray ionization—mass spectrometry |
GBM | Glioblastoma multiforme |
H2O | Deionized water |
HCl | Hydrochloric acid |
IC50 | Half-maximal inhibitory concentration |
IMM | Inner mitochondrial membrane |
LC-MS | Liquid chromatography—mass spectrometry |
LD50 | Median lethal dose |
LD75 | Lethal dose for 75% |
MeOH | Methanol |
MGMT | O6-methylguanine-DNA methyltransferase |
MMR | Mismatch Repair |
MOMP | Mitochondrial outer membrane permeabilization |
MTIC MRI | Methyltriazen-1-yl imidazole-4-carboxamide Magnetic resonance imaging |
N2 | Nitrogen gas |
(Na(AcO)3BH) | Sodium triacetoxyborohydride |
Na2SO4 | Sodium sulfate |
NaOH | Sodium hydroxide |
OECD | Organisation for Economic Co-operation and Development |
PARP | Poly (ADP)-ribose polymerase pathway |
PBS | Phosphate-buffered saline |
PET | Positron Emission Tomography |
PyBOP | Benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate |
SPECT | Single-Photon Emission Computed Tomography |
TFA | Trifluoroacetic acid |
TF | Tetrofosmin |
TLC | Thin-layer chromatography |
TMZ | Temozolomide |
TMZ-COOH | 3-Methyl-4-oxo-3,4dihydroimidazo(5,1-d)(1,2,3,5)tetrazine-8-carboxylic acid |
USFDA | U.S. Food and Drug Administration |
References
- Huse, J.T.; Holland, E.C. Targeting brain cancer: Advances in the molecular pathology of malignant glioma and medulloblastoma. Nat. Rev. Cancer 2010, 10, 319–331. [Google Scholar] [CrossRef]
- Kanderi, T.; Munakomi, S.; Gupta, V. Glioblastoma Multiforme. In Treasure Island; StatPearls Publishing: Petersburg, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK558954/ (accessed on 6 May 2024).
- Jiapaer, S.; Furuta, T.; Tanaka, S.; Kitabayashi, T.; Nakada, M. Potential Strategies Overcoming the Temozolomide Resistance for Glioblastoma. Neurol. Med. Chir. 2018, 58, 405–421. [Google Scholar] [CrossRef]
- Malliou, A.; Mitsiou, C.; Kyritsis, A.P.; Alexiou, G.A. Therapeutic Hypothermia in Treating Glioblastoma: A Review. Ther. Hypothermia Temp. Manag. 2023, 14, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, N.; Nalawala, Z.; Patel, J.; Das, D.; Baldha, R.; Sarolia, J.; Rathod, S. Self-Assembled systems for Nose-to-Brain delivery of Temozolamide (TMZ) in brain tumor therapy. Int. J. Pharm. 2025, 675, 125540. [Google Scholar] [CrossRef]
- Pandey, P.K.; Sharma, A.K.; Gupta, U. Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers 2016, 4, e1129476. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.; Ramakrishna, R.; Magge, R.; Wernicke, A.G. Advances in Radiotherapy for Glioblastoma. Front. Neurol. 2017, 8, 748. [Google Scholar] [CrossRef] [PubMed]
- Chua, J.; Nafziger, E.; Leung, D. Evidence-Based Practice: Temozolomide Beyond Glioblastoma. Curr. Oncol. Rep. 2019, 21, 30. [Google Scholar] [CrossRef]
- Mukerjee, N.; Maitra, S.; Roy, S.; Modak, S.; Hasan, M.M.; Chakraborty, B.; Ghosh, A.; Ghosh, A.; Kamal, M.A.; Dey, A.; et al. Treatments against Polymorphosal discrepancies in Glioblastoma Multiforme. Metab. Brain Dis. 2023, 38, 61–68. [Google Scholar] [CrossRef]
- Tong, S.; Wang, Y.; Wu, J.; Long, J.; Zhong, P.; Wang, B. Comprehensive pharmacogenomics characterization of temozolomide response in gliomas. Eur. J. Pharmacol. 2021, 912, 174580. [Google Scholar] [CrossRef]
- Nagasawa, D.T.; Chow, F.; Yew, A.; Kim, W.; Cremer, N.; Yang, I. Temozolomide and Other Potential Agents for the Treatment of Glioblastoma Multiforme. Neurosurg. Clin. N. Am. 2012, 23, 307–322. [Google Scholar] [CrossRef]
- Jia, J.L.; Alshamsan, B.; Ng, T.L. Temozolomide Chronotherapy in Glioma: A Systematic Review. Curr. Oncol. 2023, 30, 1893–1902. [Google Scholar] [CrossRef]
- Teraiya, M.; Perreault, H.; Chen, V.C. An overview of glioblastoma multiforme and temozolomide resistance: Can LC-MS-based proteomics reveal the fundamental mechanism of temozolomide resistance? Front. Oncol. 2023, 13, 1166207. [Google Scholar] [CrossRef]
- Renziehausen, A.; Tsiailanis, A.D.; Perryman, R.; Stylos, E.K.; Chatzigiannis, C.; O’Neill, K.; Crook, T.; Tzakos, A.G.; Syed, N. Encapsulation of Temozolomide in a Calixarene Nanocapsule Improves Its Stability and Enhances Its Therapeutic Efficacy against Glioblastoma. Mol. Cancer Ther. 2019, 18, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.V.; Batista, C.; Afonso, B.D.; Alexandre-Moreira, M.S.; Dubois, L.G.; Pontes, B.; Moura Neto, V.; Mendes, F.D. Obstacles to Glioblastoma Treatment Two Decades after Temozolomide. Cancers 2022, 14, 3203. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-Y.; Feng, Y.-H.; Lin, C.-L.; Hsu, T.-I. Mitochondrial Mechanisms in Temozolomide Resistance: Unraveling the Complex Interplay and Therapeutic Strategies in Glioblastoma. Mitochondrion 2024, 75, 101836. [Google Scholar] [CrossRef] [PubMed]
- Zoi, V.; Giannakopoulou, M.; Alexiou, G.A.; Bouziotis, P.; Thalasselis, S.; Tzakos, A.G.; Fotopoulos, A.; Papadopoulos, A.N.; Kyritsis, A.P.; Sioka, C. Nuclear Medicine and Cancer Theragnostics: Basic Concepts. Diagnostics 2023, 13, 3064. [Google Scholar] [CrossRef]
- Kelly, J.D.; Forster, A.M.; Higley, B.; Archer, C.M.; Booker, F.S.; Canning, L.R.; Chiu, K.W.; Edwards, B.; Gill, H.K.; McPartlin, M.; et al. Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J. Nucl. Med. 1993, 34, 222–227. [Google Scholar]
- D’Arceuil, H. Technetium-99m tetrofosmin: Use for myocardial perfusion imaging in the detection of coronary artery disease. Rep. Med. Imaging 2010, 2010, 1–10. [Google Scholar] [CrossRef]
- Stacy, M.R.; Zhou, W.; Sinusas, A.J. Radiotracer imaging of peripheral vascular disease. J. Nucl. Med. 2013, 54, 2104–2110. [Google Scholar] [CrossRef]
- Boschi, A.; Uccelli, L.; Marvelli, L.; Cittanti, C.; Giganti, M.; Martini, P. Technetium-99m Radiopharmaceuticals for Ideal Myocardial Perfusion Imaging: Lost and Found Opportunities. Molecules 2022, 27, 1188. [Google Scholar] [CrossRef]
- Fotopoulos, A.D.; Kyritsis, A.P.; Tsiouris, S.; Al-Boucharali, J.; Papadopoulos, A.; Voulgaris, S.; Alexiou, G.A. Characterization of intracranial space-occupying lesions by 99(m)Tc-Tetrofosmin SPECT. J. Neurooncol. 2011, 101, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, G.A.; Fotopoulos, A.D.; Papadopoulos, A.; Kyritsis, A.P.; Polyzoidis, K.S.; Tsiouris, S. Evaluation of brain tumor recurrence by 99mTc-tetrofosmin SPECT: A prospective pilot study. Ann. Nucl. Med. 2007, 21, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, G.A.; Xourgia, X.; Gerogianni, P.; Vartholomatos, E.; Kalef-Ezra, J.A.; Fotopoulos, A.D.; Kyritsis, A.P. Tc-Tetrofosmin Uptake Correlates with the Sensitivity of Glioblastoma Cell Lines to Temozolomide. World J. Nucl. Med. 2017, 16, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Arbab, A.S.; Koizumi, K.; Toyama, K.; Araki, T. Uptake of technetium-99m-tetrofosmin, technetium-99m-MIBI and thallium-201 in tumor cell lines. J. Nucl. Med. 1996, 37, 1551–1556. [Google Scholar]
- Lu, R.O.; Ho, W.S. Mitochondrial Dysfunction, Macrophage, and Microglia in Brain Cancer. Front. Cell Dev. Biol. 2021, 8, 620788. [Google Scholar] [CrossRef]
- Nguyen Cao, T.G.; Kang, J.H.; Kang, S.J.; Truong Hoang, Q.; Kang, H.C.; Rhee, W.J.; Zhang, Y.S.; Ko, Y.T.; Shim, M.S. Brain endothelial cell-derived extracellular vesicles with a mitochondria-targeting photosensitizer effectively treat glioblastoma by hijacking the blood–brain barrier. Acta Pharm. Sin. B 2023, 13, 3834–3848. [Google Scholar] [CrossRef]
- Dilworth, J.R.; Parrott, S.J. The biomedical chemistry of technetium and rhenium. Chem. Soc. Rev. 1998, 27, 43–55. [Google Scholar] [CrossRef]
- Alberto, R.A.; Schibli, R.; Egli, A.; Schubiger, A.P.; Abram, U.; Kaden, T. A Novel Organometallic Aqua Complex of Technetium for the Labeling of Biomolecules: Synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]- in Aqueous Solution and Its Reaction with a Bifunctional Ligand. J. Am. Chem. Soc. 1998, 120, 7987–7988. [Google Scholar] [CrossRef]
- Pu, J.; Yuan, K.; Tao, J.; Qin, Y.; Li, Y.; Fu, J.; Li, Z.; Zhou, H.; Tang, Z.; Li, L.; et al. Glioblastoma multiforme: An updated overview of temozolomide resistance mechanisms and strategies to overcome resistance. Discov. Oncol. 2025, 16, 731. [Google Scholar] [CrossRef]
- Minges, P.; Eder, M.; Eder, A.C. Dual-Labeled Small Peptides in Cancer Imaging and Fluorescence-Guided Surgery: Progress and Future Perspectives. Pharmaceuticals 2025, 18, 143. [Google Scholar] [CrossRef]
- McDonagh, A.W.; McNeil, B.L.; Rousseau, J.; Roberts, R.J.; Merkens, H.; Yang, H.; Bénard, F.; Ramogida, C.F. Development of a multi faceted platform containing a tetrazine, fluorophore and chelator: Synthesis, characterization, radiolabeling, and immuno-SPECT imaging. EJNMMI Radiopharm. Chem. 2022, 7, 12. [Google Scholar] [CrossRef]
- Burkett, B.J.; Bartlett, D.J.; McGarrah, P.W.; Lewis, A.R.; Johnson, D.R.; Berberoğlu, K.; Pandey, M.K.; Packard, A.T.; Halfdanarson, T.R.; Hruska, C.B.; et al. A Review of Theranostics: Perspectives on Emerging Approaches and Clinical Advancements. Radiol. Imaging Cancer 2023, 5, e220157. [Google Scholar] [CrossRef]
- Lopez, J.; Tait, S.W.G. Mitochondrial apoptosis: Killing cancer using the enemy within. Br. J. Cancer 2015, 112, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.A.; Hartley, R.C.; Cochemé, H.M.; Murphy, M.P. Mitochondrial pharmacology. Trends Pharmacol. Sci. 2012, 33, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta 2008, 1777, 1028–1031. [Google Scholar] [CrossRef]
- Lin, K.; Gueble, S.E.; Sundaram, R.K.; Huseman, E.D.; Bindra, R.S.; Herzon, S.B. Mechanism-based design of agents that selectively target drug-resistant glioma. Science 2022, 377, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wei, D.; Dai, X.; Stevens, M.F.G.; Bradshaw, T.D.; Luo, Y.; Zhang, J. C8-Substituted Imidazotetrazine Analogs Overcome Temozolomide Resistance by Inducing DNA Adducts and DNA Damage. Front. Oncol. 2019, 9, 485. [Google Scholar] [CrossRef] [PubMed]
- Rai, R.; Banerjee, M.; Wong, D.H.; McCullagh, E.; Gupta, A.; Tripathi, S.; Riquelme, E.; Jangir, R.; Yadav, S.; Raja, M.; et al. Temozolomide analogs with improved brain/plasma ratios—Exploring the possibility of enhancing the therapeutic index of temozolomide. Bioorganic Med. Chem. Lett. 2016, 26, 5103–5109. [Google Scholar] [CrossRef]
- Alexiou, G.A.; Tsiouris, S.; Goussia, A.; Papadopoulos, A.; Kyritsis, A.P.; Polyzoidis, K.S.; Fotopoulos, A.D. Evaluation of glioma proliferation by 99mTc-Tetrofosmin. Neuro-Oncol. 2008, 10, 104–105. [Google Scholar] [CrossRef]
- Makrypidi, K.; Kiritsis, C.; Roupa, I.; Triantopoulou, S.; Shegani, A.; Paravatou-Petsotas, M.; Chiotellis, A.; Pelecanou, M.; Papadopoulos, M.; Pirmettis, I. Evaluation of Rhenium and Technetium-99m Complexes Bearing Quinazoline Derivatives as Potential EGFR Agents. Molecules 2023, 28, 1786. [Google Scholar] [CrossRef]
- Bouziotis, P.; Gourni, E.; Patsis, G.; Psimadas, D.; Zikos, C.; Fani, M.; Xanthopoulos, S.; Loudos, G.; Paravatou-Petsotas, M.; Livaniou, E.; et al. Radiochemical and radiobiological assessment of a pyridyl-S-cysteine functionalized bombesin derivative labeled with the (99m)Tc(CO)3(+) core. Bioorg. Med. Chem. 2013, 21, 6699–6707. [Google Scholar] [CrossRef]
- Kasten, B.B.; Ma, X.; Cheng, K.; Bu, L.; Slocumb, W.S.; Hayes, T.R.; Trabue, S.; Cheng, Z.; Benny, P.D. Isothiocyanate-Functionalized Bifunctional Chelates and fac-[MI(CO)3]+ (M = Re, 99mTc) Complexes for Targeting uPAR in Prostate Cancer. Bioconjugate Chem. 2016, 27, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Di, L.; Kerns, E.H. Chapter 30—Plasma Stability Methods. In Drug-Like Properties, 2nd ed.; Di, L., Kerns, E.H., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 387–392. [Google Scholar]
- Di, L.; Kerns, E.H.; Hong, Y.; Chen, H. Development and application of high throughput plasma stability assay for drug discovery. Int. J. Pharm. 2005, 297, 110–119. [Google Scholar] [CrossRef]
- El Mubarak, M.A.; Stylos, E.K.; Chatziathanasiadou, M.V.; Danika, C.; Alexiou, G.A.; Tsekeris, P.; Renziehausen, A.; Crook, T.; Syed, N.; Sivolapenko, G.B.; et al. Development and validation of simple step protein precipitation UHPLC-MS/MS methods for quantitation of temozolomide in cancer patient plasma samples. J. Pharm. Biomed. Anal. 2019, 162, 164–170. [Google Scholar] [CrossRef]
- Parisis, N.A.; Bousdouni, P.; Kandyliari, A.; Spyridaki, M.-H.; Koutsogianni, A.D.; Telli, C.; Tsilidis, K.K.; Koutelidakis, A.E.; Tzakos, A.G. Development and Validation of a Simple and Cost-Effective LC-MS/MS Method for the Quantitation of the Gut-Derived Metabolite Trimethylamine N-Oxide in Human Plasma of Healthy and Hyperlipidemic Volunteers. Molecules 2025, 30, 2398. [Google Scholar] [CrossRef]
- Kimmel, C.B.; Patterson, J.; Kimmel, R.O. The development and behavioral characteristics of the startle response in the zebra fish. Dev. Psychobiol. 1974, 7, 47–60. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development (OECD). Short Guidance on the Treshold Approach for Acute Fish Toxicity; OECD: Paris, France, 2010. [Google Scholar]
- Schibli, R.; La Bella, R.; Alberto, R.; Garcia-Garayoa, E.; Ortner, K.; Abram, U.; Schubiger, P.A. Influence of the Denticity of Ligand Systems on the in Vitro and in Vivo Behavior of 99mTc(I)−Tricarbonyl Complexes: A Hint for the Future Functionalization of Biomolecules. Bioconjugate Chem. 2000, 11, 345–351. [Google Scholar] [CrossRef]
LogP | Theoretical | Experimental |
---|---|---|
[99mTc]Tc-TF | 3.25 | 2.41 ± 1.03 |
TMZ | −0.84 | |
[99mTc]Tc-AGT-7 | −0.99 | 0.71 ± 0.20 |
1 h | 24 h | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[99mTc]Tc-AGT-7 | [99mTc]Tc-TF | [99mTc]Tc-AGT-7 | [99mTc]Tc-TF | |||||||||
Blood | 3.78 | ± | 0.81 | 0.74 | ± | 0.39 | 0.72 | ± | 0.16 | 0.02 | ± | 0.01 |
Liver | 8.37 | ± | 1.57 | 10.20 | ± | 1.19 | 8.19 | ± | 3.11 | 0.27 | ± | 0.07 |
Heart | 1.70 | ± | 0.32 | 21.20 | ± | 3.15 | 0.76 | ± | 0.19 | 0.63 | ± | 0.22 |
Kidney | 25.36 | ± | 15.26 | 32.94 | ± | 0.94 | 7.32 | ± | 1.77 | 0.54 | ± | 0.22 |
Stomach | 1.59 | ± | 0.22 | 5.39 | ± | 1.60 | 0.37 | ± | 0.01 | 0.11 | ± | 0.03 |
Intestine | 4.01 | ± | 1.87 | 8.37 | ± | 1.25 | 0.56 | ± | 0.08 | 0.23 | ± | 0.07 |
Spleen | 1.39 | ± | 0.31 | 1.39 | ± | 0.13 | 0.44 | ± | 0.13 | 0.06 | ± | 0.01 |
Muscle | 0.30 | ± | 0.15 | 2.46 | ± | 0.70 | 0.13 | ± | 0.04 | 0.50 | ± | 0.07 |
Lung | 5.49 | ± | 1.00 | 1.36 | ± | 0.54 | 1.57 | ± | 0.15 | 0.06 | ± | 0.03 |
Bone | 0.48 | ± | 0.14 | 2.22 | ± | 1.05 | 0.18 | ± | 0.07 | 0.20 | ± | 0.05 |
Pancreas | 1.39 | ± | 0.33 | 4.37 | ± | 0.30 | 0.48 | ± | 0.17 | 0.35 | ± | 0.16 |
Brain | 0.13 | ± | 0.02 | 0.17 | ± | 0.02 | 0.04 | ± | 0.02 | 0.01 | ± | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyrkou, S.G.; Bistas, V.-P.; Salvanou, E.-A.; Crook, T.; Giannakopoulou, M.; Zoi, V.; Leonardos, M.; Fotopoulos, A.; Sioka, C.; Leonardos, I.; et al. Development of AGT-7: An Innovative 99mTc-Labeled Theranostic Platform for Glioblastoma Imaging and Therapy. Pharmaceuticals 2025, 18, 1175. https://doi.org/10.3390/ph18081175
Kyrkou SG, Bistas V-P, Salvanou E-A, Crook T, Giannakopoulou M, Zoi V, Leonardos M, Fotopoulos A, Sioka C, Leonardos I, et al. Development of AGT-7: An Innovative 99mTc-Labeled Theranostic Platform for Glioblastoma Imaging and Therapy. Pharmaceuticals. 2025; 18(8):1175. https://doi.org/10.3390/ph18081175
Chicago/Turabian StyleKyrkou, Stavroula G., Vasileios-Panagiotis Bistas, Evangelia-Alexandra Salvanou, Timothy Crook, Maria Giannakopoulou, Vasiliki Zoi, Maximos Leonardos, Andreas Fotopoulos, Chrissa Sioka, Ioannis Leonardos, and et al. 2025. "Development of AGT-7: An Innovative 99mTc-Labeled Theranostic Platform for Glioblastoma Imaging and Therapy" Pharmaceuticals 18, no. 8: 1175. https://doi.org/10.3390/ph18081175
APA StyleKyrkou, S. G., Bistas, V.-P., Salvanou, E.-A., Crook, T., Giannakopoulou, M., Zoi, V., Leonardos, M., Fotopoulos, A., Sioka, C., Leonardos, I., Alexiou, G. A., Bouziotis, P., & Tzakos, A. G. (2025). Development of AGT-7: An Innovative 99mTc-Labeled Theranostic Platform for Glioblastoma Imaging and Therapy. Pharmaceuticals, 18(8), 1175. https://doi.org/10.3390/ph18081175