Immunomodulatory Effects of Cucurbita pepo L. Extract in Chronic Stress-Induced Dysregulation of Lymphoid Organs in Rats
Abstract
1. Introduction
2. Results
2.1. Behavioral Assessment
2.2. Biochemical Assessment
2.2.1. Serum Corticosterone Level
2.2.2. Gene Expression of GR and β2-AR in the Lymphoid Organs
2.2.3. Inflammatory Cytokines in Serum and the Lymphoid Organs
2.2.4. Assessment of the Levels of Oxidant/Antioxidants in the Serum and Studied Organs
2.3. Assessment of Splenic Parameters of the Studied Groups
2.4. Assessment of Thymic Parameters of the Studied Groups
2.5. Assessment of Cervical Lymph Node Parameters of the Studied Groups
3. Discussion
4. Materials and Methods
4.1. Preparation of Cucurbita pepo Extract
4.2. Study Protocol
4.3. CUMS-Induced Behavioral Changes
4.4. CUMS-Induced Biochemical Changes
4.5. Histopathological Assessment
4.6. Immunohistochemical Studies
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pariante, C.M.; Lightman, S.L. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci. 2008, 31, 464–468. [Google Scholar] [CrossRef]
- Bekhbat, M.; Neigh, G.N. Sex differences in the neuro-immune consequences of stress: Focus on depression and anxiety. Brain Behav. Immun. 2018, 67, 1–12. [Google Scholar] [CrossRef]
- Blume, J.; Douglas, S.D.; Evans, D.L. Immune suppression and immune activation in depression. Brain Behav. Immun. 2011, 25, 221–229. [Google Scholar] [CrossRef]
- Géa, L.P.; Colombo, R.; da Rosa, E.D.; Antqueviezc, B.; de Aguiar, É.Z.; Hizo, G.H.; Schmidt, G.B.; de Oliveira, L.F.; Stein, D.J.; Rosa, A.R. Anhedonic-like behavior correlates with IFNγ serum levels in a two-hit model of depression. Behav. Brain Res. 2019, 373, 112076. [Google Scholar] [CrossRef]
- Deng, Q.; Chen, H.; Liu, Y.; Xiao, F.; Guo, L.; Liu, D.; Cheng, X.; Zhao, M.; Wang, X.; Xie, S. Psychological stress promotes neutrophil infiltration in colon tissue through adrenergic signaling in DSS-induced colitis model. Brain Behav. Immun. 2016, 57, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Yang, Q.; Zhang, S.; Xu, C.; Roberts, A.I.; Wang, Y.; Shi, Y. Mesenchymal stem cells prevent restraint stress-induced lymphocyte depletion via interleukin-4. Brain Behav. Immun. 2014, 38, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Glaser, R.; Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol. 2005, 5, 243–251. [Google Scholar] [CrossRef]
- Moynihan, J.A. Mechanisms of stress-induced modulation of immunity. Brain Behav. Immun. 2003, 17, 11–16. [Google Scholar] [CrossRef]
- Sarjan, H.N.; Yajurvedi, H.N. Duration dependent effect of chronic stress on primary and secondary lymphoid organs and their reversibility in rats. Immunobiology 2019, 224, 133–141. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, W.; Li, Z.-Z.; Zhang, C.; Huang, C.; Yang, J.; Kong, G.-Y.; Li, Z.-F. Repetitive restraint stress changes spleen immune cell subsets through glucocorticoid receptor or β-adrenergic receptor in a stage dependent manner. Biochem. Biophys. Res. Commun. 2018, 495, 1108–1114. [Google Scholar] [CrossRef]
- Ganesan, B.; Anandan, R.; Lakshmanan, P.T. Studies on the protective effects of betaine against oxidative damage during experimentally induced restraint stress in Wistar albino rats. Cell Stress Chaperones 2011, 16, 641–652. [Google Scholar] [CrossRef]
- León-Olea, M.; Martyniuk, C.J.; Orlando, E.F.; Ottinger, M.A.; Rosenfeld, C.S.; Wolstenholme, J.T.; Trudeau, V.L. Current concepts in neuroendocrine disruption. Gen. Comp. Endocrinol. 2014, 203, 158–173. [Google Scholar] [CrossRef] [PubMed]
- LaChance, L.R.; Ramsey, D. Antidepressant foods: An evidence-based nutrient profiling system for depression. World J. Psychiatry 2018, 8, 97. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, N.N.; Vyas, J.V.; Paithankar, V.V.; Wankhade, A.M. A review on medicinal herbs with potential anti-depressant activities. Res. J. Pharmacogn. Phytochem. 2023, 15, 230–234. [Google Scholar] [CrossRef]
- Hussain, A.; Kausar, T.; Sehar, S.; Sarwar, A.; Quddoos, M.Y.; Aslam, J.; Liaqat, A.; Siddique, T.; An, Q.U.; Kauser, S.; et al. A review on biochemical constituents of pumpkin and their role as pharma foods; a key strategy to improve health in post COVID 19 period. Food Prod. Process. Nutr. 2023, 5, 22. [Google Scholar] [CrossRef]
- Hu, B.; Yang, X.-R.; Xu, Y.; Sun, Y.-F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.-M.; Qiu, S.-J.; Zhou, J. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- Zhang, H.; Caudle, Y.; Wheeler, C.; Zhou, Y.; Stuart, C.; Yao, B.; Yin, D. TGF-β1/Smad2/3/Foxp3 signaling is required for chronic stress-induced immune suppression. J. Neuroimmunol. 2018, 314, 30–41. [Google Scholar] [CrossRef]
- George, S.; Nazni, P. Antidepressive activity of processed pumpkin (Cucurbita maxima) seeds on rats. Int. J. Pharma Med. Biol. Sci. 2012, 1, 225–231. [Google Scholar]
- Tripathy, C.S.; Tripathy, S.; Gupta, B.; Kar, S.K. Stress, coping, and immunologic relevance: An empirical literature review. J. Med. Sci. 2019, 39, 107–113. [Google Scholar]
- Heming, N.; Sivanandamoorthy, S.; Meng, P.; Bounab, R.; Annane, D. Immune effects of corticosteroids in sepsis. Front. Immunol. 2018, 9, 404521. [Google Scholar] [CrossRef]
- Hernandez, M.E.; Martinez-Mota, L.; Salinas, C.; Marquez-Velasco, R.; Hernandez-Chan, N.G.; Morales-Montor, J.; Pérez-Tapia, M.; Streber, M.L.; Granados-Camacho, I.; Becerril, E. Chronic stress induces structural alterations in splenic lymphoid tissue that are associated with changes in corticosterone levels in Wistar-Kyoto rats. BioMed Res. Int. 2013, 2013, 868742. [Google Scholar] [CrossRef]
- Gavrilović, L.; Stojiljković, V.; Popović, N.; Pejić, S.; Todorović, A.; Pavlović, I.; Pajović, S.B. Animal models for chronic stress-induced oxidative stress in the spleen: The role of exercise and catecholaminergic system. Exp. Anim. Models Hum. Dis. Eff. Ther. Strategy 2018, 1, 282–310. [Google Scholar]
- Chong, S.J.F.; Low, I.C.C.; Pervaiz, S. Mitochondrial ROS and involvement of Bcl-2 as a mitochondrial ROS regulator. Mitochondrion 2014, 19, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Alamo, I.G.; Kannan, K.B.; Loftus, T.J.; Ramos, H.; Efron, P.A.; Mohr, A.M. Severe trauma and chronic stress activates extramedullary erythropoiesis. J. Trauma Acute Care Surg. 2017, 83, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Szczepanek, S.M.; McNamara, J.T.; Secor Jr, E.R.; Natarajan, P.; Guernsey, L.A.; Miller, L.A.; Ballesteros, E.; Jellison, E.; Thrall, R.S.; Andemariam, B. Splenic morphological changes are accompanied by altered baseline immunity in a mouse model of sickle-cell disease. Am. J. Pathol. 2012, 181, 1725–1734. [Google Scholar] [CrossRef]
- Wang, C.C.; Du, L.; Shi, H.H.; Ding, L.; Yanagita, T.; Xue, C.H.; Wang, Y.M.; Zhang, T.T. Dietary EPA-Enriched Phospholipids Alleviate Chronic Stress and LPS-Induced Depression-and Anxiety-Like Behavior by Regulating Immunity and Neuroinflammation. Mol. Nutr. Food Res. 2021, 65, 2100009. [Google Scholar] [CrossRef]
- Pathak, N.; Khandelwal, S. Immunomodulatory role of piperine in cadmium induced thymic atrophy and splenomegaly in mice. Environ. Toxicol. Pharmacol. 2009, 28, 52–60. [Google Scholar] [CrossRef]
- Jabbarzare, M.; Chin, V.K.; Talib, H.; Yam, M.F.; Adam, S.K.; Hassan, H.; Majid, R.A.; Taib, C.N.M.; Moklas, M.A.M.; Hidayat, M.T. Interleukin-18 antagonism improved histopathological conditions of malaria infection in mice. Iran. J. Parasitol. 2015, 10, 389. [Google Scholar]
- Li, Y.-F.; He, R.-R.; Tsoi, B.; Li, X.-D.; Li, W.-X.; Abe, K.; Kurihara, H. Anti-stress effects of carnosine on restraint-evoked immunocompromise in mice through spleen lymphocyte number maintenance. PLoS ONE 2012, 7, e33190. [Google Scholar] [CrossRef]
- Gurfein, B.T.; Hasdemir, B.; Milush, J.M.; Touma, C.; Palme, R.; Nixon, D.F.; Darcel, N.; Hecht, F.M.; Bhargava, A. Enriched environment and stress exposure influence splenic B lymphocyte composition. PLoS ONE 2017, 12, e0180771. [Google Scholar] [CrossRef]
- Yongmei, Y.; Jie, Q.; Yaping, D.; Fanwei, Z.; Hao, P.; Jun, W. The CD4+/CD8+ ratio in pulmonary tuberculosis: Systematic and meta-analysis article. Iran. J. Public Health 2015, 44, 185. [Google Scholar]
- Kalathookunnel Antony, A.; Lian, Z.; Wu, H. T cells in adipose tissue in aging. Front. Immunol. 2018, 9, 415885. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.E.; Bredin, S.S. Health benefits of physical activity: A systematic review of current systematic reviews. Curr. Opin. Cardiol. 2017, 32, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.-J.; Wang, H.-Y.; Yang, C.; Zhou, J.-Y.; Jiang, J.-X. Low concentrations of corticosterone exert stimulatory effects on macrophage function in a manner dependent on glucocorticoid receptors. Int. J. Endocrinol. 2013, 2013, 405127. [Google Scholar] [CrossRef]
- Liu, D.; Yang, S.; Yu, S. Interactions Between Ferroptosis and Oxidative Stress in Ischemic Stroke. Antioxidants 2024, 13, 1329. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, J.j.; Yang, C.; Shang, S.; Lv, X.x.; Cui, B.; Hua, F. Crosstalk between ferroptosis and stress—Implications in cancer therapeutic responses. Cancer Innov. 2022, 1, 92–113. [Google Scholar] [CrossRef]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef]
- Li, H.; Chen, L.; Zhang, Y.; LeSage, G.; Zhang, Y.; Wu, Y.; Hanley, G.; Sun, S.; Yin, D. Chronic stress promotes lymphocyte reduction through TLR2 mediated PI3K signaling in a β-arrestin 2 dependent manner. J. Neuroimmunol. 2011, 233, 73–79. [Google Scholar] [CrossRef]
- Kim, N.-R.; Kim, H.-Y.; Kim, M.-H.; Kim, H.-M.; Jeong, H.-J. Improvement of depressive behavior by Sweetme Sweet Pumpkin™ and its active compound, β-carotene. Life Sci. 2016, 147, 39–45. [Google Scholar] [CrossRef]
- Chen, L.; Long, R.; Huang, G.; Huang, H. Extraction and antioxidant activities in vivo of pumpkin polysaccharide. Ind. Crops Prod. 2020, 146, 112199. [Google Scholar] [CrossRef]
- Bao, W.-D.; Pang, P.; Zhou, X.-T.; Hu, F.; Xiong, W.; Chen, K.; Wang, J.; Wang, F.; Xie, D.; Hu, Y.-Z. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ. 2021, 28, 1548–1562. [Google Scholar] [CrossRef] [PubMed]
- Caili, F.; Huan, S.; Quanhong, L. A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods Hum. Nutr. 2006, 61, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhao, J.; Wei, Y.; Yu, G.; Li, Q. Characterization of a neutral polysaccharide from pumpkin (Cucurbita moschata Duch) with potential immunomodulatory activity. Int. J. Biol. Macromol. 2021, 188, 729–739. [Google Scholar] [CrossRef]
- Abosrea, A.M.; Aboul Ezz, H.S.; Mahmoud, S.M.; Mousa, M.R.; Ahmed, N.A. The potential role of pumpkin seeds oil on methotrexate-induced lung toxicity. Sci. Rep. 2023, 13, 7321. [Google Scholar] [CrossRef] [PubMed]
- Ayuob, N.; Hawuit, E.; Mohammedsaleh, Z.M.; Shaalan, D.; Hawasah, M.M.H.; Basheikh, K.A.A.; Shaker, S.A.L. Cucurbita pepo modulates contact dermatitis in depressed rats through downregulation of proinflammatory cytokines and upregulation of antioxidant status. Postep. Dermatol. I Alergol. 2022, 39, 286–297. [Google Scholar] [CrossRef]
- Huwait, E.A. Efficacy of sweet pumpkin in relieving contact dermatitis in chronically stressed rats. J. Microsc. Ultrastruct. 2020, 8, 55. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Huang, W.-C.; Liu, C.-C.; Wang, M.-F.; Ho, C.-S.; Huang, W.-P.; Hou, C.-C.; Chuang, H.-L.; Huang, C.-C. Pumpkin (Cucurbita moschata) fruit extract improves physical fatigue and exercise performance in mice. Molecules 2012, 17, 11864–11876. [Google Scholar] [CrossRef]
- Ayuob, N.; Shaker, S.A.L. Cucurbita pepo Alleviates Chronic Unpredictable Mild Stress via Modulation of Apoptosis, Neurogenesis, and Gliosis in Rat Hippocampus. Oxidative Med. Cell. Longev. 2021, 2021, 6662649. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Li, Y.; Li, S.; Xue, J.; Ma, S. Emodin opposes chronic unpredictable mild stress induced depressive-like behavior in mice by upregulating the levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor. Fitoterapia 2014, 98, 1–10. [Google Scholar] [CrossRef]
- Ali, S.; Abd El Wahab, M.; Ayuob, N.; Suliaman, M. The antidepressant-like effect of Ocimum basilicum in an animal model of depression. Biotech. Histochem. 2017, 92, 390–401. [Google Scholar] [CrossRef]
- Ayuob, N.N.; Abdel-Tawab, H.S.; El-Mansy, A.A.; Ali, S.S. The protective role of musk on salivary glands of mice exposed to chronic unpredictable mild stress. J. Oral Sci. 2019, 61, 95–102. [Google Scholar] [CrossRef]
- Gamal, M.; Moawad, J.; Rashed, L.; Morcos, M.A.; Sharawy, N. Possible involvement of tetrahydrobiopterin in the disturbance of redox homeostasis in sepsis–Induced brain dysfunction. Brain Res. 2018, 1685, 19–28. [Google Scholar] [CrossRef]
- Packer, L. Superoxide Dismutase; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Bunker, S.K.; Dandapat, J.; Sahoo, S.K.; Roy, A.; Chainy, G.B. Neonatal Persistent Exposure to 6-Propyl-2-thiouracil, a Thyroid-Disrupting Chemical, Differentially Modulates Expression of Hepatic Catalase and C/EBP-β in Adult Rats. J. Biochem. Mol. Toxicol. 2016, 30, 80–90. [Google Scholar] [CrossRef]
- Makhlouf, N.A.; El-Beshbishy, R.A.; Abousetta, A. Ginkgo modulates noise-induced hippocampal damage in male albino rats: A light and electron microscopic study. Egypt. J. Histol. 2014, 37, 159–174. [Google Scholar] [CrossRef]
CON (Mean ± SD) | CON + CP | CUMS | FLU-Treated | CP-Treated | |
---|---|---|---|---|---|
Serum | |||||
SOD (u/mL) | 18.91 ± 2.92 | 19.27 ± 3.68 p = 0.344 | 9.9 ± 2.1 p < 0.001 | 14.74 ± 3.7 P1 = 0.03 | 15.67 ± 3.8 P1 = 0.004 P2 = 0.51 |
GPX (u/mL) | 58.60 ± 7.76 | 60.67 ± 13.23 p = 0.56 | 37.5 ± 4.9 P1 < 0.001 | 50.39 ± 10.6 P1 = 0.03 | 51.92 ± 6.15 P1 = 0.01 P2 = 0.61 |
CAT (u/mL) | 0.41 ± 0.09 | 0.44 ± 0.07 p = 0.31 | 0.24 ± 0.06 P1 < 0.001 | 0.36 ± 0.10 P1 = 0.01 | 0.39 ± 0.08 P1 = 0.002 P2 = 0.81 |
MDA (nmol/mL) | 1.35 ± 0.14 | 1.37 ± 0.25 p = 0.15 | 2.23 ±0.71 P1 < 0.001 | 1.59 ± 0.37 P1 = 0.001 | 1.51 ±0.18 P1 = 0.001 P2 = 0.86 |
CON (Mean ± SD) | CON + CP | CUMS | FLU-Treated | CP-Treated | |
---|---|---|---|---|---|
Spleen | |||||
SOD (u/mg protein) | 4.45 ± 0.72 | 4.59 ± 1.10 p = 0.26 | 1.84 ± 0.61 p < 0.001 | 3.09 ± 0.82 P1 = 0.03 | 4.42 ± 1.03 P1 < 0.001 P2 = 0.02 |
GPX (nmol/mg protein) | 58.93 ± 5.13 | 57.41 ± 7.29 p = 0.78 | 35.71 ± 12.51 p < 0.001 | 49.37 ± 9.26 P1 = 0.02 | 52.76 ± 9.21 P1 = 0.001 P2 = 0.23 |
CAT (u/mg protein) | 123.17 ± 10.31 | 121.33 ± 12.81 p = 0.83 | 83.87 ± 13.23 p < 0.001 | 101.13 ± 13.73 P1 = 0.03 | 115.14 ± 10.66 P1 < 0.001 P2 = 0.14 |
MDA (u/mg protein) | 11.46 ± 0.98 | 12.28 ± 1.43 p = 0.81 | 20.24 ± 3.18 p < 0.001 | 16.19 ± 1.4 P1 < 0.001 | 12.82 ± 3.08 P1 = 0.003 P2 = 0.02 |
Thymus | |||||
SOD (u/mg protein) | 4.61 ± 1.38 | 4.39 ± 1.41 p = 0.55 | 1.31 ± 0.57 p < 0.001 | 3.11 ± 1.01 P1 = 0.02 | 4.55 ± 1.39 P1 = 0.001 P2 = 0.10 |
GPX (nmol/mg protein) | 63.32 ± 10.34 | 62.71 ± 9.50 p = 0.13 | 37.82 ± 11.88 p < 0.001 | 52.26 ± 7.57 P1 = 0.04 | 59.76 ± 12.31 P1 < 0.001 P2 = 0.43 |
CAT (u/mg protein) | 117.78 ± 10.50 | 113.28 ± 12.01 p = 0.83 | 83.87 ± 15.09 p < 0.001 | 108.33 ± 13.26 P1 < 0.001 | 105.44 ± 8.02 P1 = 0.002 P2 = 0.91 |
MDA (u/mg protein) | 13.69 ± 2.68 | 12.75 ± 2.32 p = 0.56 | 24.49 ± 4.12 p < 0.001 | 19.11 ± 2.48 P1 = 0.004 | 14.68 ± 3.53 P1 < 0.001 P2 = 0.03 |
Lymph node | |||||
SOD (u/mg protein) | 4.11 ± 0.68 | 4.49 ± 0.85 p = 0.65 | 1.90 ± 0.70 p < 0.001 | 3.22 ± 0.67 P1 = 0.004 | 3.98 ± 0.94 P1 < 0.001 P2 = 0.34 |
GPX (nmol/mg protein) | 60.96 ± 7.87 | 56.52 ± 5.31 p = 0.32 | 34.21 ± 12.21 p < 0.001 | 50.16 ± 8.80 P1 = 0.002 | 51.35 ± 8.83 P1 = 0.001 P2 = 0.43 |
CAT (u/mg protein) | 119.07 ± 8.30 | 117.23 ± 9.50 p = 0.62 | 83.37 ± 13.63 p < 0.001 | 98.02 ± 12.16 P1 = 0.04 | 113.4 ± 10.79 P1 < 0.001 P2 = 0.03 |
MDA (u/mg protein) | 13.50 ± 2.35 | 12.01 ± 1.51 p = 0.91 | 22.99 ± 5.20 p < 0.001 | 17.89 ± 2.44 P1 = 0.001 | 12.76 ± 2.89 P1 < 0.001 P2 = 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qahl, S.H.; Almohaimeed, H.M.; Algaidi, S.A.; Batawi, A.H.; Mohammedsaleh, Z.M.; Abd-Elhamid, T.H.; Almohammadi, N.H.; Ayuob, N.N.; Mahmoud, A.R. Immunomodulatory Effects of Cucurbita pepo L. Extract in Chronic Stress-Induced Dysregulation of Lymphoid Organs in Rats. Pharmaceuticals 2025, 18, 1046. https://doi.org/10.3390/ph18071046
Qahl SH, Almohaimeed HM, Algaidi SA, Batawi AH, Mohammedsaleh ZM, Abd-Elhamid TH, Almohammadi NH, Ayuob NN, Mahmoud AR. Immunomodulatory Effects of Cucurbita pepo L. Extract in Chronic Stress-Induced Dysregulation of Lymphoid Organs in Rats. Pharmaceuticals. 2025; 18(7):1046. https://doi.org/10.3390/ph18071046
Chicago/Turabian StyleQahl, Safa H., Hailah M. Almohaimeed, Sami A. Algaidi, Ashwaq H. Batawi, Zuhair M. Mohammedsaleh, Tarek Hamdy Abd-Elhamid, Nawal H. Almohammadi, Nasra N. Ayuob, and Amany Refaat Mahmoud. 2025. "Immunomodulatory Effects of Cucurbita pepo L. Extract in Chronic Stress-Induced Dysregulation of Lymphoid Organs in Rats" Pharmaceuticals 18, no. 7: 1046. https://doi.org/10.3390/ph18071046
APA StyleQahl, S. H., Almohaimeed, H. M., Algaidi, S. A., Batawi, A. H., Mohammedsaleh, Z. M., Abd-Elhamid, T. H., Almohammadi, N. H., Ayuob, N. N., & Mahmoud, A. R. (2025). Immunomodulatory Effects of Cucurbita pepo L. Extract in Chronic Stress-Induced Dysregulation of Lymphoid Organs in Rats. Pharmaceuticals, 18(7), 1046. https://doi.org/10.3390/ph18071046