Recent Advances in the Application of Silver Nanoparticles for Enhancing Phototherapy Outcomes
Abstract
1. Introduction
2. Silver Nanoparticles
2.1. AgNPs’ Preparation and Properties
2.2. Therapeutical Applications of AgNPs
2.3. Role of AgNPs in Phototherapy
2.4. Toxicity of AgNPs
3. Application of Silver Nanoparticles in Phototherapy
3.1. Photodynamic Therapy of Cancer Cells
Therapy Approach | Cancer Cells | System | Phototherapy Details | Results | Refs. |
---|---|---|---|---|---|
PDT | Breast Cancer | AgNPs-ZnPc | 680 nm (400 mW.cm−2), 5 min | The attachment of AgNPs to ZnPc enhanced ROS production. AgNPs-ZnPc conjugates (80 μg.mL−1) had a lower PDT effect than ZnPc alone on MCF-7 cells. | [60] |
AgNPs-CD-CyOH | 660 nm, 5 min | Cell viability significantly decreased (~10%) in the presence of AgNPs-CD-CyOH conjugates under light irradiation. Fluorescent microscopy experiments showed that AgNPs-CD-CyOH accumulated in the mitochondria of 4T1 cells. | [59] | ||
AgNPs-ZnPc | 670 nm (2.3 W) * | The conjugation of AgNPs with ZnPc increased ROS generation under light irradiation. Although PDT studies showed changes in MCF-7 cellular morphology 24 h post-treatment, these conjugates exhibited better results in sonotherapy. | [61] | ||
AgNPs-PPA-5-ALA | 635 nm (0.5 W.cm−2), 10 min | AgNPs-PPA-5-ALA (100 µmol.L−1) effectively killed 4T1 cells, under laser irradiation, in vitro. The tumors of mice treated with PDT using this system reduced tumor progression compared to the control groups. | [65] | ||
AgNPs-ZnPc | 660 nm (10 J.cm−2) * | AgNPs and a ZnPc were encapsulated into a liposome (Lip) and used in PDT with MCF-7 cells. The in vitro studies showed a similar cytotoxicity of ZnPc-Lip and AgNPs-ZnPc-Lip, under irradiation with a 660 nm laser. | [64] | ||
Melanoma | AgNPs-ZnPc-FA | 674 nm (9 mW.cm−2) * | The AgNPs-ZnPc-FA (2.5 µmol.L−1) loaded into mesoporous silica achieved approximately 92% cell death post-PDT procedure. Furthermore, the presence of FA enhanced the PDT efficacy against A357 cells. | [62] | |
Cervical Cancer | AgNPs-AIE | White light (40 mW.cm−2), 10 min | AgNPs-AIE (10 μmol.mL−1) showed greater cellular uptake, compared to the AIE PS, and a high PDT efficiency, achieving around 85% cell death in HeLa cells. | [66] | |
Colon Cancer | AgNPs-PCN | 660 nm (0.22 mW.cm−2), 5 min | PDT treatment with AgNPs-PCN induced 79% apoptosis in CT26 cells in vitro. In vivo studies showed that the conjugate possessed excellent tumor-targeting capability, ROS yield, and antitumor activity. | [58] | |
AgNPs-Cur | Blue light (25 mW.cm−2), 20 min | The conjugation of Cur with AgNPs enhanced its bioavailability. PDT with AgNP-Cur hydrogels (9.2 μg.mL−1) resulted in greater Caco-2 cell death. | [63] | ||
Lung Cancer | AgNPs-Phe | 660 nm (10 J.cm−2) * | The PDT treatment with AgNPs (6.75 μg.mL−1) in combination with the PS pheophorbide a (Phe, 1.05 μmol.L−1) resulted in a significant cytotoxicity of A549 lung cancer cells. | [67] | |
PTT | Breast Cancer | AgNPs-PDA | 808 nm (1 W.cm−2), 5 min | Prismatic AgNPs-PDA (10 μg.mL−1) achieved η = 41.9% with 5 min of irradiation. This system showed high PTT activity both in vitro and in vivo, irradiating 4T1 cells. | [68] |
AgNPs-HSA-DOX | 808 nm (3 mW.cm−2), 5 min | After 15 min of irradiation, AgNPs-HSA presented a η of around 30%. PTT studies showed a 92.2% reduction in HS578T cell viability, in the presence of AgNPs-HSA-DOX (6.5 μmol.mL−1 of DOX), 6 h post-treatment. | [69] | ||
AgNPs-UCNPs-DOX | 980 nm (0.45 W.cm−2), 3 min | The heating rate of AgNP-UCNPs increased under NIR irradiation. Systems containing AgNPs exhibited cytotoxicity, even in fibroblasts. Mice with induced breast cancer (Sk-Br-3 cells), after PTT with AgNPs-UCNPs-DOX (800 µg.mL−1), showed areas of necrosis and a reduced tumor volume compared to the controls. | [70] | ||
Triple-Negative Breast Cancer (TNBC) | AgNPs-FA-QRC | 800 nm (1.5 W.cm−2), 5 min | AgNPs-FA-QRC, with a pyramidal shape, combined with NIR irradiation showed higher toxicity in MDA-MB-231 cells, presenting great antitumor activity in both in vitro and in vivo studies. | [71] | |
AgNPs-PVP | 970 nm (3 W), 70 s | Prismatic AgNPs-PVP (12.5 µg.mL−1), under NIR irradiation, exhibited greater cytotoxicity to MDA-MB-231 (TNBC) cells compared to MCF-10A (non-malignant) cells, decreasing the cell viability of TNBC to 15% and MCF-10A to 85%. | [72] | ||
AgNPs-Chi-DOX | 808 nm (2 W.cm−2), 180 s | Prismatic AgNPs-Chi (10 μg.ml−1) showed η = 50.4%, under 10 min of NIR irradiation. Combined treatment with AgNPs-Chi-DOX (5 μg.ml−1) and 2 min of irradiation showed the best therapeutic results with MDA-MB-231 cells. | [73] | ||
AgNPs-PVA | 808 nm (1.0 W.cm−2), 7 min | Prismatic AgNPs-PVA presented η = 30.4%. PTT with AgNPs-PVA (140 μg∙mL−1) in mice containing MDA-MB-231 cells, effectively inhibited tumor progression. | [74] | ||
AgNPs-Chi | 800 nm (6.34 W.cm−2), 36 s | MCF7 and MDA MB-231 cells did not survive, after PTT with prismatic AgNPs-PVP at a concentration of 50 µg.mL−1. | [18] | ||
Melanoma | AgNPs-TiO2 | 808 nm (2 W.cm−2), 1 min | Prismatic AgNPs coated with TiO2 (200 μg.mL−1) presented a η of 60.5% when exposed to 808 nm laser for 6 min. AgNPs-TiO2 (100 μg.mL−1), under NIR irradiation for 1 min, exhibited high toxicity for B16F10 cells in vitro, reducing cell viability to less than 4%, as well as in in vivo studies. | [75] | |
AgNPs-BSA-ICG-PEG | 885 nm (1.3 W), 20 min | AgNPs-BSA-ICG-PEG (30 μmol.L−1 as Ag) presented a high temperature rise under NIR irradiation, and showed great anticancer activity against B16F10 cells. | [76] | ||
AgNPs-BSA | 690 nm (1.5 W.cm−2), 10 min | The PTT effect of AgNPs-BSA (2.7 mmol.L−1 as Ag) was evaluated on B16F10 cells, showing a decrease in viability, with almost complete cell death in temperatures above 45 °C (corresponding to a laser power higher than 0.9 W). | [77] | ||
AgNPs-BSA-hydrogels | 885 nm (1.3 W), 5 min | Hydrogels with AgNPs-BSA (125 μg.mL−1 as Ag) exhibited a temperature rise of around 43 °C under 885 nm laser irradiation. These hydrogels showed PTT efficacy, decreasing the viability of B16F10 cells in both in vitro and in vivo models. | [78] | ||
AgNPs-PhA | 808 nm (1.2 W.cm−2), 10 min | The treatment of B16F10 cells with AgNPs-PhA (8 μg-mL−1) and NIR light showed a significant reduction in cell viability, which was attributed to simultaneous PTT and PDT. This system was also effective in in vivo phototherapy. | [79] | ||
Cervical Cancer | AgNPs-Dap | 808 nm (1.75 W.cm−2), 10 min | AgNPs-Dap (1 mL) exhibited a η of 36.8%. The AgNPs-Dap system presented good anticancer toxicity in HeLa cells when exposed to NIR light. | [13] | |
AgNPs@Au | 808 nm (1.0 W.cm−2), 20 min | Prismatic AgNPs coated with Au showed a η = 67% under NIR irradiation for 10 min. In vivo studies on mice with HeLa cells-induced tumors showed that AgNPs@Au (100 mmol.L−1 in terms of Ag) increased the tumor tissue temperature and induced tumor necrosis. | [80] | ||
AgNPs-FCO-BSA-FA | 808 nm (2.0 W.cm−2), 3–5 min | AgNPs-FCO-BSA-FA (80 μg.L−1) showed a temperature increase under irradiation with an 808 nm laser. This composite was associated with DOX and exhibited a photo-chemotherapy effect in HeLa cells, killing 90% of the cells. | [81] | ||
AgNPs-Chi-FA | 808 nm (2.0 W.cm−2), 6 min | Prismatic AgNPs-Chi-FA (15 μmol.L−1) showed a higher temperature increase under NIR irradiation than gold nanorods (50 μmol.L−1). The AgNPs-Chi-FA associated with several anticancer drugs under PTT conditions, showed a reduction of 35% in HeLa cells’ viability. | [82] | ||
Hepatocellular Carcinoma | AgNPs-PyOH | 840 nm (1.0 W), 10 min | HepG2 cells’ viability decreased to 20% after PTT treatment with AgNPs-PyOH (0.1 mmol.L−1). This system also presented a significant photothermal conversion effect when applied in vivo, with almost complete tumor growth inhibition. | [83] | |
AgNPs-PDA-GOx | 808 nm (1 W.cm−2), 3 min | The AgNPs-PDA-GOx (at a PDA concentration of 0.1 mg.mL−1) presented a η = 30.2%, when exposed to an 808 nm laser for 5 min. AgNPs-PDA-Gox exhibited a toxic effect against Hepa 1–6 cells. | [84] | ||
Ovarian Cancer | AgNPs-ZHER2 | 465 nm (95 mW.cm−2), 25 min | The spherical AgNPs prepared in the presence of plant extracts (2.2 mg.mL−1) showed a temperature increase of around 10 °C. AgNPs conjugated with anti-HER2 affibody were shown to be effective PTT tools against SKOV3-1ip cells. | [85] | |
Pancreatic Cancer | AgNPs-IgG | 808 nm (2.0 W.cm−2), 2 min | AgNPs-IgG (50 μmol.L−1), when irradiated, induced the apoptosis of PANC-1 cells and the collapse of the Golgi complex. The viability of these cells decreased to 21.9% post-PTT treatment. | [86] | |
Laryngeal Cancer | AgNPs-PVP | 490 nm (200 J), 5 h | Spherical AgNPs-PVP (0.3 mmol.L−1) were irradiated with a 490 nm laser to treat laryngeal carcinoma cells (Hep-2), decreasing the viability of these cells by 50% after 5 h. | [87] | |
Lung Cancer | AgNPs-CuSe | 1064 nm (1 W.cm−2), 5 min | AgNPs were deposited on the surface of CuSe and this composite (50 μg.mL−1) exhibited a η = 52.7% under NIR irradiation for 5 min. The AgNPs-CuSe composites presented cytotoxicity for lung cancer cells under 1064 nm irradiation. In vivo studies showed a tumor weight reduction after PTT. | [88] |
3.2. Photothermal Therapy of Cancer Cells
3.3. Phototherapy for the Inactivation of Bacteria
Bacteria | Therapy Approach | System | Phototherapy Details | Results | Refs. |
---|---|---|---|---|---|
Staphylococcus aureus | aPDT | AgNPs-GaHb | 405 nm (140 mW.cm−2), 10 s | Eradication of S. aureus and MRSA was achieved using, respectively, 5.8 and 16.3 μg.mL−1 of AgNPs-GaHb and exposure to 405 nm laser for 10 s. | [98] |
AgNPs–PpIX–polymer | 635 nm, 10 min | S. aureus bacteria were inactivated both in vitro and in vivo using, respectively, 400 μg.mL−1 and 1 mg.mL−1 of AgNPs–PpIX–polymer. | [109] | ||
AgNPs-ND-Pp | 415 nm (15.6 μW.mm−2), 30 min | Ga and In-based Pps conjugated with AgNPs showed bacteria inactivation with a dose of 10 μg.mL−1 and a biofilm reduction with 100 μg.mL−1, under 30 min of light exposure. | [99] | ||
AgNPs-MB | 660 nm (45.8 mW∙cm−2), 6 min | Prismatic AgNPs were associated with MB, and aPDT assays showed a complete inactivation of S. aureus after 6 min of irradiation. | [39] | ||
AgNPs-ND-Pc | 670 nm (524 mW.cm−2), 2 h | The conjugates improved the aPDT effect, showing a log reduction of 5.1–5.3 in biofilms. | [110] | ||
AgNPs-MOF | Visible light (100 mW.cm−2), 1 h | AgNPs-MOF showed a satisfactory aPDT effect, presenting the ability to inactivate bacteria in both in vitro and in vivo models. | [111] | ||
PTT | AgNPs-TiO2 | 904 nm (83.3 mW.cm−2), 10 min | Prismatic AgNPs associated with TiO2 achieved a η = 35%. AgNPs-TiO2 (14 μg.mL−1) were able to inhibit colony formation, under irradiation. | [104] | |
AgNPs-PDA-Fe3O4 | 808 nm (1.0 W.cm− 2), 10 min | The system presented a η = 30% and, under NIR irradiation, AgNPs-PDA-Fe3O4 presented a great bactericidal activity, causing damage to the bacterial cell wall. | [102] | ||
Pseudomonas aeruginosa and S. aureus | aPDT | AgNPs-MB | 660 nm (467 mW.cm−2), 3 min | AgNPs-MB (125 μg.mL−1) exhibited a 4.3-log10 and 1.1-log10 CFU.mL−1 reduction on P. aeruginosa and S. aureus after aPDT assays. | [112] |
MSRA and Klebsiella pneumoniae | aPDT | AgNPs and TMPyP | 414 nm (54 mW.cm−2), 5 h | The MIC was reduced for aPDT in the presence of AgNPs and TMPyP. | [113] |
Bacillus subtilis | PTT | AgNPs-PVP | 795 nm (1.35 W.cm−2), 5 min | Prismatic AgNPs-PVP (3.5 μg Ag.mL−1) achieved a complete eradication of bacteria (5 × 107 CFU.mL−1) under laser irradiation for 5 min. | [114] |
Escherichia coli | PTT | AgNPs | Visible light (0.2 W.cm−2), 30 min | Biosynthesized AgNPs (52.5 μg.mL−1) under visible light irradiation were able to completely inactivate E. coli strains after 30 min. | [105] |
Staphylococcus aureus and Escherichia coli | aPDT | ZIF8-PAA-MB-AgNPs-Van-PEG | 650 nm (202 mW), 5 min | In vitro and in vivo antibacterial assays showed the efficiency of the AgNPs-MB system in inactivating E. coli, S. aureus, and MRSA by aPDT. | [115] |
AgNPs-MB | 660 nm, 5 min | AgNPs-MB showed higher aPDT performance than bare MB or AgNPs, resulting in the inactivation of approximately 106 CFU mL−1 of S. aureus and E. coli bacteria. | [116] | ||
AgNPs-MB | Xenon lamp, 20 min | aPDT studies showed that AgNPs-MB conjugates increased the inactivation of E. coli and S. aureus strains by 87% and 94%, respectively, compared to bare AgNPs. | [100] | ||
AgNPs-Ce6 | 660 nm (20 mW.cm−2), 20 min | AgNPs-Ce6 (1 mg.mL−1) under PDT conditions can completely eradicate S. aureus and E. coli biofilms. | [117] | ||
AgNPs–extract | 405 nm (20 mW.cm−2), 3 min | Treatment of bacteria with AgNPs–extract (2 mmol.L−1), under red light irradiation for 3 min, showed a viability decrease of 79.5% and 85.0% for E. coli and S. aureus strains, respectively. | [118] | ||
AgNPs-GA-Cur-POTS | Blue light, 10 min | This system, where Cur has the PS, showed an antibacterial rate higher than 97% against the two bacteria strains, after light irradiation. | [101] | ||
PTT | AgNPs–PDA–hydrogel | 808 nm (1.0 W.cm−2), 5 min | The system showed the ability to inhibit bacterial growth under NIR, but a better result was achieved when H2O2 was also used. | [119] | |
AgNPs-PDA-ZIF8-ICG | 808 nm (1.5 W.cm−2), 20 min | The composites (100 μg.mL−1), upon irradiation, damaged the bacteria membrane due to the hyperthermia and release of Ag and Zn ions. | [120] | ||
AgNPs–PDA–POM– hydrogel | 808 nm (0.75 W.cm−2), 6 min | AgNPs-PDA-POM nanoflowers (200 μg.mL−1) presented a η = 35% and the same system at 700 μg.mL−1 eradicated 90% of both bacteria, under NIR irradiation. However, the hydrogel scaffold only inactivated the bacteria under NIR irradiation and with H2O2. | [106] | ||
AgNPs-PDA-Alg-ABA | 808 nm (1.0 W.cm−2), 5 min | The AgNPs-PDA-Alg-ABA hydrogel exhibited a η of around 49%, under 808 nm irradiation for 5 min. Under laser irradiation, this system inactivated S. aureus and E. coli, changing their morphology. In vivo assays confirmed the good antibacterial performance of this hydrogel. | [121] | ||
AgNPs–TA–hydrogel | 808 nm (133 mW.cm−2), 15 min | Hydrogels containing AgNPs-TA were prepared to treat wound infections. AgNPs–TA–hydrogels (with 200 mmol.L−1 of Ag) presented enhanced antibacterial and healing properties, when irradiated with NIR. | [122] | ||
AgNPs–TA–hydrogel | LED 630–850 nm (0.92 W.cm−2), 5 min | AgNPs stabilized with tannic acid (TA) were incorporated into a hydrogel for wound healing applications. AgNPs–TA–hydrogels promoted the temperature rising and antibacterial effect when irradiated. | [123] | ||
AgNPs-Chi-PB | 808 nm (1.0 W.cm−2), 10 min | AgNPs-Chi-PB, prepared for wound healing, showed a η = 43%. In vitro experiments demonstrated that the combination of AgNPs-Chi-PB + NIR irradiation had a stronger effect on both multidrug-resistant pathogens. However, MRSA required a higher dosage (10 μg.mL−1) than E. coli (3 μg.mL−1). | [124] | ||
AgNPs–lignin | 808 nm (1.8 W.cm−2), 5 min | AgNPs loaded in lignin composites (1 mg.mL−1) presented a η = 29%, under NIR irradiation for 10 min. AgNPs–lignin exhibited antibacterial performance, under NIR irradiation for 5 min, achieving around a 6 log10 CFU.mL−1 reduction in E. coli and S. aureus. | [125] | ||
AgNPs–MT–hydrogel | 808 nm (2.0 W.cm−2), 5 min | AgNPs prepared with Mentha pulegium (MP) extract were incorporated into gelatin hydrogels to treat infected wounds. These AgNPs–MT–hydrogels showed good antibacterial activity and enhanced the wound healing rate, under NIR irradiation, in in vivo models. | [126] | ||
aPDT + PTT | AgNPs–citrate | 810 nm (0.99 W.cm−2), 15 min | Prismatic AgNPs showed photoinduced antibacterial activity, which was attributed to the ROS yield and plasmonic heating. | [107] | |
AgNPs-Cur-Mt | 405 (0.4 W.cm−2) for 20 min, and 808 nm (1.2 W.cm−2) for 8 min | Prismatic AgNPs and Cur were associated to achieve a synergistic system for aPDT and PTT, presenting an antibacterial rate higher than 99% for both bacteria. | [108] |
3.4. Wound Healing
3.5. Photodynamic Inactivation of Fungi
3.6. Other Phototherapies Using AgNPs
4. Final Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, Z.; Fan, T.; An, J.; Choi, W.; Duo, Y.; Ge, Y.; Zhang, B.; Nie, G.; Xie, N.; Zheng, T.; et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem. Soc. Rev. 2020, 49, 8065–8087. [Google Scholar] [CrossRef] [PubMed]
- Pivetta, T.P.; Botteon, C.E.A.; Ribeiro, P.A.; Marcato, P.D.; Raposo, M. Nanoparticle Systems for Cancer Phototherapy: An Overview. Nanomaterials 2021, 11, 3132. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Yang, G.; Wang, Y.; Jiang, H.; Fu, Y.; Yue, G.; Ju, R. Phototherapy-based combination strategies for bacterial infection treatment. Theranostics 2020, 10, 12241–12262. [Google Scholar] [CrossRef]
- Sun, B.; Teo, J.Y.; Wu, J.; Zhang, Y. Light Conversion Nanomaterials for Wireless Phototherapy. Acc. Chem. Res. 2023, 56, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhao, S.; Huang, L.; Wang, Q.; Xiao, J.; Lan, M. Recent advances and prospects of carbon dots in phototherapy. Chem. Eng. J. 2021, 408, 127245. [Google Scholar] [CrossRef]
- Algorri, J.F.; Ochoa, M.; Roldán-Varona, P.; Rodríguez-Cobo, L.; López-Higuera, J.M. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers 2021, 13, 3484. [Google Scholar] [CrossRef]
- Cao, J.; Zhu, B.; Zheng, K.; He, S.; Meng, L.; Song, J.; Yang, H. Recent Progress in NIR-II Contrast Agent for Biological Imaging. Front. Bioeng. Biotechnol. 2020, 7, 487. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, J.; Ye, Y.-s.; Kim, T.-i. Materials and device design for advanced phototherapy systems. Adv. Drug Deliv. Rev. 2022, 186, 114339. [Google Scholar]
- Wäldchen, S.; Lehmann, J.; Klein, T.; van de Linde, S.; Sauer, M. Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep. 2015, 5, 15348. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Fontana, F.; Tapeinos, C.; Shahbazi, M.-A.; Han, H.; Santos, H.A. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact. Mater. 2023, 23, 471–507. [Google Scholar] [CrossRef]
- Tavakkoli Yaraki, M.; Liu, B.; Tan, Y.N. Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy. Nano-Micro Lett. 2022, 14, 123. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Ruan, Q.; Zhuo, X.; Xia, X.; Hu, J.; Fu, R.; Li, Y.; Wang, J.; Xu, H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem. Rev. 2023, 123, 6891–6952. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Fan, G.; Zhang, B.; Ma, G.; Xiao, H.; Wang, L. Daptomycin-Biomineralized Silver Nanoparticles for Enhanced Photothermal Therapy with Anti-Tumor Effect. Polymers 2022, 14, 2787. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Zhang, Y.; Li, X. Application of AgNPs in biomedicine: An overview and current trends. Nanotechnol. Rev. 2024, 13, 20240030. [Google Scholar] [CrossRef]
- Mundekkad, D.; Cho, W.C. Nanoparticles in Clinical Translation for Cancer Therapy. Int. J. Mol. Sci. 2022, 23, 1685. [Google Scholar] [CrossRef]
- Kah, G.; Chandran, R.; Abrahamse, H. Biogenic Silver Nanoparticles for Targeted Cancer Therapy and Enhancing Photodynamic Therapy. Cells 2023, 12, 2012. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, H.; Chen, B. Application of nanoparticles to reverse multi-drug resistance in cancer. Nanotechnol. Rev. 2016, 5, 489–496. [Google Scholar] [CrossRef]
- Liu, S.; Phillips, S.; Northrup, S.; Levi, N. The Impact of Silver Nanoparticle-Induced Photothermal Therapy and Its Augmentation of Hyperthermia on Breast Cancer Cells Harboring Intracellular Bacteria. Pharmaceutics 2023, 15, 2466. [Google Scholar] [CrossRef]
- Huq, M.A.; Ashrafudoulla, M.; Rahman, M.M.; Balusamy, S.R.; Akter, S. Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review. Polymers 2022, 14, 742. [Google Scholar] [CrossRef]
- Mateo, E.M.; Jiménez, M. Silver Nanoparticle-Based Therapy: Can It Be Useful to Combat Multi-Drug Resistant Bacteria? Antibiotics 2022, 11, 1205. [Google Scholar] [CrossRef]
- Mallineni, S.K.; Sakhamuri, S.; Kotha, S.L.; AlAsmari, A.R.G.M.; AlJefri, G.H.; Almotawah, F.N.; Mallineni, S.; Sajja, R. Silver Nanoparticles in Dental Applications: A Descriptive Review. Bioengineering 2023, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, F.; Forghan, P.; Gutmann, J.L.; Kishen, A. Silver Nanoparticles and Their Therapeutic Applications in Endodontics: A Narrative Review. Pharmaceutics 2023, 15, 715. [Google Scholar] [CrossRef]
- Miranda, R.R.; Sampaio, I.; Zucolotto, V. Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf. B Biointerfaces 2022, 210, 112254. [Google Scholar] [CrossRef]
- Pryshchepa, O.; Pomastowski, P.; Buszewski, B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv. Colloid. Interface Sci. 2020, 284, 102246. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Yadav, S.; Dutta, S.; Kale, H.B.; Warkad, I.R.; Zbořil, R.; Varma, R.S.; Gawande, M.B. Silver nanomaterials: Synthesis and (electro/photo) catalytic applications. Chem. Soc. Rev. 2021, 50, 11293–11380. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, A.; Khurana, I.; Yadav, P.; Allawadhi, P.; Banothu, A.K.; Neeradi, D.; Thalugula, S.; Barani, P.J.; Naik, R.R.; Navik, U.; et al. Advances in therapeutic applications of silver nanoparticles. Chem.-Biol. Interact. 2023, 382, 110590. [Google Scholar] [CrossRef]
- Amirjani, A.; Koochak, N.N.; Haghshenas, D.F. Investigating the Shape and Size-Dependent Optical Properties of Silver Nanostructures Using UV–vis Spectroscopy. J. Chem. Educ. 2019, 96, 2584–2589. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, N.; Goebl, J.; Lu, Z.; Yin, Y. A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a “Magic” Reagent? J. Am. Chem. Soc. 2011, 133, 18931–18939. [Google Scholar] [CrossRef]
- Restrepo, C.V.; Villa, C.C. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100428. [Google Scholar] [CrossRef]
- Fong, K.E.; Yung, L.-Y.L. Localized surface plasmon resonance: A unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale 2013, 5, 12043–12071. [Google Scholar] [CrossRef]
- Gherasim, O.; Puiu, R.A.; Bîrcă, A.C.; Burdușel, A.-C.; Grumezescu, A.M. An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials 2020, 10, 2318. [Google Scholar] [CrossRef]
- Richa, S.; Dimple, S.C. Regulatory Approval of Silver Nanoparticles. Appl. Clin. Res. Clin. Trials Regul. Aff. 2018, 5, 74–79. [Google Scholar]
- Menichetti, A.; Mavridi-Printezi, A.; Mordini, D.; Montalti, M. Effect of Size, Shape and Surface Functionalization on the Antibacterial Activity of Silver Nanoparticles. J. Funct. Biomater. 2023, 14, 244. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef] [PubMed]
- Rybka, M.; Mazurek, Ł.; Konop, M. Beneficial Effect of Wound Dressings Containing Silver and Silver Nanoparticles in Wound Healing—From Experimental Studies to Clinical Practice. Life 2023, 13, 69. [Google Scholar] [CrossRef]
- Monte, J.P.; Fontes, A.; Santos, B.S.; Pereira, G.A.L.; Pereira, G. Recent advances in hydroxyapatite/polymer/silver nanoparticles scaffolds with antimicrobial activity for bone regeneration. Mater. Lett. 2023, 338, 134027. [Google Scholar] [CrossRef]
- Pucelik, B.; Sułek, A.; Borkowski, M.; Barzowska, A.; Kobielusz, M.; Dąbrowski, J.M. Synthesis and Characterization of Size- and Charge-Tunable Silver Nanoparticles for Selective Anticancer and Antibacterial Treatment. ACS Appl. Mater. Interfaces 2022, 14, 14981–14996. [Google Scholar] [CrossRef] [PubMed]
- Gibała, A.; Żeliszewska, P.; Gosiewski, T.; Krawczyk, A.; Duraczyńska, D.; Szaleniec, J.; Szaleniec, M.; Oćwieja, M. Antibacterial and Antifungal Properties of Silver Nanoparticles—Effect of a Surface-Stabilizing Agent. Biomolecules 2021, 11, 1481. [Google Scholar] [CrossRef]
- Rodrigues, C.H.; Araújo, E.A.G.; Almeida, R.P.; Nascimento, T.P.; Silva, M.M.; Abbas, G.; Nunes, F.D.; Lins, E.; Lira-Nogueira, M.C.B.; Falcão, J.S.A.; et al. Silver nanoprisms as plasmonic enhancers applied in the photodynamic inactivation of Staphylococcus aureus isolated from bubaline mastitis. Photodiagn. Photodyn. Ther. 2021, 34, 102315. [Google Scholar] [CrossRef]
- Mota, D.R.; Lima, G.A.S.; de Oliveira, H.P.M.; Pellosi, D.S. Pluronic-loaded Silver Nanoparticles/Photosensitizers Nanohybrids: Influence of the Polymer Chain Length on Metal-enhanced Photophysical Properties. Photochem. Photobiol. 2022, 98, 175–183. [Google Scholar] [CrossRef]
- Patil, J.; Bhattacharya, S. Exploring the potential of quantum dots and plasmonic nanoparticles for imaging and phototherapy in colorectal neoplasia. Results Chem. 2024, 10, 101689. [Google Scholar] [CrossRef]
- Jauffred, L.; Samadi, A.; Klingberg, H.; Bendix, P.M.; Oddershede, L.B. Plasmonic Heating of Nanostructures. Chem. Rev. 2019, 119, 8087–8130. [Google Scholar] [CrossRef]
- Robertson, C.A.; Evans, D.H.; Abrahamse, H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B Biol. 2009, 96, 1–8. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, H.; Ying, B.; Mei, X.; Zeng, D.; Liu, S.; Qu, W.; Pan, X.; Pu, S.; Li, R.; et al. Mild photothermal therapy assist in promoting bone repair: Related mechanism and materials. Mater. Today Bio 2023, 23, 100834. [Google Scholar] [CrossRef] [PubMed]
- Jaswal, T.; Gupta, J. A review on the toxicity of silver nanoparticles on human health. Mater. Today Proc. 2023, 81, 859–863. [Google Scholar] [CrossRef]
- Nie, P.; Zhao, Y.; Xu, H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicol. Environ. Saf. 2023, 253, 114636. [Google Scholar] [CrossRef] [PubMed]
- Nieves Lira, C.; Carpenter, A.P.; Baio, J.E.; Harper, B.J.; Harper, S.L.; Mackiewicz, M.R. Size- and Shape-Dependent Interactions of Lipid-Coated Silver Nanoparticles: An Improved Mechanistic Understanding through Model Cell Membranes and In Vivo Toxicity. Chem. Res. Toxicol. 2024, 37, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Rozalen, M.; Sánchez-Polo, M.; Fernández-Perales, M.; Widmann, T.J.; Rivera-Utrilla, J. Synthesis of controlled-size silver nanoparticles for the administration of methotrexate drug and its activity in colon and lung cancer cells. RSC Adv. 2020, 10, 10646–10660. [Google Scholar] [CrossRef]
- Oćwieja, M.; Barbasz, A.; Wasilewska, M.; Smoleń, P.; Duraczyńska, D.; Napruszewska, B.D.; Kozak, M.; Węgrzynowicz, A. Surface Charge-Modulated Toxicity of Cysteine-Stabilized Silver Nanoparticles. Molecules 2024, 29, 3629. [Google Scholar] [CrossRef]
- Vuković, B.; Milić, M.; Dobrošević, B.; Milić, M.; Ilić, K.; Pavičić, I.; Šerić, V.; Vrček, I.V. Surface Stabilization Affects Toxicity of Silver Nanoparticles in Human Peripheral Blood Mononuclear Cells. Nanomaterials 2020, 10, 1390. [Google Scholar] [CrossRef]
- Recordati, C.; De Maglie, M.; Cella, C.; Argentiere, S.; Paltrinieri, S.; Bianchessi, S.; Losa, M.; Fiordaliso, F.; Corbelli, A.; Milite, G.; et al. Repeated oral administration of low doses of silver in mice: Tissue distribution and effects on central nervous system. Part. Fibre Toxicol. 2021, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Rosário, F.; Creylman, J.; Verheyen, G.; Van Miert, S.; Santos, C.; Hoet, P.; Oliveira, H. Impact of Particle Size on Toxicity, Tissue Distribution and Excretion Kinetics of Subchronic Intratracheal Instilled Silver Nanoparticles in Mice. Toxics 2022, 10, 260. [Google Scholar] [CrossRef] [PubMed]
- Bucharskaya, A.B.; Khlebtsov, N.G.; Khlebtsov, B.N.; Maslyakova, G.N.; Navolokin, N.A.; Genin, V.D.; Genina, E.A.; Tuchin, V.V. Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects. Materials 2022, 15, 1606. [Google Scholar] [CrossRef]
- Dias, M.; Zhang, R.; Lammers, T.; Pallares, R.M. Clinical translation and landscape of silver nanoparticles. Drug Deliv. Transl. Res. 2025, 15, 789–797. [Google Scholar] [CrossRef]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674. [Google Scholar] [CrossRef]
- Pham, T.C.; Nguyen, V.-N.; Choi, Y.; Lee, S.; Yoon, J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem. Rev. 2021, 121, 13454–13619. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Q.; Li, C.; Zeng, X.; Zhang, X.-Z. Near infrared light-triggered metal ion and photodynamic therapy based on AgNPs/porphyrinic MOFs for tumors and pathogens elimination. Biomaterials 2020, 248, 120029. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Yang, Z.; Zhang, L.; Zhao, J.; Hou, C.; Zhao, S. A near infrared dye-coated silver nanoparticle/carbon dot nanocomposite for targeted tumor imaging and enhanced photodynamic therapy. Nanoscale Adv. 2020, 2, 489–494. [Google Scholar] [CrossRef]
- Matlou, G.G.; Managa, M.; Nyokong, T. Effect of symmetry and metal nanoparticles on the photophysicochemical and photodynamic therapy properties of cinnamic acid zinc phthalocyanine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 214, 49–57. [Google Scholar] [CrossRef]
- Nene, L.C.; Nyokong, T. Enhancement of the in vitro anticancer photo-sonodynamic combination therapy activity of cationic thiazole-phthalocyanines using gold and silver nanoparticles. J. Photochem. Photobiol. A Chem. 2023, 435, 114339. [Google Scholar] [CrossRef]
- Montaseri, H.; Nkune, N.W.; Abrahamse, H. Active targeted photodynamic therapeutic effect of silver-based nanohybrids on melanoma cancer cells. J. Photochem. Photobiol. 2022, 11, 100136. [Google Scholar] [CrossRef]
- de Freitas, C.F.; Kimura, E.; Rubira, A.F.; Muniz, E.C. Curcumin and silver nanoparticles carried out from polysaccharide-based hydrogels improved the photodynamic properties of curcumin through metal-enhanced singlet oxygen effect. Mater. Sci. Eng. C 2020, 112, 110853. [Google Scholar] [CrossRef]
- Chota, A.; Abrahamse, H.; George, B.P. Green synthesis and characterization of AgNPs, liposomal loaded AgNPs and ZnPcS4 photosensitizer for enhanced photodynamic therapy effects in MCF-7 breast cancer cells. Photodiagn. Photodyn. Ther. 2024, 48, 104252. [Google Scholar] [CrossRef]
- Wen, S.; Wang, W.; Liu, R.; He, P. Amylase-Protected Ag Nanodots for in vivo Fluorescence Imaging and Photodynamic Therapy of Tumors. Int. J. Nanomed. 2020, 15, 3405–3414. [Google Scholar] [CrossRef] [PubMed]
- Tavakkoli Yaraki, M.; Pan, Y.; Hu, F.; Yu, Y.; Liu, B.; Tan, Y.N. Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy. Mater. Chem. Front. 2020, 4, 3074–3085. [Google Scholar] [CrossRef]
- Chota, A.; George, B.P.; Abrahamse, H. Apoptotic efficiency of Dicoma anomala biosynthesized silver nanoparticles against A549 lung cancer cells. Biomed. Pharmacother. 2024, 176, 116845. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Yan, S.; Di, C.; Lei, M.; Chen, P.; Du, W.; Jin, Y.; Liu, B.-F. “All-in-One” Silver Nanoprism Platform for Targeted Tumor Theranostics. ACS Appl. Mater. Interfaces 2020, 12, 11329–11340. [Google Scholar] [CrossRef]
- Carrese, B.; Cavallini, C.; Sanità, G.; Armanetti, P.; Silvestri, B.; Calì, G.; Pota, G.; Luciani, G.; Menichetti, L.; Lamberti, A. Controlled Release of Doxorubicin for Targeted Chemo-Photothermal Therapy in Breast Cancer HS578T Cells Using Albumin Modified Hybrid Nanocarriers. Int. J. Mol. Sci. 2021, 22, 11228. [Google Scholar] [CrossRef]
- Demina, P.A.; Khaydukov, K.V.; Babayeva, G.; Varaksa, P.O.; Atanova, A.V.; Stepanov, M.E.; Nikolaeva, M.E.; Krylov, I.V.; Evstratova, I.I.; Pokrovsky, V.S.; et al. Upconversion Nanoparticles Intercalated in Large Polymer Micelles for Tumor Imaging and Chemo/Photothermal Therapy. Int. J. Mol. Sci. 2023, 24, 10574. [Google Scholar] [CrossRef]
- Bose, P.; Priyam, A.; Kar, R.; Pattanayak, S.P. Quercetin loaded folate targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy of DMBA induced breast cancer in Sprague Dawley rats. RSC Adv. 2020, 10, 31961–31978. [Google Scholar] [CrossRef] [PubMed]
- Sears, J.; Swanner, J.; Fahrenholtz, C.D.; Snyder, C.; Rohde, M.; Levi-Polyachenko, N.; Singh, R. Combined Photothermal and Ionizing Radiation Sensitization of Triple-Negative Breast Cancer Using Triangular Silver Nanoparticles. Int. J. Nanomed. 2021, 16, 851–865. [Google Scholar] [CrossRef]
- Li, F.; Yang, H.; Cao, Y.; Li, D.; Ma, J.; Liu, P. DOX-loaded silver nanotriangles and photothermal therapy exert a synergistic antibreast cancer effect via ROS/ERK1/2 signaling pathway. Nanotechnology 2021, 33, 075101. [Google Scholar] [CrossRef]
- Mondal, S.; Montaño-Priede, J.L.; Nguyen, V.T.; Park, S.; Choi, J.; Doan, V.H.M.; Vo, T.M.T.; Vo, T.H.; Large, N.; Kim, C.-S.; et al. Computational analysis of drug free silver triangular nanoprism theranostic probe plasmonic behavior for in-situ tumor imaging and photothermal therapy. J. Adv. Res. 2022, 41, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Du, P.; Zhao, H.; Xie, H.; Li, Y.; Yao, L.; Shi, Y.; Hu, L.; Si, S.; Zhang, M.; et al. Ag@TiO2 Nanoprisms with Highly Efficient Near-Infrared Photothermal Conversion for Melanoma Therapy. Chem.—Asian J. 2020, 15, 148–155. [Google Scholar] [CrossRef]
- Park, T.; Lee, S.; Amatya, R.; Cheong, H.; Moon, C.; Kwak, H.D.; Min, K.A.; Shin, M.C. ICG-Loaded PEGylated BSA-Silver Nanoparticles for Effective Photothermal Cancer Therapy. Int. J. Nanomed. 2020, 15, 5459–5471. [Google Scholar] [CrossRef]
- Kim, D.; Amatya, R.; Hwang, S.; Lee, S.; Min, K.A.; Shin, M.C. BSA-Silver Nanoparticles: A Potential Multimodal Therapeutics for Conventional and Photothermal Treatment of Skin Cancer. Pharmaceutics 2021, 13, 575. [Google Scholar] [CrossRef] [PubMed]
- Amatya, R.; Hwang, S.; Park, T.; Chung, Y.J.; Ryu, S.; Lee, J.; Cheong, H.; Moon, C.; Min, K.A.; Shin, M.C. BSA/Silver Nanoparticle-Loaded Hydrogel Film for Local Photothermal Treatment of Skin Cancer. Pharm. Res. 2021, 38, 873–883. [Google Scholar] [CrossRef]
- Patil, P.M.; Poddar, N.; Parihar, N.; Sen, S.; Mohapatra, P.; Murty U, S.; Pemmaraju, D.B. Optoresponsive Pheophorbide-Silver based organometallic nanomaterials for high efficacy multimodal theranostics in Melanoma. Chem. Eng. J. 2023, 470, 144110. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Huo, D.; Ding, Q.; Lu, Z.; Hu, Y. Epitaxial growth of gold on silver nanoplates for imaging-guided photothermal therapy. Mater. Sci. Eng. C 2019, 105, 110023. [Google Scholar] [CrossRef]
- Wang, D.; Peng, J.; Huang, Y.; Sun, L.; Liu, M.; Li, H.; Chao, M.; Gong, P.; Liu, Z.; You, J. Rational Construction of Fluorescence Turn-Off Fluorinated Carbon Fiber/Ag Composites and Their Anticancer and Antibacterial Activities. ACS Appl. Bio Mater. 2021, 4, 1749–1759. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, Y.J.; Park, Y. Folic Acid and Chitosan-Functionalized Gold Nanorods and Triangular Silver Nanoplates for the Delivery of Anticancer Agents. Int. J. Nanomed. 2022, 17, 1881–1902. [Google Scholar] [CrossRef]
- Huang, Z.; Gao, L.; Kong, L.; Zhang, H.-H.; Yang, J.-X.; Li, L. In vivo two-photon imaging/excited photothermal therapy strategy of a silver-nanohybrid. J. Mater. Chem. B 2019, 7, 7377–7386. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Shen, H.; Chen, X.; Wang, H.; He, C.; Hu, T.; Cao, G.; Zhang, L. A cascade nanosystem with “Triple-Linkage” effect for enhanced photothermal and activatable metal ion therapy for hepatocellular carcinoma. J. Nanobiotechnol. 2024, 22, 334. [Google Scholar] [CrossRef]
- Shipunova, V.O.; Belova, M.M.; Kotelnikova, P.A.; Shilova, O.N.; Mirkasymov, A.B.; Danilova, N.V.; Komedchikova, E.N.; Popovtzer, R.; Deyev, S.M.; Nikitin, M.P. Photothermal Therapy with HER2-Targeted Silver Nanoparticles Leading to Cancer Remission. Pharmaceutics 2022, 14, 1013. [Google Scholar] [CrossRef] [PubMed]
- Nedelcu, A.; Mocan, T.; Sabau, L.I.; Matea, C.T.; Tabaran, F.; Pop, T.; Delcea, C.; Mosteanu, O.; Mocan, L. In vitro photothermal therapy of pancreatic cancer mediated by immunoglobulin G-functionalized silver nanoparticles. Sci. Rep. 2024, 14, 14417. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.A.; El-Tayeb, T.A. Photostability, cytotoxicity, and photothermal impact of AgNPs, CoAgNC, and IOAgNC on HEp-2 laryngeal carcinoma cells. SN Appl. Sci. 2023, 5, 253. [Google Scholar] [CrossRef]
- Ling, P.; Song, D.; Yang, P.; Tang, C.; Xu, W.; Wang, F. NIR-II-Responsive Versatile Nanozyme Based on H2O2 Cycling and Disrupting Cellular Redox Homeostasis for Enhanced Synergistic Cancer Therapy. ACS Biomater. Sci. Eng. 2024, 10, 5290–5299. [Google Scholar] [CrossRef]
- Ren, Y.; Yan, Y.; Qi, H. Photothermal conversion and transfer in photothermal therapy: From macroscale to nanoscale. Adv. Colloid Interface Sci. 2022, 308, 102753. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Zhang, Z.; Ji, L.; Zhang, J.; Wang, Q.; Guo, T.; Ni, S.; Cai, R.; Mu, X.; et al. Recent Progress on NIR-II Photothermal Therapy. Front. Chem. 2021, 9, 728066. [Google Scholar] [CrossRef]
- Lv, Z.; He, S.; Wang, Y.; Zhu, X. Noble Metal Nanomaterials for NIR-Triggered Photothermal Therapy in Cancer. Adv. Healthc. Mater. 2021, 10, 2001806. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, J.-H.; Nam, J.-M. Plasmonic Photothermal Nanoparticles for Biomedical Applications. Adv. Sci. 2019, 6, 1900471. [Google Scholar] [CrossRef]
- Siddique, S.; Chow, J.C.L. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. Nanomaterials 2020, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Hamad, A.; Khashan, K.S.; Hadi, A. Silver Nanoparticles and Silver Ions as Potential Antibacterial Agents. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4811–4828. [Google Scholar] [CrossRef]
- More, P.R.; Pandit, S.; Filippis, A.D.; Franci, G.; Mijakovic, I.; Galdiero, M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms 2023, 11, 369. [Google Scholar] [CrossRef]
- Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J. Mol. Evol. 2020, 88, 26–40. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef]
- Morales-de-Echegaray, A.V.; Lin, L.; Sivasubramaniam, B.; Yermembetova, A.; Wang, Q.; Abutaleb, N.S.; Seleem, M.N.; Wei, A. Antimicrobial photodynamic activity of gallium-substituted haemoglobin on silver nanoparticles. Nanoscale 2020, 12, 21734–21742. [Google Scholar] [CrossRef]
- Openda, Y.I.; Ngoy, B.P.; Nyokong, T. Photodynamic Antimicrobial Action of Asymmetrical Porphyrins Functionalized Silver-Detonation Nanodiamonds Nanoplatforms for the Suppression of Staphylococcus aureus Planktonic Cells and Biofilms. Front. Chem. 2021, 9, 628316. [Google Scholar] [CrossRef]
- Ren, W.; Tang, Q.; Cao, H.; Wang, L.; Zheng, X. Biological Preparation of Chitosan-Loaded Silver Nanoparticles: Study of Methylene Blue Adsorption as Well as Antibacterial Properties under Light. ACS Omega 2023, 8, 22998–23007. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Y.; Xu, M.; Wen, J.; Wang, H.; Yan, H.; Gao, X.; Niu, B.; Li, W. Antibacterial photodynamic properties of silver nanoparticles-loaded curcumin composite material in chitosan-based films. Int. J. Biol. Macromol. 2024, 256, 128014. [Google Scholar] [CrossRef]
- Hong, Q.; Zhang, W.; Liu, Z.; Li, B.; Liu, X.; Wang, Z.; Wang, R.; Yang, J.; Nie, B.e.; Yue, B. Infection microenvironment-triggered nanoparticles eradicate MRSA by thermally amplified chemodynamic therapy and M1 macrophage. J. Nanobiotechnol. 2024, 22, 448. [Google Scholar] [CrossRef] [PubMed]
- Naskar, A.; Kim, K.-S. Friends against the Foe: Synergistic Photothermal and Photodynamic Therapy against Bacterial Infections. Pharmaceutics 2023, 15, 1116. [Google Scholar] [CrossRef] [PubMed]
- Pistonesi, D.B.; Belén, F.; Ruso, J.M.; Centurión, M.E.; Sica, M.G.; Pistonesi, M.F.; Messina, P.V. NIR-responsive nano-holed titanium alloy surfaces: A photothermally activated antimicrobial biointerface. J. Mater. Chem. B 2024, 12, 8993–9004. [Google Scholar] [CrossRef] [PubMed]
- Mechouche, M.S.; Merouane, F.; Addad, A.; Karmazin, L.; Boukherroub, R.; Lakhdari, N. Enhanced biosynthesis of coated silver nanoparticles using isolated bacteria from heavy metal soils and their photothermal-based antibacterial activity: Integrating Response Surface Methodology (RSM) Hybrid Artificial Neural Network (ANN)-Genetic Algorithm (GA) strategies. World J. Microbiol. Biotechnol. 2024, 40, 252. [Google Scholar]
- Zhou, K.; Zhang, Z.; Xue, J.; Shang, J.; Ding, D.; Zhang, W.; Liu, Z.; Yan, F.; Cheng, N. Hybrid Ag nanoparticles/polyoxometalate-polydopamine nano-flowers loaded chitosan/gelatin hydrogel scaffolds with synergistic photothermal/chemodynamic/Ag+ anti-bacterial action for accelerated wound healing. Int. J. Biol. Macromol. 2022, 221, 135–148. [Google Scholar] [CrossRef]
- Bourgonje, C.R.; da Silva, D.R.C.; McIlroy, E.; Calvert, N.D.; Shuhendler, A.J.; Scaiano, J.C. Silver nanoparticles with exceptional near-infrared absorbance for photoenhanced antimicrobial applications. J. Mater. Chem. B 2023, 11, 6114–6122. [Google Scholar] [CrossRef]
- Liu, J.H.; Chen, X.L.; Yang, H.M.; Yin, Y.R.; Kurniawan, A.; Zhou, C.H. Thermosensitive curcumin/silver/montmorillonite-F127 hydrogels with synergistic photodynamic/photothermal/silver ions antibacterial activity. J. Mater. Chem. B 2024, 12, 6874–6885. [Google Scholar] [CrossRef]
- Hou, X.; Yang, L.; Liu, J.; Zhang, Y.; Chu, L.; Ren, C.; Huang, F.; Liu, J. Silver-decorated, light-activatable polymeric antimicrobials for combined chemo-photodynamic therapy of drug-resistant bacterial infection. Biomater. Sci. 2020, 8, 6350–6361. [Google Scholar] [CrossRef]
- Openda, Y.I.; Matshitse, R.; Nyokong, T. A search for enhanced photodynamic activity against Staphylococcus aureus planktonic cells and biofilms: The evaluation of phthalocyanine–detonation nanodiamond–Ag nanoconjugates. Photochem. Photobiol. Sci. 2020, 19, 1442–1454. [Google Scholar] [CrossRef]
- Xie, W.; Chen, J.; Cheng, X.; Feng, H.; Zhang, X.; Zhu, Z.; Dong, S.; Wan, Q.; Pei, X.; Wang, J. Multi-Mechanism Antibacterial Strategies Enabled by Synergistic Activity of Metal–Organic Framework-Based Nanosystem for Infected Tissue Regeneration. Small 2023, 19, 2205941. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, P.; R. Y, T.; Shaji, C.; Sharan, A.; Bahkali, A.H.; Al-Harthi, H.F.; Syed, A.; Anju, V.T.; Dyavaiah, M.; Siddhardha, B. Biogenic Silver Nanoparticles Decorated with Methylene Blue Potentiated the Photodynamic Inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Pharmaceutics 2020, 12, 709. [Google Scholar] [CrossRef] [PubMed]
- Malá, Z.; Žárská, L.; Bajgar, R.; Bogdanová, K.; Kolář, M.; Panáček, A.; Binder, S.; Kolářová, H. The application of antimicrobial photodynamic inactivation on methicillin-resistant S. aureus and ESBL-producing K. pneumoniae using porphyrin photosensitizer in combination with silver nanoparticles. Photodiagn. Photodyn. Ther. 2021, 33, 102140. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Dadwal, R.; Nandanwar, H.; Soni, S. Limits of antibacterial activity of triangular silver nanoplates and photothermal enhancement thereof for Bacillus subtilis. J. Photochem. Photobiol. B Biol. 2023, 247, 112787. [Google Scholar] [CrossRef]
- Chen, H.; Yang, J.; Sun, L.; Zhang, H.; Guo, Y.; Qu, J.; Jiang, W.; Chen, W.; Ji, J.; Yang, Y.-W.; et al. Synergistic Chemotherapy and Photodynamic Therapy of Endophthalmitis Mediated by Zeolitic Imidazolate Framework-Based Drug Delivery Systems. Small 2019, 15, 1903880. [Google Scholar] [CrossRef]
- Belekov, E.; Kholikov, K.; Cooper, L.; Banga, S.; Er, A.O. Improved antimicrobial properties of methylene blue attached to silver nanoparticles. Photodiagn. Photodyn. Ther. 2020, 32, 102012. [Google Scholar] [CrossRef]
- Sun, P.; Ye, L.; Tan, X.; Peng, J.; Zhao, L.; Zhou, Y. Silver Nanoparticle-Assisted Photodynamic Therapy for Biofilm Eradication. ACS Appl. Nano Mater. 2022, 5, 8251–8259. [Google Scholar] [CrossRef]
- Yaqubi, A.K.; Astuti, S.D.; Zaidan, A.H.; Syahrom, A.; Nurdin, D.Z.I. Antibacterial effect of red laser-activated silver nanoparticles synthesized with grape seed extract against Staphylococcus aureus and Escherichia coli. Lasers Med. Sci. 2024, 39, 47. [Google Scholar] [CrossRef]
- Li, Y.; Fu, R.; Duan, Z.; Zhu, C.; Fan, D. Mussel-inspired adhesive bilayer hydrogels for bacteria-infected wound healing via NIR-enhanced nanozyme therapy. Colloids Surf. B Biointerfaces 2022, 210, 112230. [Google Scholar] [CrossRef]
- Hui, S.; Liu, Q.; Han, Y.; Zhang, L.; Yang, J.; Jiang, S.; Qian, H.; Yang, W. ICG@ZIF-8/PDA/Ag composites as chemo-photothermal antibacterial agents for efficient sterilization and enhanced wound disinfection. J. Mater. Chem. B 2021, 9, 9961–9970. [Google Scholar] [CrossRef]
- Zhu, H.; Cheng, X.; Zhang, J.; Wu, Q.; Liu, C.; Shi, J. Constructing a self-healing injectable SABA/Borax/PDA@AgNPs hydrogel for synergistic low-temperature photothermal antibacterial therapy. J. Mater. Chem. B 2023, 11, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Zhao, D.; Zhang, C.; Liu, K.; He, Y.; Guan, F.; Yao, M. Nanocomposite multifunctional hyaluronic acid hydrogel with photothermal antibacterial and antioxidant properties for infected wound healing. Int. J. Biol. Macromol. 2023, 226, 870–884. [Google Scholar] [CrossRef]
- Srikhao, N.; Theerakulpisut, S.; Chindaprasirt, P.; Okhawilai, M.; Narain, R.; Kasemsiri, P. Green synthesis of nano silver-embedded carboxymethyl starch waste/poly vinyl alcohol hydrogel with photothermal sterilization and pH-responsive behavior. Int. J. Biol. Macromol. 2023, 242, 125118. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Tong, A.; Zhong, X.; Yin, C.; Ahmad, B.; Wu, Z.; Yang, Y.; Tong, C. Near-infrared laser-assisted Ag@Chi-PB nanocompounds for synergistically eradicating multidrug-resistant bacteria and promoting diabetic abscess healing. Biomed. Pharmacother. 2024, 173, 116311. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, Y.; Yang, D.; Qiu, X.; Li, Z. Ultrasonic-assisted synthesis of lignin-based ultrasmall silver nanoparticles for photothermal-mediated sterilization. Int. J. Biol. Macromol. 2024, 262, 129827. [Google Scholar] [CrossRef]
- Wei, S.; Wang, Y.; Wang, M.; Su, S.; Hao, M.; Wang, Y. Fabrication of photothermal silver nanoparticles for accelerating MRSA-infected wound healing. New J. Chem. 2025, 49, 4647–4657. [Google Scholar] [CrossRef]
- Aldakheel, F.M.; Sayed, M.M.E.; Mohsen, D.; Fagir, M.H.; El Dein, D.K. Green Synthesis of Silver Nanoparticles Loaded Hydrogel for Wound Healing; Systematic Review. Gels 2023, 9, 530. [Google Scholar] [CrossRef]
- Singh, M.; Thakur, V.; Kumar, V.; Raj, M.; Gupta, S.; Devi, N.; Upadhyay, S.K.; Macho, M.; Banerjee, A.; Ewe, D.; et al. Silver Nanoparticles and Its Mechanistic Insight for Chronic Wound Healing: Review on Recent Progress. Molecules 2022, 27, 5587. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.R.; Tonani, L.; Marcato, P.D.; von Zeska Kress, M.R. Phenothiazinium Photosensitizers Associated with Silver Nanoparticles in Enhancement of Antimicrobial Photodynamic Therapy. Antibiotics 2021, 10, 569. [Google Scholar] [CrossRef]
- Raposo, B.L.; Souza, S.O.; Santana, G.S.; Lima, M.T.A.; Sarmento-Neto, J.F.; Reboucas, J.S.; Pereira, G.; Santos, B.S.; Cabral Filho, P.E.; Ribeiro, M.S.; et al. A Novel Strategy Based on Zn(II) Porphyrins and Silver Nanoparticles to Photoinactivate Candida albicans. Int. J. Nanomed. 2023, 18, 3007–3020. [Google Scholar] [CrossRef]
- Rodrigues, C.H.; Silva, B.P.; Silva, M.L.R.; Gouveia, D.C.; Fontes, A.; Macêdo, D.P.C.; Santos, B.S. Methylene blue@silver nanoprisms conjugates as a strategy against Candida albicans isolated from balanoposthitis using photodynamic inactivation. Photodiagn. Photodyn. Ther. 2024, 46, 104066. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, S.; Mani, E. Rapid Dissolution of Amyloid β Fibrils by Silver Nanoplates. Langmuir 2019, 35, 6962–6970. [Google Scholar] [CrossRef] [PubMed]
- Marghani, B.H.; Fehaid, A.; Ateya, A.I.; Ezz, M.A.; Saleh, R.M. Photothermal therapeutic potency of plasmonic silver nanoparticles for apoptosis and anti-angiogenesis in testosterone induced benign prostate hyperplasia in rats. Life Sci. 2022, 291, 120240. [Google Scholar] [CrossRef] [PubMed]
- Neri, G.; Corsaro, C.; Fazio, E. Plasmon-Enhanced Controlled Drug Release from Ag-PMA Capsules. Molecules 2020, 25, 2267. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, R.M.; Albuquerque, G.M.; Monte, J.P.; Pereira, G.A.L.; Pereira, G. Recent Advances in the Application of Silver Nanoparticles for Enhancing Phototherapy Outcomes. Pharmaceuticals 2025, 18, 970. https://doi.org/10.3390/ph18070970
Melo RM, Albuquerque GM, Monte JP, Pereira GAL, Pereira G. Recent Advances in the Application of Silver Nanoparticles for Enhancing Phototherapy Outcomes. Pharmaceuticals. 2025; 18(7):970. https://doi.org/10.3390/ph18070970
Chicago/Turabian StyleMelo, Rebeca M., Gabriela M. Albuquerque, Joalen P. Monte, Giovannia A. L. Pereira, and Goreti Pereira. 2025. "Recent Advances in the Application of Silver Nanoparticles for Enhancing Phototherapy Outcomes" Pharmaceuticals 18, no. 7: 970. https://doi.org/10.3390/ph18070970
APA StyleMelo, R. M., Albuquerque, G. M., Monte, J. P., Pereira, G. A. L., & Pereira, G. (2025). Recent Advances in the Application of Silver Nanoparticles for Enhancing Phototherapy Outcomes. Pharmaceuticals, 18(7), 970. https://doi.org/10.3390/ph18070970