Integrative In Silico and In Vivo Analysis of Banhasasim-Tang for Irritable Bowel Syndrome: Mechanistic Insights into Inflammation-Related Pathways
Abstract
1. Introduction
2. Results
2.1. Screening of Active Compounds in BHSST
2.2. Candidate Target Proteins
2.3. Disease Gene Association
2.4. Network Analysis
2.5. Enrichment Analysis of GO and KEGG Pathways
2.6. Molecular Docking Simulation
2.7. Molecular Dynamics Results
2.8. Effects of Eudesm-4(14)-en-11-ol, Elemol, and BHSST on Zymosan-Induced Colon Alterations in IBS Mouse Models
3. Discussion
4. Materials and Methods
4.1. Screening Active Compounds
4.2. Selection of Disease-Related Genes
4.3. Target Prediction
4.4. Network Construction
4.5. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Analysis
4.6. Molecular Docking
4.7. Molecular Dynamics Simulation
4.8. Instrument and Reagents
4.9. Preparation of Standard Solutions
4.10. Preparation of Test Solution for Quantitative Analysis
4.11. Quantification of BHSST
4.12. Quantitative Analysis of Marker Compounds in BHSST
4.13. IBS Animal Model and Treatment
4.14. Macroscopic Evaluation
4.15. Quantification of TNF-α Expression by RT-qPCR
4.16. Assessment of Pain-Related Behaviors
4.17. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Canavan, C.; West, J.; Card, T. The Epidemiology of Irritable Bowel Syndrome. Clin. Epidemiol. 2014, 6, 71–80. [Google Scholar]
- Chen, M.; Ruan, G.; Chen, L.; Ying, S.; Li, G.; Xu, F.; Xiao, Z.; Tian, Y.; Lv, L.; Ping, Y.; et al. Neurotransmitter and Intestinal Interactions: Focus on the Microbiota-Gut-Brain Axis in Irritable Bowel Syndrome. Front. Endocrinol. 2022, 13, 817100. [Google Scholar] [CrossRef]
- Hellström, P.M. Pathophysiology of the Irritable Bowel Syndrome—Reflections of Today. Best Pract. Res. Clin. Gastroenterol. 2019, 40–41, 101620. [Google Scholar] [CrossRef]
- Jang, D.E.; Bae, J.H.; Chang, Y.J.; Lee, Y.H.; Nam, K.T.; Kim, I.Y.; Seong, J.K.; Lee, Y.C.; Yeom, S.C. Neuronal Nitric Oxide Synthase Is a Novel Biomarker for the Interstitial Cells of Cajal in Stress-Induced Diarrhea-Dominant Irritable Bowel Syndrome. Dig. Dis. Sci. 2018, 63, 619–627. [Google Scholar] [CrossRef]
- Shih, Y.C.T.; Barghout, V.E.; Sandler, R.S.; Jhingran, P.; Sasane, M.; Cook, S.; Gibbons, D.C.; Halpern, M. Resource Utilization Associated with Irritable Bowel Syndrome in the United States 1987–1997. Dig. Dis. Sci. 2002, 47, 1705–1715. [Google Scholar] [CrossRef]
- Fuentes, I.M.; Christianson, J.A. Ion Channels, Ion Channel Receptors, and Visceral Hypersensitivity in Irritable Bowel Syndrome. Neurogastroenterol. Motil. 2016, 28, 1613–1618. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network Pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, T. A Network Pharmacology-Based Study on Vital Pharmacological Pathways and Targets of Eucommiae Cortex Acting on Osteoporosis. BioMed Res. Int. 2022, 2022, 8510842. [Google Scholar] [CrossRef]
- Dou, J.Y.; Zhang, M.; Cen, H.; Chen, Y.Q.; Wu, Y.F.; Lu, F.; Zhou, J.; Liu, X.S.; Gu, Y.Y. Salvia miltiorrhiza Bunge (Danshen) and Bioactive Compound Tanshinone IIA Alleviates Cisplatin-Induced Acute Kidney Injury Through Regulating PXR/NF-κB Signaling. Front. Pharmacol. 2022, 13, 860383. [Google Scholar] [CrossRef]
- Lee, S.K.; Zetterling, C.M.; Östling, M.; Moon, B.M. Electrical Characterization of Titanium-Based Ohmic Contacts to 4H-Silicon Carbide for High-Power and High-Temperature Operation. J. Korean Phys. Soc. 2002, 40, 572. [Google Scholar]
- Kawashima, K.; Nomura, A.; Makino, T.; Saito, K.; Kano, Y. Pharmacological Properties of Traditional Medicine (XXIX): Effect of Hange-Shashin-to and the Combinations of Its Herbal Constituents on Rat Experimental Colitis. Biol. Pharm. Bull. 2004, 27, 1599–1603. [Google Scholar] [CrossRef]
- Xu, G. Treatment of Reflux Laryngopharyngitis with Modified Banxia Xiexin Tang (Pinellia Decoction for Draining the Heart)—A Report of 40 Cases. J. Tradit. Chin. Med. 2006, 26, 127–131. [Google Scholar]
- Chen, F.; Chen, F.; Jong, M.; Tsai, H.; Wang, J.; Hwang, S. Modern Use of Chinese Herbal Formulae from Shang-Han Lun. Chin. Med. J. 2009, 122, 1889–1894. [Google Scholar]
- Shin, M.R.; Seo, B.I.; Son, C.G.; Roh, S.S.; An, H.J. Banhasasim-Tang Treatment Reduces the Severity of Esophageal Mucosal Ulcer on Chronic Acid Reflux Esophagitis in Rats. BioMed Res. Int. 2017, 2017, 7157212. [Google Scholar] [CrossRef]
- Kil, B.H.; Park, J.S.; Jo, H.M.; Jung, D.H.; Jeong, Y.K.; Won, J.Y.; Kim, D.W. A Case Report of Irritable Bowel Syndrome in a Patient that Improved with Banhasasim-tang and Yukgunja-tang-gami. J. Int. Korean Med. 2020, 41, 877–884. [Google Scholar] [CrossRef]
- Park, J.W.; Ko, S.J.; Han, G.; Yeo, I.; Ryu, B.; Kim, J. The Effects of Banhasasim-tang on Dyspeptic Symptoms and Gastric Motility in Cases of Functional Dyspepsia: A Randomized, Double-Blind, Placebo-Controlled, and Two-Center Trial. Evid. Based Complement. Alternat. Med. 2013, 2013, 265035. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.J.; Lee, J.S.; Cho, Y.R.; Lee, S.B.; Kim, W.Y.; Roh, S.S.; Joung, J.Y.; Lee, H.D.; Moon, S.O.; Cho, J.H.; et al. Banhasasim-tang improves gastrointestinal function in loperamide-induced functional dyspepsia mouse model. J. Ethnopharmacol. 2019, 238, 111834. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Nishikawa, K.; Takiguchi, N.; Tanabe, K.; Imano, M.; Fukushima, R.; Sakamoto, J.; Oba, M.S.; Morita, S.; Kono, T.; et al. Double-Blind, Placebo-Controlled, Randomized Phase II Study of TJ-14 (Hangeshashinto) for Gastric Cancer Chemotherapy-Induced Oral Mucositis. Cancer Chemother. Pharmacol. 2014, 73, 1047–1054. [Google Scholar] [CrossRef]
- Kono, T.; Kaneko, A.; Matsumoto, C.; Miyagi, C.; Ohbuchi, K.; Mizuhara, Y.; Miyano, K.; Uezono, Y. Multitargeted Effects of Hangeshashinto for Treatment of Chemotherapy-Induced Oral Mucositis on Inducible Prostaglandin E2 Production in Human Oral Keratinocytes. Integr. Cancer Ther. 2014, 13, 435–445. [Google Scholar] [CrossRef]
- Kase, Y.; Saitoh, K.; Ishige, A.; Komatsu, Y. Mechanisms by Which Hange-Shashin-to Reduces Prostaglandin E2 Levels. Biol. Pharma. Bull. 1998, 21, 1277–1281. [Google Scholar] [CrossRef]
- Kamide, D.; Yamashita, T.; Araki, K.; Tomifuji, M.; Shiotani, A. Hangeshashinto (TJ-14) Prevents Radiation-Induced Mucositis by Suppressing Cyclooxygenase-2 Expression and Chemotaxis of Inflammatory Cells. Clin. Transl. Oncol. 2017, 19, 1329–1336. [Google Scholar] [CrossRef]
- Fukamachi, H.; Matsumoto, C.; Omiya, Y.; Arimoto, T.; Morisaki, H.; Kataoka, H.; Kadena, M.; Funatsu, T.; Fukutake, M.; Kase, Y.; et al. Effects of Hangeshashinto on Growth of Oral Microorganisms. Evid.-Based Complement. Alternat. Med. 2015, 2015, 1–6. [Google Scholar] [CrossRef]
- Hitomi, S.; Ono, K.; Yamaguchi, K.; Terawaki, K.; Imai, R.; Kubota, K.; Omiya, Y.; Hattori, T.; Kase, Y.; Inenaga, K. The Traditional Japanese Medicine Hangeshashinto Alleviates Oral Ulcer-Induced Pain in a Rat Model. Arch. Oral. Biol. 2016, 66, 30–37. [Google Scholar] [CrossRef]
- Ohman, L.; Simrén, M. Pathogenesis of IBS: Role of inflammation, immunity and neuroimmune interactions. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Lim, D.Y.; Yeo, W.S. The role of inflammation in irritable bowel syndrome (IBS). J. Inflamm. Res. 2018, 11, 345–349. [Google Scholar] [CrossRef]
- Sinagra, E.; Pompei, G.; Tomasello, G.; Cappello, F.; Morreale, G.C.; Amvrosiadis, G.; Rossi, F.; Lo Monte, A.I.; Rizzo, A.G.; Raimondo, D. Inflammation in irritable bowel syndrome: Myth or new treatment target? World J. Gastroenterol. 2016, 22, 2242–2255. [Google Scholar] [CrossRef]
- Choi, N.R.; Kwon, M.J.; Choi, W.G.; Kim, S.C.; Park, J.W.; Nam, J.H.; Kim, B.J. The traditional herbal medicines mixture, Banhasasim-tang, relieves the symptoms of irritable bowel syndrome via modulation of TRPA1, NaV1.5 and NaV1.7 channels. J. Ethnopharmacol. 2023, 312, 116499. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z. Traditional Chinese Medicine Clinical Experience of the Treatment for Irritable Bowel Syndrome. Chin. J. Integr. Med. 2009, 15, 93–94. [Google Scholar] [CrossRef]
- Li, H.; Xia, J.; Zhang, W.; Gu, L.; Pan, C.; Tian, Y. Xifeng Huashi Formula Presents Therapeutic Effect on Diarrhea Predominant Irritable Bowel Syndrome through Regulating Brain-Gut Axis and SCF/C-KIT Signaling Pathway. Int. J. Clin. Exp. Med. 2017, 10, 15789–15797. [Google Scholar]
- Daina, A.; Zoete, V. A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. Chem. Med. Chem. 2016, 11, 1117–1121. [Google Scholar] [CrossRef]
- Tang, Y.; Li, M.; Wang, J.; Pan, Y.; Wu, F.-X. CytoNCA: A Cytoscape Plugin for Centrality Analysis and Evaluation of Protein Interaction Networks. Biosystems 2015, 127, 67–72. [Google Scholar] [CrossRef]
- Kim, S.K.; Nam, S.; Jang, H.; Kim, A.; Lee, J.J. TM-MC: A Database of Medicinal Materials and Chemical Compounds in Northeast Asian Traditional Medicine. BMC Complement. Altern. Med. 2015, 15, 218. [Google Scholar] [CrossRef]
- Xue, R.; Fang, Z.; Zhang, M.; Yi, Z.; Wen, C.; Shi, T. TCMID: Traditional Chinese Medicine Integrative Database for Herb Molecular Mechanism Analysis. N. Acids Res. 2012, 41, D1089–D1095. [Google Scholar] [CrossRef]
- Chen, C.Y.-C. TCM Database@Taiwan: The World’s Largest Traditional Chinese Medicine Database for Drug Screening In Silico. PLoS ONE 2011, 6, e15939. [Google Scholar] [CrossRef]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef]
- Kim, M.T.; Sedykh, A.; Chakravarti, S.K.; Saiakhov, R.D.; Zhu, H. Critical Evaluation of Human Oral Bioavailability for Pharmaceutical Drugs by Using Various Cheminformatics Approaches. Pharm. Res. 2014, 31, 1002–1014. [Google Scholar] [CrossRef]
- Wei, M.; Zhang, X.; Pan, X.; Wang, B.; Ji, C.; Qi, Y.; Zhang, J.Z.H. HobPre: Accurate Prediction of Human Oral Bioavailability for Small Molecules. J. Cheminform. 2022, 14, 1. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Falcón-Cano, G.; Molina, C.; Cabrera-Pérez, M.Á. ADME Prediction with KNIME: Development and Validation of a Publicly Available Workflow for the Prediction of Human Oral Bioavailability. J. Chem. Inf. Model. 2020, 60, 2660–2667. [Google Scholar] [CrossRef]
- Lin, J.H.; Yamazaki, M. Role of P-Glycoprotein in Pharmacokinetics: Clinical Implications. Clin. Pharmacokinet. 2003, 42, 59–98. [Google Scholar] [CrossRef]
- Moriwaki, H.; Tian, Y.S.; Kawashita, N.; Takagi, T. Mordred: A Molecular Descriptor Calculator. J. Cheminform. 2018, 10, 4. [Google Scholar] [CrossRef]
- Badkas, A.; De Landtsheer, S.; Sauter, T. Topological Network Measures for Drug Repositioning. Brief. Bioinform. 2021, 22, bbaa357. [Google Scholar] [CrossRef]
- Lohmann, G.; Margulies, D.S.; Horstmann, A.; Pleger, B.; Lepsien, J.; Goldhahn, D.; Schloegl, H.; Stumvoll, M.; Villringer, A.; Turner, R. Eigenvector Centrality Mapping for Analyzing Connectivity Patterns in fMRI Data of the Human Brain. PLoS ONE 2010, 5, e10232. [Google Scholar] [CrossRef]
- Nikkonen, A.; Kolho, K. Infliximab and Its Biosimilar Produced Similar First-year Therapy Outcomes in Patients with Inflammatory Bowel Disease. Acta Paediatr. 2020, 109, 836–841. [Google Scholar] [CrossRef]
- Busquets, D.; Mas-de-Xaxars, T.; López-Siles, M.; Martínez-Medina, M.; Bahí, A.; Sàbat, M.; Louvriex, R.; Miquel-Cusachs, J.O.; Garcia-Gil, J.L.; Aldeguer, X. Anti-Tumour Necrosis Factor Treatment with Adalimumab Induces Changes in the Microbiota of Crohn’s Disease. J. Crohns Colitis 2015, 9, 899–906. [Google Scholar] [CrossRef]
- Okkenhaug, K.; Vanhaesebroeck, B. PI3K in lymphocyte development, differentiation and activation. Nat. Rev. Immunol. 2003, 3, 317–330. [Google Scholar] [CrossRef]
- Farachi, S.; Werner, L.; Konnikova, L.; Rea, F.; Vardi, I.; Romeo, E.; Barel, O.; De Angelis, P.; Dall’Oglio, L.; Rechavi, G.; et al. DOP010 Activating PIK3CD Mutations Cause Severe Intestinal Lymphonodular Hyperplasia and an IBD-like Phenotype. J. Crohns Colitis 2018, 12, S036–S037. [Google Scholar] [CrossRef]
- Huppi, K.; Siwarski, D.; Goodnight, J.; Mischak, H. Assignment of the Protein Kinase C Delta Polypeptide Gene (PRKCD) to Human Chromosome 3 and Mouse Chromosome 14. Genomics 1994, 19, 161–162. [Google Scholar] [CrossRef]
- Kikkawa, U.; Matsuzaki, H.; Yamamoto, T. Protein Kinase C Delta (PKC Delta): Activation Mechanisms and Functions. J. Biochem. 2002, 132, 831–839. [Google Scholar] [CrossRef]
- Wu, C.; Cao, L.; Liu, M.; Zhang, W.; Chen, H.; Wang, R.; Liu, C.; He, Z. Exploring the Mechanisms Underlying the Therapeutic Effect of the Drug Pair Rhubarb-Coptis in Diabetic Nephropathy Using Network Pharmacology and Molecular Docking Analysis. Ann. Transl. Med. 2022, 10, 1343. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, F.C.; Li, G. A Network Pharmacology-Based Study of Potential Targets of Angelicae Pubescentis-Herba Taxilli Compound for the Treatment of Osteoarthritis. Comput. Math. Methods Med. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Salmaso, V.; Moro, S. Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview. Front. Pharmacol. 2018, 9, 923. [Google Scholar] [CrossRef]
- Piñero, J.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: A Comprehensive Platform Integrating Information on Human Disease-Associated Genes and Variants. N. Acids Res. 2017, 45, D833–D839. [Google Scholar] [CrossRef]
- Safran, M.; Rosen, N.; Twik, M.; BarShir, R.; Stein, T.I.; Dahary, D.; Fishilevich, S.; Lancet, D. The GeneCards Suite. In Practical Guide to Life Science Databases; Abugessaisa, I., Kasukawa, T., Eds.; Springer Nature: Singapore, 2021; pp. 27–56. [Google Scholar]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Gene Ontology Consortium. The Gene Ontology Resource: Enriching a GOld Mine. N. Acids Res. 2021, 49, D325–D334. [Google Scholar] [CrossRef]
- Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Sanner, M.F. Python: A Programming Language for Software Integration and Development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Huang, J.; MacKerell, A.D. CHARMM36 All-Atom Additive Protein Force Field: Validation Based on Comparison to NMR Data. J. Comput. Chem. 2013, 34, 2135–2145. [Google Scholar] [CrossRef]
- Petersen, H.G. Accuracy and Efficiency of the Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 3668–3679. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Kim, J.N.; Nam, J.H.; Lee, J.R.; Kim, S.C.; Kim, B.J. The Traditional Medicine Banhasasim-Tang Depolarizes Pacemaker Potentials of Cultured Interstitial Cells of Cajal through M3 Muscarinic and 5-HT3 Receptors in Murine Small Intestine. Digestion 2020, 101, 536–551. [Google Scholar] [CrossRef] [PubMed]
- Plengsuriyakarn, T.; Karbwang, J.; Na-Bangchang, K. Anticancer activity using positron emission tomography-computed tomography and pharmacokinetics of β-eudesmol in human cholangiocarcinoma xenografted nude mouse model. Clin. Exp. Pharmacol. Physiol. 2015, 42, 293–304. [Google Scholar] [CrossRef] [PubMed]
Protein Name | Gene Symbol | Degree | Eigenvector | Betweenness | Closeness |
---|---|---|---|---|---|
Tumor necrosis factor, membrane form | TNF-α | 6 | 0.526 | 52 | 0.407 |
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform | PIK3CD | 4 | 0.394 | 29 | 0.393 |
Protein kinase C delta-type regulatory subunit | PRKCD | 4 | 0.371 | 23 | 0.379 |
ATP-dependent translocase ABCB1 | ABCB1 | 3 | 0.304 | 1 | 0.324 |
E3 ubiquitin-protein ligase XIAP | XIAP | 3 | 0.304 | 1 | 0.324 |
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform | PIK3CA | 3 | 0.277 | 4 | 0.333 |
Sodium-dependent serotonin transporter | SLC6A4 | 2 | 0.236 | 0 | 0.314 |
Nucleotide-binding oligomerization domain-containing protein 2 | NOD2 | 2 | 0.236 | 0 | 0.314 |
Extracellular cell-membrane anchored RET cadherin 120 kDa fragment | RET | 3 | 0.208 | 18 | 0.324 |
Nuclear protein 1 | NUPR1 | 1 | 0.106 | 0 | 0.289 |
Extracellular calcium-sensing receptor | CASR | 1 | 0.059 | 0 | 0.256 |
Sodium channel protein type 5 subunit alpha | SCN5A | 0 | 0.000 | 0 | 0.083 |
Medicine | Compound Name | PubChem ID | Target Protein (PDB ID) | Binding Affinity (kcal/mol) |
---|---|---|---|---|
ZR | eudesm-4(14)-en-11-ol | 10557 | TNF-α (5MU8) | −6.8212 |
GRR | kanzonol T | 999902 | PIK3CD (6PYR) | −8.6546 |
ZR, ZRR | elemol | 92138 | PRKCD (1YRK) | −5.8467 |
Latin Name | Scientific Name | Amount (g) |
---|---|---|
Pinelliae rhizoma | Pinellia ternata Breitenbach | 0.63 |
Scutellariae radix | Scutellaria baicalensis Georgi | 0.85 |
Zingiberis rhizoma siccus | Zingiber officinale | 0.03 |
Ginseng radix | Panax ginseng C. A. Meyer | 0.45 |
Glycyrrhizae Radix | Glycyrrhiza uralensis Fischer | 0.51 |
Jujubae fructus | Zizyphus jujuba Mill | 0.34 |
Coptidis rhizoma | Coptis chinensis Franch | 0.11 |
Zingiberis Rhizoma | Zingiber officinale Roscoe | 0.28 |
Total | 3.20 |
Time (min) | 0.1% FA/Water (%) | 0.1% FA/Acetonitrile (%) | Flow Rate (mL/min) |
---|---|---|---|
0 | 98 | 2 | 0.40 |
1.0 | 98 | 2 | 0.40 |
3.0 | 90 | 10 | 0.40 |
7.0 | 40 | 60 | 0.40 |
10.0 | 20 | 80 | 0.40 |
12.0 | 0 | 100 | 0.40 |
14.0 | 98 | 2 | 0.40 |
16.0 | 98 | 2 | 0.40 |
Time (min) | Water (%) | Acetonitrile (%) | Flow Rate (mL/min) |
---|---|---|---|
0 | 85 | 15 | 0.40 |
1.0 | 85 | 15 | 0.40 |
14.0 | 70 | 30 | 0.40 |
15.0 | 68 | 32 | 0.40 |
16.0 | 60 | 40 | 0.40 |
17.0 | 45 | 55 | 0.40 |
19.0 | 45 | 55 | 0.40 |
21.0 | 10 | 90 | 0.40 |
22.0 | 10 | 90 | 0.40 |
23.0 | 85 | 15 | 0.40 |
Compound (Marker) | Content in Extract (mg/g) | Calculated Marker Dose (mg/kg) |
---|---|---|
6-Gingerol | 0.00106 ± 0.00020 | 0.00053 ± 0.00010 |
Glycyrrhizinic acid | 0.01057 ± 0.00130 | 0.00529 ± 0.00065 |
Liquiritin | 0.00353 ± 0.00015 | 0.00177 ± 0.00008 |
Isoliquiritigenin | 0.00073 ± 0.00003 | 0.00037 ± 0.00002 |
Berberine | 0.03300 ± 0.00075 | 0.01650 ± 0.00038 |
Baicalin | 0.00111 ± 0.00027 | 0.00056 ± 0.00014 |
Ginsenoside Rb1 | 0.00153 ± 0.00013 | 0.00077 ± 0.00007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.-G.; Ko, S.-J.; Shim, J.-H.; Bae, C.-H.; Kim, S.; Park, J.-W.; Kim, B.-J. Integrative In Silico and In Vivo Analysis of Banhasasim-Tang for Irritable Bowel Syndrome: Mechanistic Insights into Inflammation-Related Pathways. Pharmaceuticals 2025, 18, 1123. https://doi.org/10.3390/ph18081123
Choi W-G, Ko S-J, Shim J-H, Bae C-H, Kim S, Park J-W, Kim B-J. Integrative In Silico and In Vivo Analysis of Banhasasim-Tang for Irritable Bowel Syndrome: Mechanistic Insights into Inflammation-Related Pathways. Pharmaceuticals. 2025; 18(8):1123. https://doi.org/10.3390/ph18081123
Chicago/Turabian StyleChoi, Woo-Gyun, Seok-Jae Ko, Jung-Ha Shim, Chang-Hwan Bae, Seungtae Kim, Jae-Woo Park, and Byung-Joo Kim. 2025. "Integrative In Silico and In Vivo Analysis of Banhasasim-Tang for Irritable Bowel Syndrome: Mechanistic Insights into Inflammation-Related Pathways" Pharmaceuticals 18, no. 8: 1123. https://doi.org/10.3390/ph18081123
APA StyleChoi, W.-G., Ko, S.-J., Shim, J.-H., Bae, C.-H., Kim, S., Park, J.-W., & Kim, B.-J. (2025). Integrative In Silico and In Vivo Analysis of Banhasasim-Tang for Irritable Bowel Syndrome: Mechanistic Insights into Inflammation-Related Pathways. Pharmaceuticals, 18(8), 1123. https://doi.org/10.3390/ph18081123