Analysis of Scyllo-Inositol in a Wistar Rat Animal Model—A Preliminary Study
Abstract
1. Introduction
2. Results
2.1. Determination of SCI in Serum
2.2. Pharmacokinetics
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Analysis of Scyllo-Inositol in Rat Serum
4.3. Pharmacokinetic Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCI | Scyllo-inositol |
MI | Myo-inositol |
INS | Inositol |
PK | Pharmacokinetics |
References
- Carlomagno, G.; Unfer, V. Inositol safety: Clinical evidence. Eur. Rev. Med. Pharmacol. 2011, 15, 931–936. [Google Scholar]
- Antonowski, T.; Osowski, A.; Lahuta, L.; Górecki, R.; Rynkiewicz, A.; Wojtkiewicz, J. Health-promoting properties of selected cyclitols for metabolic syndrome and diabetes. Nutrients 2019, 11, 2314. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, M.; Fuso, A.; Dinicola, S.; Cucina, A.; Bevilacqua, A. Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opin. Drug Metab. Toxicol. 2016, 12, 1181–1196. [Google Scholar] [CrossRef] [PubMed]
- Keller, F.; Ludlow, M.M. Carbohydrate metabolism in drought-stressed leaves of pigeonpea (Cajanus cajan). J. Exp. Bot. 1993, 44, 1351–1359. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; Klerk, G.-J.D. The components of Plant Tissue Culture Media II: Organic additions, osmotic and pH effects, and support systems. Plant Propag. Tissue Cult. 2007, 1, 115–173. [Google Scholar]
- Loewus, F.A.; Murthy, P.P.N. Myo-inositol metabolism in plants. Plant Sci. 2000, 150, 1–19. [Google Scholar] [CrossRef]
- Skøt, L.; Egsgaard, H. Identification of ononitol and O-methyl-scyllo-inositol in pea root nodules. Planta 1984, 161, 32–36. [Google Scholar] [CrossRef]
- Turner, B.L.; Richardson, A.E. Identification of scyllo-inositol phosphates in soil by solution phosphorus-31 nuclear magnetic resonance spectroscopy. Soil Sci. Soc. Am. J. 2004, 68, 802–808. [Google Scholar] [CrossRef]
- Day, G.M.; van de Streek, J.; Bonnet, A.; Burley, J.C.; Jones, W.; Motherwell, W.D. Polymorphism of scyllo-inositol: Joining crystal structure prediction with experiment to elucidate the structures of two polymorphs. Cryst. Growth Des. 2006, 6, 2301–2307. [Google Scholar] [CrossRef]
- Chung, S.-K.; Kwon, Y.-U.; Chang, Y.-T.; Sohn, K.-H.; Shin, J.-H.; Park, K.-H.; Hong, B.-J.; Chung, I.-H. Synthesis of all possible regioisomers of scyllo-inositol phosphate. Bioorganic Med. Chem. 1999, 7, 2577–2589. [Google Scholar] [CrossRef]
- Thomas, M.P.; Mills, S.J.; Potter, B.V. The “other” Inositols and their phosphates: Synthesis, biology, and medicine (with recent advances in myo-inositol chemistry). Angew. Chem. Int. Ed. 2015, 55, 1614–1650. [Google Scholar] [CrossRef]
- Loewus, F.A.; Loewus, M.W. myo-inositol: Its biosynthesis and metabolism. Annu. Rev. Plant Physiol. 1983, 34, 137–161. [Google Scholar] [CrossRef]
- Bruton, J.; Horner, W.H.; Russ, G.A. Biosynthesis of streptomycin. J. Biol. Chem. 1967, 242, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Podeschwa, M.; Plettenburg, O.; vom Brocke, J.; Block, O.; Adelt, S.; Altenbach, H. Stereoselective synthesis of myo-, neo-, L-chiro, D-chiro-, allo-, scyllo-, and epi-inositol systems via conduritols prepared from p-benzoquinone. Eur. J. Org. Chem. 2003, 2003, 1958–1972. [Google Scholar] [CrossRef]
- Ramp, P.; Lehnert, A.; Matamouros, S.; Wirtz, A.; Baumgart, M.; Bott, M. Metabolic Engineering of Corynebacterium glutamicum for production of scyllo-inositol, a drug candidate against Alzheimer’s disease. Metab. Eng. 2021, 67, 173–185. [Google Scholar] [CrossRef]
- Yamaoka, M.; Osawa, S.; Morinaga, T.; Takenaka, S.; Yoshida, K. A cell factory of Bacillus subtilis engineered for the simple bioconversion of myo-inositol to scyllo-inositol, a potential therapeutic agent for Alzheimer’s disease. Microb. Cell Factories 2011, 10, 69. [Google Scholar] [CrossRef]
- Morinaga, T.; Ashida, H.; Yoshida, K. Identification of two scyllo-inositol dehydrogenases in Bacillus subtilis. Microbiology 2010, 156, 1538–1546. [Google Scholar] [CrossRef]
- Lai, A.Y.; Lan, C.P.; Hasan, S.; Brown, M.E.; McLaurin, J. Scyllo-inositol promotes robust mutant huntingtin protein degradation. J. Biol. Chem. 2014, 289, 3666–3676. [Google Scholar] [CrossRef]
- Salloway, S.; Sperling, R.; Keren, R.; Porsteinsson, A.P.; van Dyck, C.H.; Tariot, P.N.; Gilman, S.; Arnold, D.; Abushakra, S.; Hernandez, C.; et al. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 2011, 77, 1253–1262. [Google Scholar] [CrossRef]
- Nozadze, M.; Mikautadze, E.; Lepsveridze, E.; Mikeladze, E.; Kuchiashvili, N.; Kiguradze, T.; Kikvidze, M.; Solomonia, R. Anticonvulsant activities of myo-inositol and scyllo-inositol on pentylenetetrazol induced seizures. Seizure 2011, 20, 173–176. [Google Scholar] [CrossRef]
- Wiśniewski, K.; Antonowski, T.; Juranek, J.; Podlasz, P.; Wojtkiewicz, J. Antiepileptic properties of scyllo-inositol on pentylenetetrazol-induced seizures. Int. J. Mol. Sci. 2023, 24, 7598. [Google Scholar] [CrossRef]
- Rafii, M.S.; Skotko, B.G.; McDonough, M.E.; Pulsifer, M.; Evans, C.; Doran, E.; Muranevici, G.; Kesslak, P.; Abushakra, S.; Lott, I.T. A randomized, double-blind, placebo-controlled, phase II study of Oral ELND005 (scyllo-inositol) in young adults with down syndrome without dementia. J. Alzheimer’s Dis. 2017, 58, 401–411. [Google Scholar] [CrossRef]
- Facchinetti, F.; Bizzarri, M.; Benvenga, S.; D’Anna, R.; Lanzone, A.; Soulage, C.; Di Renzo, G.C.; Hod, M.; Cavalli, P.; Chiu, T.T.; et al. Results from the International Consensus Conference on myo-inositol and D-chiro-inositol in obstetrics and gynecology: The link between metabolic syndrome and PCOS. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 195, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Holub, B.J. Metabolism and function of myo-inositol and inositol phospholipids. Annu. Rev. Nutr. 1986, 6, 563–597. [Google Scholar] [CrossRef] [PubMed]
- Palmano, K.P.; Whiting, P.H.; Hawthorne, J.N. Free and lipid myo-inositol in tissues from rats with acute and less severe streptozotocin-induced diabetes. Biochem. J. 1977, 167, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, T.; Helms, G.; Merboldt, K.; Hänicke, W.; Bruhn, H.; Frahm, J. Identification of scyllo-inositol in proton NMR spectra of human brain in vivo. NMR Biomed. 1993, 6, 105–109. [Google Scholar] [CrossRef]
- Hager, K.; Hazama, A.; Kwon, H.M.; Loo, D.D.F.; Handler, J.S.; Wright, E.M. Kinetics and specificity of the renal Na+/myo-inositol cotransporter expressed in Xenopus oocytes. J. Membr. Biol. 1995, 143, 103–113. [Google Scholar] [CrossRef]
- Coady, M.J.; Wallendorff, B.; Gagnon, D.G.; Lapointe, J.-Y. Identification of a novel Na+/myo-inositol cotransporter. J. Biol. Chem. 2002, 277, 35219–35224. [Google Scholar] [CrossRef]
- Croze, M.L.; Soulage, C.O. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 2013, 95, 1811–1827. [Google Scholar] [CrossRef]
- Antonowski, T.; Osowski, A.; Szczesny, D.; Szablińska-Piernik, J.; Juśkiewicz, J.; Lahuta, L.; Rynkiewicz, A.; Wojtkiewicz, J. Pharmacokinetics of myo-inositol in a Wistar rat animal model. Int. J. Mol. Sci. 2022, 23, 11246. [Google Scholar] [CrossRef]
- Liang, E.; Garzone, P.; Cedarbaum, J.M.; Koller, M.; Tran, T.; Xu, V.; Ross, B.; Jhee, S.S.; Ereshefsky, L.; Pastrak, A.; et al. Pharmacokinetic profile of orally administered scyllo-inositol (ELND005) in plasma, cerebrospinal fluid and brain, and corresponding effect on amyloid-beta in healthy subjects. Clin. Pharmacol. Drug Dev. 2013, 2, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Chatree, S.; Thongmaen, N.; Tantivejkul, K.; Sitticharoon, C.; Vucenik, I. Role of inositols and inositol phosphates in energy metabolism. Molecules 2020, 25, 5079. [Google Scholar] [CrossRef]
- Fenili, D.; Brown, M.; Rappaport, R.; McLaurin, J. Properties of scyllo–inositol as a therapeutic treatment of ad-like pathology. J. Mol. Med. 2007, 85, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Selkoe, D.J. Systematic analysis of time-dependent neural effects of soluble amyloid β oligomers in culture and in vivo: Prevention by scyllo-Inositol. Neurobiol. Dis. 2015, 82, 152–163. [Google Scholar] [CrossRef] [PubMed]
- McLaurin, J.; Kierstead, M.E.; Brown, M.E.; Hawkes, C.A.; Lambermon, M.H.; Phinney, A.L.; Darabie, A.A.; Cousins, J.E.; French, J.E.; Lan, M.F.; et al. CYCLOHEXANEHEXOL inhibitors of AΒ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat. Med. 2006, 12, 801–808. [Google Scholar] [CrossRef]
- Ibrahim, T.; McLaurin, J. A-synuclein aggregation, seeding and inhibition by scyllo-Inositol. Biochem. Biophys. Res. Commun. 2016, 469, 529–534. [Google Scholar] [CrossRef]
- Available online: https://www.europeanreview.org/wp/wp-content/uploads/6.pdf (accessed on 27 April 2025).
- Hung, W.-L.; Chang, W.-S.; Lu, W.-C.; Wei, G.-J.; Wang, Y.; Ho, C.-T.; Hwang, L.S. Pharmacokinetics, bioavailability, tissue distribution and excretion of Tangeretin in rat. J. Food Drug Anal. 2018, 26, 849–857. [Google Scholar] [CrossRef]
- Nordberg, M.; Duffus, J.; Templeton, D.M. Glossary of terms used in Toxicokinetics (IUPAC recommendations 2003). Pure Appl. Chem. 2004, 76, 1033–1082. [Google Scholar] [CrossRef]
- Modlinska, K.; Pisula, W. The norway rat, from an obnoxious pest to a laboratory pet. eLife 2020, 9, e50651. [Google Scholar] [CrossRef]
- Directorate-General for Environment (European Commission). Report from the Commission to the European Parliament and the Council 2019 Report on the Statistics on the Use of Animals for Scientific Purposes in the Member States of the European Union in 2015–2017. Available online: https://op.europa.eu/en/publication-detail/-/publication/04a890d4-47ff-11ea-b81b-01aa75ed71a1 (accessed on 27 April 2025).
- Vengeliene, V.; Bilbao, A.; Spanagel, R. The alcohol deprivation effect model for studying relapse behavior: A comparison between rats and mice. Alcohol 2014, 48, 313–320. [Google Scholar] [CrossRef]
- Bergman, I.; Basse, P.H.; Barmada, M.A.; Griffin, J.A.; Cheung, N.-K.V. Comparison of in vitro antibody-targeted cytotoxicity using mouse, rat and human effectors. Cancer Immunol. Immunother. 2000, 49, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Obrosova, I.G.; Drel, V.R.; Kumagai, A.K.; Szábo, C.; Pacher, P.; Stevens, M.J. Early diabetes-induced biochemical changes in the retina: Comparison of rat and mouse models. Diabetologia 2006, 49, 2525–2533. [Google Scholar] [CrossRef]
- Huang, J.M.; Weng, W.Y.; Huang, X.B.; Ji, Y.H.; Chen, E. Pharmacokinetics of scutellarin and its aglycone conjugated metabolites in rats. Eur. J. Drug Metab. Pharmacokinet. 2005, 30, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Thomason, L.A.; McLaurin, J. scyllo-Inositol, preclinical, and clinical data for Alzheimer’s disease. Adv. Pharmacol. 2012, 64, 177–212. [Google Scholar] [CrossRef] [PubMed]
- Paolini, M.; Perini, M.; Allari, L.; Tonidandel, L.; Finato, F.; Guardini, K.; Larcher, R. Myo-Inositol, Scyllo-Inositol, and Other Minor Carbohydrates as Authenticity Markers for the Control of Italian Bulk, Concentrate, and Rectified Grape Must. Molecules 2023, 28, 3609. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef]
Time [h] | Concentration [mg/L] | Time [h] | Concentration [mg/L] | ||||
---|---|---|---|---|---|---|---|
Rat No. 1 | Rat No. 2 | Rat No. 3 | Rat No. 4 | Rat No. 5 | Rat No. 6 | ||
0 | BLQ | BLQ | BLQ | 2 | 3.2 | 3.8 | 5.4 |
0.25 | BLQ | BLQ | BLQ | 4 | 0.6 | 6.1 | 3.6 |
0.5 | 1 | 4.6 | 5.6 | 8 | 0.4 | 0.2 | 0.4 |
1 | 1.6 | 5.6 | 6.8 | 36 | BLQ | BLQ | BLQ |
1.5 | 7.2 | 6.2 | 4.4 | 48 | BLQ | BLQ | BLQ |
12 | BLQ | BLQ | BLQ | ||||
24 | BLQ | BLQ | BLQ |
Rat No | Cmax [mg/L] | Tmax [h] | AUClast [mg.hr/L] | Vd [L] | CL [L/h] | K [h−1] | T0.5e [h] | MRT [h] |
---|---|---|---|---|---|---|---|---|
1 | 7.2 | 1.5 | 40.78 | 0.039 | 0.1 | 2.521 | 0.2749 | 0.397 |
2 | 6.2 | 1.5 | 38.63 | 7.93 | 0.11 | 0.01387 | 49.97 | 72.09 |
3 | 6.8 | 1 | 29.7 | 4.578 | 0.126 | 0.0276 | 25.14 | 36.26 |
Mean 1–3 | 6.733 ± 0.291 (95%CI: 7.984–5.483) | 1.33 ± 0.167 (95%CI: 2.05–0.616) | 36.37 ± 3.392 (95%CI: 50.966–21.774) | 4.182 ± 2.287 (95%CI: 14.02–(−5.656)) | 0.112 ± 0.008 (95%CI: 0.145–0.079) | 0.854 ± 0.833 (95%CI: 4.44–(−2.732)) | 25.128 ± 14.346 (95%CI: 86.853–(−36.596)) | 36.249 ±20.696 (95%CI: 125.297–(−52.799)) |
4 | 3.2 | 2 | 11.4 | 0.358 | 0.325 | 0.9102 | 0.7615 | 1.099 |
5 | 6.1 | 4 | 25.3 | 0.9967 | 0.16 | 0.161 | 4.306 | 6.212 |
6 | 5.4 | 2 | 22.6 | 0.566 | 0.162 | 0.2861 | 2.422 | 3.495 |
Mean 4–6 | 4.9 ± 0.874 (95%CI: 8.659–1.141) | 2.667 ± 0.667 (95%CI: 5.535–(−0.202)) | 19.767 ± 4.255 (95%CI: 38.076–1.457) | 7.985 ± 7.310 (95%CI: 39.437–(−23.467)) | 0.216 ± 0.055 (95%CI: 0.451–(−0.02)) | 0.452 ± 0.232 (95%CI: 1.449–(−0.545)) | 2.497 ± 1.024 (95%CI: 6.902–(1.909)) | 3.602 ± 1.477 (95%CI: 9.957–(−2.753)) |
PK | Cmax [mg/L] | Tmax [h] | AUClast [mg.hr/L] | Vd [L] | CL [L/h] | K [h−1] | T0.5e [h] | MRT [h] |
---|---|---|---|---|---|---|---|---|
Scyllo-inositol 3.92 [mg] | 5.93 | 1.5 | 23.47 | 2.43 | 0.167 | 0.0689 | 10.07 | 14.52 |
Rat No. and Weight | Dose of Scyllo-Inositol per Rat |
---|---|
1. 410.0 g | 4.1 mg |
2. 424.8 g | 4.25 mg |
3. 374.7 g | 3.75 mg |
Average weight (1–3): 403.17 g | Average dose (1–3): 4.033 mg |
4. 371.1 g | 3.71 mg |
5. 405.7 g | 4.06 mg |
6. 366.2 g | 3.66 mg |
Average weight (4–6): 381 g | Average dose (4–6): 3.81 mg |
Average weight (1–6): 392.08 g | Average dose (1–6): 3.92 mg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewski, K.; Zglejc-Waszak, K.; Antonowski, T.; Szablinska-Piernik, J.; Juskiewicz, J.; Lahuta, L.; Jozwik, M.; Wojtkiewicz, J. Analysis of Scyllo-Inositol in a Wistar Rat Animal Model—A Preliminary Study. Pharmaceuticals 2025, 18, 954. https://doi.org/10.3390/ph18070954
Wiśniewski K, Zglejc-Waszak K, Antonowski T, Szablinska-Piernik J, Juskiewicz J, Lahuta L, Jozwik M, Wojtkiewicz J. Analysis of Scyllo-Inositol in a Wistar Rat Animal Model—A Preliminary Study. Pharmaceuticals. 2025; 18(7):954. https://doi.org/10.3390/ph18070954
Chicago/Turabian StyleWiśniewski, Karol, Kamila Zglejc-Waszak, Tomasz Antonowski, Joanna Szablinska-Piernik, Jerzy Juskiewicz, Lesław Lahuta, Marcin Jozwik, and Joanna Wojtkiewicz. 2025. "Analysis of Scyllo-Inositol in a Wistar Rat Animal Model—A Preliminary Study" Pharmaceuticals 18, no. 7: 954. https://doi.org/10.3390/ph18070954
APA StyleWiśniewski, K., Zglejc-Waszak, K., Antonowski, T., Szablinska-Piernik, J., Juskiewicz, J., Lahuta, L., Jozwik, M., & Wojtkiewicz, J. (2025). Analysis of Scyllo-Inositol in a Wistar Rat Animal Model—A Preliminary Study. Pharmaceuticals, 18(7), 954. https://doi.org/10.3390/ph18070954