Therapeutic Effects and Mechanisms of the Inhaled Traditional Chinese Medicine Compound ZHW on Allergic Rhinitis
Abstract
1. Introduction
2. Results
2.1. ZHW Compounds
2.2. Network Pharmacology Analysis of ZHW
2.2.1. Database Retrieval and Target Prediction
2.2.2. Construction of Component–Target Network
2.2.3. Protein–Protein Interaction Network Analysis
2.2.4. Pathway Enrichment Analysis
2.2.5. Gene Ontology (GO) Function Enrichment Analysis
2.3. Effects of ZHW on Body Weight and Behavior in OVA-Induced AR Mice
2.4. Effects of ZHW on Immune Function and Peripheral White Blood Cell Counts in OVA-Induced Mice
2.5. Effects of ZHW on Serum IFN-γ, IL-4, HIS, and OVA-sIgE Levels in OVA-Induced AR Mice
2.6. Effects of ZHW on IFN-γ and IL-4 Levels in Lung Tissue and NALF of OVA-Induced AR Mice
2.7. Effects of ZHW on Nasal Mucosa and Lung Tissue Pathological Changes in Mice
2.8. Summary of Protein Expression Profiles Across Different Groups
2.9. Biological Processes and Pathway Changes Between the OVA-Induced Group and the Control Group (B/A Group)
2.10. Biological Processes and Pathway Changes Between the ZHW-H Group and the OVA-Induced Group (E/B Group)
2.11. Reversal Analysis of Proteins Between the B/A and E/B Groups
2.12. Analysis of Molecular Docking Results
3. Discussion
4. Materials and Methods
4.1. Preparation of ZHW
4.2. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
4.3. Network Pharmacology Analysis
4.3.1. Target Prediction
4.3.2. Network Construction
4.3.3. Gene Ontology Function and KEGG Pathway Enrichment Analysis
4.4. Animal Experimental Methods
4.4.1. OVA-Induced Animal Model and Treatment Methods
4.4.2. Body Weight and Behavioral Tests
4.4.3. Peripheral White Blood Cell Count in Mice
4.4.4. Thymus and Spleen Indices of Mice
4.5. Enzyme-Linked Immunosorbent Assay (ELISA)
4.6. Histopathological Analysis
4.7. Quantitative Proteomics Analysis
4.7.1. Protein Extraction and Peptide Digestion
4.7.2. DDA Library Data Acquisition Preparation
4.7.3. DDA Database Construction Data Collection
4.7.4. DIA Quantitative Data Collection
4.8. Bioinformatics Analysis
4.9. Molecular Docking
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | Allergic Rhinitis |
OVA | Ovalbumin |
OVA-sIgE | Ovalbumin-specific Immunoglobulin E |
KM-Kunming | Kunming |
IL-4 | Interleukin-4 |
Th1 | T Helper 1 |
Th2 | T Helper 2 |
TLR4 | Toll-Like Receptor 4 |
MCs | Mast Cells |
EOSs | Eosinophils |
IFN-γ | Interferon-gamma |
TCM | Traditional Chinese Medicine |
Gran | Granulocytes (Neutrophils, Eosinophils, Basophils) |
Lymph | Lymphocytes |
Mon | Monocytes |
NALF | Nasal Lavage Fluid |
HIS | Histamine |
SDS | Sodium Dodecyl Sulfate |
DEPs | Differentially Expressed Proteins |
RPs | Reversed Proteins |
IgE | Immunoglobulin E |
IgM | Immunoglobulin M |
PI3K-Akt | Phosphoinositide 3-Kinase–Protein Kinase B |
Rac1 | Ras-related C3 Botulinum Toxin Substrate 1 |
MAPK1 | Mitogen-Activated Protein Kinase 1 |
SYK | Spleen Tyrosine Kinase |
FcεRI | High-affinity IgE Receptor (Fc Epsilon RI) |
References
- Zhang, Y.; Lan, F.; Zhang, L. Advances and highlights in allergic rhinitis. Allergy 2021, 76, 3383–3389. [Google Scholar] [CrossRef]
- Ma, T.; Wang, X.; Zhuang, Y.; Shi, H.; Ning, H.; Lan, T.; Zhang, T.; Kang, Z.; Qin, B.; Yang, B.; et al. Prevalence and risk factors for allergic rhinitis in adults and children living in different grassland regions of Inner Mongolia. Allergy 2020, 75, 234–239. [Google Scholar] [CrossRef]
- Zhang, Y.; Lan, F.; Zhang, L. Update on pathomechanisms and treatments in allergic rhinitis. Allergy 2022, 77, 3309–3319. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wang, C.; Zhang, L. Advances and novel developments in allergic rhinitis. Allergy 2020, 75, 3069–3076. [Google Scholar] [CrossRef]
- Fan, X.-H.; Cheng, L.; Yan, A.-H. Ameliorative effect of acetylshikonin on ovalbumin (OVA)-induced allergic rhinitis in mice through the inhibition of Th2 cytokine production and mast cell histamine release. APMIS 2019, 127, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.-Q.; Ma, F.; Wang, S.; Zhao, M.-Z.; Shao, J.-B.; Geng, X.-R.; Liu, J.-Q.; Mo, L.-H.; Guan, L.; Liu, Z.-G.; et al. Interleukin-5 induces apoptotic defects in CD4+ T cells of patients with allergic rhinitis. J. Leukoc. Biol. 2019, 105, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wang, C.; Zhang, L. Recent developments and highlights in allergic rhinitis. Allergy 2019, 74, 2320–2328. [Google Scholar] [CrossRef]
- Liu, F.; Bai, Y.; Wu, X.; Wan, Y.; Luo, S.; Zhang, L.; Li, T.; Tang, H.; Tang, X.; Chen, R.; et al. Network pharmacology combined with experimental validation reveals the mechanism of action of cangerzisan on allergic rhinitis. J. Ethnopharmacol. 2024, 335, 118611. [Google Scholar] [CrossRef]
- Liu, H.-L.; Chen, H.-F.; Liu, Q.-D.; Xu, W.-Z.; Zhang, J.-J.; He, X.-C.; Yan, Y.-J.; Ruan, Y.; Zhou, M. HDAC Downregulation of Xiaoqinglong Decoction in the Treatment of Allergic Rhinitis. Int. Arch. Allergy Immunol. 2023, 184, 376–390. [Google Scholar] [CrossRef]
- Chen, H.; Feng, W.; Lu, Y.; Yang, Y.; Xin, Z.-H.; Li, M.; Xin, L.; Gong, Y.-D. Effects and mechanism of Chinese medicine Jiawei Yupingfeng in a mouse model of allergic rhinitis. J. Integr. Med. 2021, 19, 354–361. [Google Scholar] [CrossRef]
- Lin, C. Observation of the Clinical Efficacy of Xanthium Nasal Drops in Treating Chronic Sinusitis. J. Sichuan Tradit. Chin. Med. 2014, 32, 170–172. Available online: https://kns.cnki.net/kcms2/article/abstract?v=UThtwiquHbfy7_5xVhxfjRRN2GuVaQfZgjUK7H6XxmuwXO_kZ9oMaBpwkCPMJsx7jGFEuytmW4V11t2ZcQoXAsJVqkUCgvyJ38OS8Qpiuzg_EDpaICmNdS6Or7NdnM2l-m_zZvvEjUalrd9ViKc0Bnr6yq9CJIusy18BcsaWXCQ25wBbabSPYytDYR1YoqCD&uniplatform=NZKPT (accessed on 15 May 2025).
- Wen, Z.; Liu, T.; Xu, X.; Acharya, N.; Shen, Z.; Lu, Y.; Xu, J.; Guo, K.; Shen, S.; Zhao, Y.; et al. Interleukin-16 enhances anti-tumor immune responses by establishing a Th1 cell-macrophage crosstalk through reprogramming glutamine metabolism in mice. Nat. Commun. 2025, 16, 2362. [Google Scholar] [CrossRef]
- Dang, B.; Gao, Q.; Zhang, L.; Zhang, J.; Cai, H.; Zhu, Y.; Zhong, Q.; Liu, J.; Niu, Y.; Mao, K.; et al. The glycolysis/HIF-1α axis defines the inflammatory role of IL-4-primed macrophages. Cell Rep. 2023, 42, 112471. [Google Scholar] [CrossRef] [PubMed]
- Berra-Romani, R.; Vargaz-Guadarrama, A.; Sánchez-Gómez, J.; Coyotl-Santiago, N.; Hernández-Arambide, E.; Avelino-Cruz, J.; García-Carrasco, M.; Savio, M.; Pellavio, G.; Laforenza, U.; et al. Histamine activates an intracellular Ca2+ signal in normal human lung fibroblast wi-38 cells. Front. Cell Dev. Biol. 2022, 10, 991659. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Su, Q.; Shi, Y. Molecular mechanism of IgE-mediated FcεRI activation. Nature 2025, 637, 453–460. [Google Scholar] [CrossRef]
- Li, P.; Tsang, M.S.-M.; Kan, L.L.-Y.; Hou, T.; Hon, S.S.-M.; Chan, B.C.-L.; Chu, I.M.-T.; Lam, C.W.-K.; Leung, P.-C.; Wong, C.-K. The Immuno-Modulatory Activities of Pentaherbs Formula on Ovalbumin-Induced Allergic Rhinitis Mice via the Activation of Th1 and Treg Cells and Inhibition of Th2 and Th17 Cells. Molecules 2022, 27, 239. [Google Scholar] [CrossRef]
- Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity. Int. J. Mol. Sci. 2020, 21, 1102. [Google Scholar] [CrossRef]
- Cooper, N.; Ghanima, W.; Hill, Q.; Nicolson, P.; Markovtsov, V.; Kessler, C. Recent advances in understanding spleen tyrosine kinase (SYK) in human biology and disease, with a focus on fostamatinib. Platelets 2023, 34, 2131751. [Google Scholar] [CrossRef]
- Juntilla, M.; Koretzky, G. Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunol. Letters 2008, 116, 104–110. [Google Scholar] [CrossRef]
- Wculek, S.; Heras-Murillo, I.; Mastrangelo, A.; Mañanes, D.; Galán, M.; Miguel, V.; Curtabbi, A.; Barbas, C.; Chandel, N.; Enríquez, J.; et al. Oxidative phosphorylation selectively orchestrates tissue macrophage homeostasis. Immunity 2023, 56, 516–530.e9. [Google Scholar] [CrossRef]
- Xu, W.; Berning, P.; Lenz, G. Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood 2021, 138, 1110–1119. [Google Scholar] [CrossRef]
- Kambayashi, T.; Koretzky, G. Proximal signaling events in Fc epsilon RI-mediated mast cell activation. J. Allergy Clin. Immunol. 2007, 119, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-Y.; Hur, G.; Lee, S.; Lee, S.-J.; Lee, S.; Kim, S.-H.; Rho, M.-C. AGK2 ameliorates mast cell-mediated allergic airway inflammation and fibrosis by inhibiting FcεRI/TGF-β signaling pathway. Pharmacol. Res. 2020, 159, 105027. [Google Scholar] [CrossRef]
- Borghardt, J.; Kloft, C.; Sharma, A. Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes. Can. Respir. J. 2018, 2018, 2732017. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Y.; Nie, X.; Chen, X.; Jin, Y.; Sun, L.; Yang, R.; Wang, J.; Xu, W.; Song, T.; et al. ENKD1 modulates innate immune responses through enhanced geranylgeranyl pyrophosphate synthase activity. Cell Rep. 2025, 44, 115397. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Kang, N.; Dong, L.; Ni, H.; Liu, S.; Chong, S.; Ji, Z.; Wan, Z.; Chen, X.; et al. Progressive polyadenylation and m6A modification of Ighg1 mRNA maintain IgG1 antibody homeostasis in antibody-secreting cells. Immunity 2024, 57, 2547–2564. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, G.; Ma, X.; Cheng, L. Immune Cell Alterations and PI3K-PKB Pathway Suppression in Patients with Allergic Rhinitis Undergoing Sublingual Immunotherapy. Adv. Ther. 2024, 41, 777–791. [Google Scholar] [CrossRef]
- Martinis, E.; Tonon, S.; Colamatteo, A.; Cava, A.; Matarese, G.; Pucillo, C. B cell immunometabolism in health and disease. Nat. Immunol. 2025, 26, 366–377. [Google Scholar] [CrossRef]
- Higa, Y.; Kashiwadani, H.; Sugimura, M.; Tomoyuki, K. Orexinergic descending inhibitory pathway mediates linalool odor-induced analgesia in mice. Sci. Rep. 2021, 11, 9224. [Google Scholar] [CrossRef]
- Peana, A.T.; D’Aquila, P.S.; Chessa, M.L.; Moretti, M.D.L.; Serra, G.; Pippia, P. (−)-Linalool produces antinociception in two experimental models of pain. Eur. J. Pharmacol. 2003, 460, 37–41. [Google Scholar] [CrossRef]
- Banjari, I.; Balkić, J.; Yashasvi Waisundara, V. Analgesic Potential of Monoterpenes from Citrus Essential Oils. In Pain Management-Practices, Novel Therapies and Bioactives; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Kuresepi, S.; Vileno, B.; Lepoittevin, J.-P.; Giménez-Arnau, E. Mechanistic Insights on Skin Sensitization to Linalool Hydroperoxides: EPR Evidence on Radical Intermediates Formation in Reconstructed Human Epidermis and 13C NMR Reactivity Studies with Thiol Residues. Chem. Res. Toxicol. 2020, 33, 1922–1932. [Google Scholar] [CrossRef] [PubMed]
- De Groot, A. Linalool Hydroperoxides. Dermatitis 2019, 30, 243–246. [Google Scholar] [CrossRef]
- Azizli, E.; Dilber, M. Do products containing menthol exacerbate allergic rhinitis? A narrative review. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, M.; Hayakawa, R.; Kato, Y.; Sugiura, K.; Hashimoto, R. Results of patch testing with lavender oil in Japan. Contact Dermat. 2000, 43, 157–160. [Google Scholar] [CrossRef]
- Farraj, A.K.; Harkema, J.R.; Kaminski, N.E. Allergic Rhinitis Induced by Intranasal Sensitization and Challenge with Trimellitic Anhydride but Not with Dinitrochlorobenzene or Oxazolone in A/J Mice. Toxicol. Sci. 2004, 79, 315–325. [Google Scholar] [CrossRef]
- Bui, T.; Kwon, D.-A.; Choi, D.; Jung, S.; Lee, S.-Y.; Piao, C.; Hyeon, E.; Fan, Y.; Yeon, S.; Son, R.-H.; et al. Rosae multiflorae fructus extract and its four active components alleviate ovalbumin-induced allergic inflammatory responses via regulation of Th1/Th2 imbalance in BALB/c rhinitis mice. Phytomedicine 2019, 55, 238–248. [Google Scholar] [CrossRef] [PubMed]
Number | Retention Time (s) | Compounds | Molecular Formula | CAS | Area Sum% |
---|---|---|---|---|---|
1 | 9.401 | Sabinene | C10H16 | 003387-41-5 | 0.55 |
2 | 10.855 | p-Cymene | C10H14 | 000099-87-6 | 0.44 |
3 | 11.061 | Eucalyptol | C10H18O | 000470-82-6 | 4.43 |
4 | 11.861 | gamma-Terpinene | C10H16 | 000099-85-4 | 0.25 |
5 | 13.281 | Linalool | C10H18O | 000078-70-6 | 17.69 |
6 | 13.504 | Maltol | C6H6O3 | 000118-71-8 | 0.4 |
7 | 14.691 | Isopulegol | C10H18O | 000089-79-2 | 1.18 |
8 | 14.975 | D-isomenthone | C10H18O | 001196-31-2 | 4.29 |
9 | 15.044 | Menthone | C10H18O | 000089-80-5 | 3.83 |
10 | 15.431 | l-Menthone | C10H18O | 014073-97-3 | 6.25 |
11 | 16.025 | Levomenthol | C10H20O | 002216-51-5 | 24.64 |
12 | 16.274 | Dl-menthol | C10H20O | 001490-04-6 | 0.47 |
13 | 16.721 | Dodecane | C12H26 | 000112-40-3 | 0.47 |
14 | 17.134 | Neoisomenthol | C10H20O | 000491-02-1 | 0.3 |
15 | 17.96 | Citronellol | C10H20O | 000106-22-9 | 1.42 |
16 | 18.038 | 5-Hydroxymethylfurfural | C6H6O3 | 000067-47-0 | 0.86 |
17 | 18.227 | n-Valeric acid cis-3-hexenyl ester | C11H20O2 | 035852-46-1 | 0.35 |
18 | 18.382 | Para-menth-4(8)-en-3-one | C10H16O | 015932-80-6 | 1.44 |
19 | 18.984 | Piperitone | C10H16O | 000089-81-6 | 1.26 |
20 | 19.053 | Geraniol | C10H18O | 000106-24-1 | 1.58 |
21 | 19.569 | Cinnamaldehyde | C9H8O | 000104-55-2 | 0.36 |
22 | 20.644 | Menthyl acetate | C12H22O2 | 000089-48-5 | 3.2 |
23 | 21.358 | 2-Methoxy-4-vinylphenol | C9H10O2 | 007786-61-0 | 0.3 |
24 | 21.47 | Decadienal | C10H16O | 025152-84-5 | 0.33 |
25 | 23.027 | cis-2,6-Dimethyl-2,6-octadiene | C10H18 | 002492-22-0 | 0.34 |
26 | 24.601 | γ-Elemene | C15H24 | 110823-68-2 | 0.38 |
27 | 25.693 | Caryophyllene | C15H24 | 000087-44-5 | 0.79 |
28 | 27.053 | (Z)-β-Ocimene | C10H16 | 003338-55-4 | 0.36 |
29 | 28.162 | Germacrene D | C15H24 | 023986-74-5 | 0.22 |
30 | 28.799 | α-Amorphene | C15H24 | 000483-75-0 | 0.31 |
31 | 29.461 | gamma-Muurolene | C15H24 | 030021-74-0 | 0.21 |
32 | 29.848 | δ-Cadinene | C15H24 | 000483-76-1 | 0.54 |
33 | 30.855 | Elemol | C15H26O | 000639-99-6 | 0.64 |
34 | 32.79 | Hexadecane | C16H34 | 000544-76-3 | 0.22 |
35 | 34.812 | alpha-Cadinol | C15H26O | 000481-34-5 | 0.3 |
36 | 39.981 | Octadecane | C18H38 | 000593-45-3 | 0.23 |
37 | 45.418 | n-Hexadecanoic acid | C16H32O2 | 000057-10-3 | 0.57 |
38 | 50.459 | Linoelaidic acid | C16H32O2 | 000506-21-8 | 0.87 |
39 | 50.579 | Linolic acid | C16H32O2 | 000060-33-3 | 0.57 |
Item | Parameter |
---|---|
Enzyme | Trypsin |
Miss Cleavages | 2 |
Variable Modifications | Oxidation (M), Acetyl (Protein N-term), Deamidated (N, Q) |
Fixed Modifications | Carbamidomethyl (C) |
Peptide Mass Tolerance | ± 10 ppm |
Fragment Mass Tolerance | ± 0.02 Da |
Peptide FDR | Less than 1% |
Protein Q Value | Less than 1% |
Items | Parameter Settings |
---|---|
Peptide length | 6–25 |
Sub-ion type | B, y |
Sub-ion m/z selection | >parent ion and last ion-3 |
Maximum number of daughter ions | 5 |
Maximum number of daughter ions | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Ma, X.; Du, Z.; Li, Y.; Mei, Z.; Zhao, L. Therapeutic Effects and Mechanisms of the Inhaled Traditional Chinese Medicine Compound ZHW on Allergic Rhinitis. Pharmaceuticals 2025, 18, 1059. https://doi.org/10.3390/ph18071059
Shen Y, Ma X, Du Z, Li Y, Mei Z, Zhao L. Therapeutic Effects and Mechanisms of the Inhaled Traditional Chinese Medicine Compound ZHW on Allergic Rhinitis. Pharmaceuticals. 2025; 18(7):1059. https://doi.org/10.3390/ph18071059
Chicago/Turabian StyleShen, Yujin, Xi Ma, Zhenzhen Du, Yang Li, Zhinan Mei, and Ling Zhao. 2025. "Therapeutic Effects and Mechanisms of the Inhaled Traditional Chinese Medicine Compound ZHW on Allergic Rhinitis" Pharmaceuticals 18, no. 7: 1059. https://doi.org/10.3390/ph18071059
APA StyleShen, Y., Ma, X., Du, Z., Li, Y., Mei, Z., & Zhao, L. (2025). Therapeutic Effects and Mechanisms of the Inhaled Traditional Chinese Medicine Compound ZHW on Allergic Rhinitis. Pharmaceuticals, 18(7), 1059. https://doi.org/10.3390/ph18071059