Targeted Biologic Therapies in Severe Asthma: Mechanisms, Biomarkers, and Clinical Applications
Abstract
1. Introduction
2. Asthma
2.1. Pro-Inflammatory and Anti-Inflammatory Aspects of Asthma
2.2. Allergies and Asthma
2.3. Cytokines in Asthma
2.4. Exacerbations in Asthma
3. Targeted Immune Modulation in Severe Asthma
3.1. Conventional Biomarkers in Clinical Practice
3.1.1. Eosinophils
3.1.2. Neutrophils
3.1.3. Total IgE
3.1.4. Fractional Exhaled Nitric Oxide (FeNO)
3.1.5. Leukotrienes
3.2. Exacerbation with Biologics
3.3. Anti-IgE: Omalizumab
3.3.1. Mechanism of Action and Efficacy
3.3.2. Indications, Administration, and Safety
3.4. Anti-Interleukin-5 Monoclonal Antibodies
3.4.1. Mepolizumab
Study/Trial Name | Study Type | Key Findings | Reference |
---|---|---|---|
General IL-5 Research | Mechanistic/Preclinical | IL-5 is critical for eosinophil activation, recruitment, and survival. | [123] |
DREAM Study (Phase 2) | Randomized Controlled Trial | Identified elevated eosinophils and prior exacerbations as predictors for better response to Mepolizumab. | [124] |
SIRIUS Trial (Phase 3) | Randomized Controlled Trial | Showed reduction in oral corticosteroid (OCS) use with Mepolizumab therapy. | [125] |
MUSCA Study (Phase 3) | Randomized Controlled Trial | Demonstrated improved quality of life and safety profile comparable to placebo. | [126] |
MENSA Trial (Phase 3) | Randomized Controlled Trial | Reported a 53% reduction in asthma exacerbations with Mepolizumab vs. placebo in patients on high-dose ICS + LABA. | [124] |
Clinical Use Overview | Real-world/Approved Indication | Approved for patients ≥ 6 years old with eosinophils ≥ 150 cells/μL; administered as 100 mg SC every 4 weeks. | [124,125,126,127] |
Comparative Use Study | Observational/Clinical Practice | Recommended for patients with poor response to Omalizumab; effective in both allergic and non-allergic asthma. | [128,129] |
Off-label Application | Regulatory/Clinical Summary | Currently the only approved anti-IL-5 agent for eosinophilic granuloma and vasculitis. | [130] |
3.4.2. Reslizumab
3.4.3. Benralizumab
Study/Trial Name | Study Type | Key Findings | Reference |
---|---|---|---|
General Efficacy Overview | Clinical Recommendation | Approved for patients aged ≥ 12 with eosinophils > 300 cells/μL unresponsive to GINA Step 4–5 therapies. | [140] |
SIROCCO Trial (Phase 3) | RCT, Placebo-Controlled (n = 1204) | Achieved 51% reduction in annual asthma exacerbations and improved FEV1 in patients with high eosinophil counts. | [141] |
CALIMA Trial (Phase 3) | RCT | Showed reduced exacerbations and enhanced lung function after 56 weeks of treatment. | [142] |
3.5. Dupilumab
3.6. Tezepelumab
4. Perspectives
4.1. Depemokimab-Anti-IL5
4.2. Itepekimab
4.3. CM310-Stapokibart
4.4. Tralokinumab
4.5. Lebrikizumab
5. Real-World Evidence for Biologic Therapies in Severe Asthma
6. Methodology
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collaborators GBDS. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Meghji, J.; Mortimer, K.; Agusti, A.; Allwood, B.W.; Asher, I.; Bateman, E.D.; Bissell, K.; Bolton, C.E.; Bush, A.; Celli, B.; et al. Improving lung health in low-income and middle-income countries: From challenges to solutions. Lancet 2021, 397, 928–940. [Google Scholar] [CrossRef]
- Venkatesan, P. 2023 Gina report for asthma. Lancet Respir. Med. 2023, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Wills-Karp, M.; Luyimbazi, J.; Xu, X.; Schofield, B.; Neben, T.Y.; Karp, C.L.; Donaldson, D.D. Interleukin-13: Central mediator of allergic asthma. Science 1998, 282, 2258–2261. [Google Scholar] [CrossRef] [PubMed]
- GrünIg, G.; Warnock, M.; Wakil, A.E.; Venkayya, R.; Brombacher, F.; Rennick, D.M.; Sheppard, D.; Mohrs, M.; Donaldson, D.D.; Locksley, R.M.; et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 1998, 282, 2261–2263. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, B.N.; Hammad, H.; Fahy, J.V. The cytokines of asthma. Immunity 2019, 50, 975–991. [Google Scholar] [CrossRef]
- Ohki, Y.; Tokuyama, K.; Mayuzumi, H.; Sato, A.; Koyama, H.; Takizawa, T.; Arakawa, H.; Mochizuki, H.; Morikawa, A. Characteristic features of allergic airway inflammation in a murine model of infantile asthma. Int. Arch. Allergy Immunol. 2005, 138, 51–58. [Google Scholar] [CrossRef]
- Fahy, J.V. Type 2 inflammation in asthma–present in most, absent in many. Nat. Rev. Immunol. 2015, 15, 57–65. [Google Scholar] [CrossRef]
- Sze, E.; Bhalla, A.; Nair, P. Mechanisms and therapeutic strategies for non-T2 asthma. Allergy 2020, 75, 311–325. [Google Scholar] [CrossRef]
- Bikov, A.; Ŏguzülgen, I.K.; Baiardini, I.; Contoli, M.; Emelyanov, A.; Fassio, O.; Ivancevich, J.C.; Kaidashev, I.; Kowal, K.; Labor, M.; et al. Beliefs and Preferences Regarding Biological Treatments for Severe Asthma. World Allergy Organ. J. 2020, 13, 100441. [Google Scholar] [CrossRef]
- Olin, J.T.; Wechsler, M.E. Asthma: Pathogenesis and Novel Drugs for Treatment. BMJ 2014, 349, g5517. [Google Scholar] [CrossRef] [PubMed]
- Bender, B.; Oppenheimer, J.; George, M.; Brown, R.; Patel, A.; Hill, T.; Boe, A.; Herrera, E.M.; Dotiwala, Z.; Casciano, J.; et al. Assessment of Real-World Escalation to Biologics in US Patients with Asthma. J. Allergy Clin. Immunol. Pract. 2022, 10, 2941–2948. [Google Scholar] [CrossRef]
- Ogulur, I.; Pat, Y.; Ardicli, O.; Barletta, E.; Cevhertas, L.; Fernandez-Santamaria, R.; Huang, M.; Bel Imam, M.; Koch, J.; Ma, S.; et al. Advances and highlights in biomarkers of allergic diseases. Allergy 2021, 76, 3659–3686. [Google Scholar] [CrossRef] [PubMed]
- Mavissakalian, M.; Brady, S. The Current State of Biologic Therapies for Treatment of Refractory Asthma. Clin. Rev. Allergy Immunol. 2020, 59, 195–207. [Google Scholar] [CrossRef]
- Whittington, M.D.; McQueen, R.B.; Ollendorf, D.A.; Tice, J.A.; Chapman, R.H.; Pearson, S.D.; Campbell, J.D. Assessing the Value of Mepolizumab for Severe Eosinophilic Asthma: A Cost-Effectiveness Analysis. Ann. Allergy Asthma Immunol. 2017, 118, 220–225. [Google Scholar] [CrossRef]
- Jeffery, M.M.; Inselman, J.W.; Maddux, J.T.; Lam, R.W.; Shah, N.D.; Rank, M.A. Asthma Patients Who Stop Asthma Biologics Have a Similar Risk of Asthma Exacerbations as Those Who Continue Asthma Biologics. J. Allergy Clin. Immunol. Pract. 2021, 9, 2742–2750. [Google Scholar] [CrossRef]
- Opina, M.T.; Moore, W.C. Phenotype-Driven Therapeutics in Severe Asthma. Curr. Allergy Asthma Rep. 2017, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Cellular and molecular mechanisms of asthma and COPD. Clin. Sci. 2017, 131, 1541–1558. [Google Scholar] [CrossRef]
- Harker, J.A.; Lloyd, C.M. T helper 2 cells in asthma. J. Exp. Med. 2023, 220, e20221094. [Google Scholar] [CrossRef]
- Finkelman, F.D.; Hogan, S.P.; Hershey, G.K.; Rothenberg, M.E.; Wills-Karp, M. Importance of cytokines in murine allergic airway disease and human asthma. J. Immunol. 2010, 184, 1663–1674. [Google Scholar] [CrossRef]
- Szabo, S.J.; Sullivan, B.M.; Peng, S.L.; Glimcher, L.H. Molecular mechanisms regulating th1 immune responses. Annu. Rev. Immunol. 2003, 21, 713–758. [Google Scholar] [CrossRef]
- Gavett, S.H.; O’Hearn, D.J.; Li, X.; Huang, S.K.; Finkelman, F.D.; Wills-Karp, M. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and th2 cytokine expression in mice. J. Exp. Med. 1995, 182, 1527–1536. [Google Scholar] [CrossRef] [PubMed]
- Cohn, L.; Homer, R.J.; Niu, N.; Bottomly, K. T helper 1 cells and interferon gamma regulate allergic airway inflammation and mucus production. J. Exp. Med. 1999, 190, 1309–1318. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, J.A.; Muehling, L.M.; Eccles, J.D.; Capaldo, B.J.; Agrawal, R.; Shirley, D.A.; Patrie, J.T.; Workman, L.J.; Schuyler, A.J.; Lawrence, M.G.; et al. T(H)1 signatures are present in the lower airways of children with severe asthma, regardless of allergic status. J. Allergy Clin. Immunol. 2018, 141, 2048–2060.e13. [Google Scholar] [CrossRef]
- Britt, R.D., Jr.; Thompson, M.A.; Sasse, S.; Pabelick, C.M.; Gerber, A.N.; Prakash, Y.S. Th1 cytokines tnf-alpha and ifn-gamma promote corticosteroid resistance in developing human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 316, L71–L81. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, D.C.; Peebles, R.S., Jr. Th17-mediated inflammation in asthma. Curr. Opin. Immunol. 2013, 25, 755–760. [Google Scholar] [CrossRef]
- Bullone, M.; Carriero, V.; Bertolini, F.; Folino, A.; Mannelli, A.; Di Stefano, A.; Gnemmi, I.; Torchio, R.; Ricciardolo, F.L. Elevated serum IgE, oral corticosteroid dependence and IL-17/22 expression in highly neutrophilic asthma. Eur. Respir. J. 2019, 54, 1900068. [Google Scholar] [CrossRef]
- Krishnamoorthy, N.; Douda, D.N.; Brüggemann, T.R.; Ricklefs, I.; Duvall, M.G.; Abdulnour, R.-E.E.; Martinod, K.; Tavares, L.; Wang, X.; Cernadas, M.; et al. Neutrophil cytoplasts induce T(H)17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci. Immunol. 2018, 3, eaao4747. [Google Scholar] [CrossRef]
- Schnyder-Candrian, S.; Togbe, D.; Couillin, I.; Mercier, I.; Brombacher, F.; Quesniaux, V.; Fossiez, F.; Ryffel, B.; Schnyder, B. Interleukin-17 is a negative regulator of established allergic asthma. J. Exp. Med. 2006, 203, 2715–2725. [Google Scholar] [CrossRef]
- Wakashin, H.; Hirose, K.; Maezawa, Y.; Kagami, S.-I.; Suto, A.; Watanabe, N.; Saito, Y.; Hatano, M.; Tokuhisa, T.; Iwakura, Y.; et al. IL-23 and th17 cells enhance th2-cell-mediated eosinophilic airway inflammation in mice. Am. J. Respir. Crit. Care Med. 2008, 178, 1023–1032. [Google Scholar] [CrossRef]
- Bellini, A.; Marini, M.A.; Bianchetti, L.; Barczyk, M.; Schmidt, M.; Mattoli, S. Interleukin (IL)-4, IL-13, and IL-17a differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients. Mucosal Immunol. 2012, 5, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lloyd, C.M.; Noble, A. Th17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling. Mucosal Immunol. 2013, 6, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Melton, A.C.; Chen, C.; Engler, M.B.; Huang, K.E.; Ren, X.; Wang, Y.; Bernstein, X.; Li, J.T.; Atabai, K.; et al. IL-17a produced by alphabeta T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat. Med. 2012, 18, 547–554. [Google Scholar] [CrossRef]
- Veldhoen, M.; Uyttenhove, C.; Van Snick, J.; Helmby, H.; Westendorf, A.; Buer, J.; Martin, B.; Wilhelm, C.; Stockinger, B. Transforming growth factor-beta ‘Reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 2008, 9, 1341–1346. [Google Scholar] [CrossRef]
- Kaplan, M.H. The transcription factor network in th9 cells. Semin. Immunopathol. 2017, 39, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Angkasekwinai, P.; Chang, S.H.; Thapa, M.; Watarai, H.; Dong, C. Regulation of IL-9 expression by IL-25 signaling. Nat. Immunol. 2010, 11, 250–256. [Google Scholar] [CrossRef]
- Koch, S.; Sopel, N.; Finotto, S. Th9 and other IL-9-producing cells in allergic asthma. Semin. Immunopathol. 2017, 39, 55–68. [Google Scholar] [CrossRef]
- Pajulas, A.; Fu, Y.; Cheung, C.C.; Chu, M.; Cannon, A.; Alakhras, N.; Zhang, J.; Ulrich, B.J.; Nelson, A.S.; Zhou, B.; et al. Interleukin-9 promotes mast cell progenitor proliferation and CCR2-dependent mast cell migration in allergic airway inflammation. Mucosal Immunol. 2023, 16, 432–445. [Google Scholar] [CrossRef] [PubMed]
- Sehra, S.; Yao, W.; Nguyen, E.T.; Glosson-Byers, N.L.; Akhtar, N.; Zhou, B.; Kaplan, M.H. Th9 cells are required for tissue mast cell accumulation during allergic inflammation. J. Allergy Clin. Immunol. 2015, 136, 433–440.e1. [Google Scholar] [CrossRef]
- Lloyd, C.M.; Harker, J.A. Epigenetic control of interleukin-9 in asthma. N. Engl. J. Med. 2018, 379, 87–89. [Google Scholar] [CrossRef]
- Parker, J.M.; Oh, C.K.; LaForce, C.; Miller, S.D.; Pearlman, D.S.; Le, C.; Robbie, G.J.; White, W.I.; White, B.; Molfino, N.A. Safety profile and clinical activity of multiple subcutaneous doses of medi-528, a humanized antiinterleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm. Med. 2011, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.K.; Leigh, R.; McLaurin, K.K.; Kim, K.; Hultquist, M.; Molfino, N.A. A randomized, controlled trial to evaluate the effect of an anti-interleukin-9 monoclonal antibody in adults with uncontrolled asthma. Respir. Res. 2013, 14, 93. [Google Scholar] [CrossRef]
- Liu, X.; Fang, L.; Guo, T.B.; Mei, H.; Zhang, J.Z. Drug targets in the cytokine universe for autoimmune disease. Trends Immunol. 2013, 34, 120–128. [Google Scholar] [CrossRef]
- Janssens, T.; Ritz, T. Perceived triggers of asthma: Key to symptom perception and management. Clin. Exp. Allergy 2013, 43, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Al Ghobain, M.O.; Algazlan, S.S.; Oreibi, T.M. Asthma prevalence among adults in Saudi Arabia. Saudi Med. J. 2018, 39, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, J.M. Asthma and other allergic diseases among Saudi schoolchildren in Najran: The need for a comprehensive intervention program. Ann. Saudi Med. 2016, 36, 379–385. [Google Scholar] [CrossRef]
- Sahoo, A.; Wali, S.; Nurieva, R. T helper 2 and T follicular helper cells: Regulation and function of interleukin 4. Cytokine Growth Factor Rev. 2016, 30, 29–37. [Google Scholar] [CrossRef]
- Ramirez, G.A.; Yacoub, M.R.; Ripa, M.; Mannina, D.; Cariddi, A.; Saporiti, N.; Ciceri, F.; Castagna, A.; Colombo, G.; Dagna, L. Eosinophils from physiology to disease: A comprehensive review. BioMed Res. Int. 2018, 2018, 9095275. [Google Scholar] [CrossRef]
- Pan, R.; Kuai, S.; Li, Q.; Zhu, X.; Wang, T.; Cui, Y. Diagnostic value of IL-6 for patients with asthma: A meta-analysis. Allergy Asthma Clin. Immunol. 2023, 19, 39. [Google Scholar] [CrossRef]
- Pelaia, C.; Heffler, E.; Crimi, C.; Maglio, A.; Vatrella, A.; Pelaia, G.; Canonica, G.W. Interleukins 4 and 13 in asthma: Key pathophysiologic cytokines and druggable molecular targets. Front. Pharmacol. 2022, 13, 851940. [Google Scholar] [CrossRef]
- Coomes, S.M.; Kannan, Y.; Pelly, V.S.; Entwistle, L.J.; Guidi, R.; Perez-Lloret, J.; Nikolov, N.; Müller, W.; Wilson, M.S. CD4+ Th2 cells are directly regulated by IL-10 during allergic airway inflammation. Mucosal Immunol. 2017, 10, 150–161. [Google Scholar] [CrossRef]
- Shik, D.; Tomar, S.; Lee, J.B.; Chen, C.Y.; Smith, A.; Wang, Y.H. IL-9-producing cells in the development of IgE-mediated food allergy. Semin. Immunopathol. 2017, 39, 69–77. [Google Scholar] [CrossRef]
- Evasovic, J.M.; Singer, C.A. Regulation of IL-17A and implications for TGF-β1 co modulation of airway smooth muscle remodeling in severe asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 316, L843–L868. [Google Scholar] [CrossRef]
- Chan, B.C.L.; Lam, C.W.K.; Tam, L.S.; Wong, C.K. IL33: Roles in allergic inflammation and therapeutic perspectives. Front. Immunol. 2019, 10, 364. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, C.; Lu, D.; Liu, F.; Wang, C.; Wu, J.; Dong, L. IL-25 promotes Th2 immunity responses in airway inflammation of asthmatic mice via activation of dendritic cells. Inflammation 2014, 37, 1070–1077. [Google Scholar]
- Ojiaku, C.A.; Yoo, E.J.; Panettieri, R.A., Jr. Transforming growth factor β1 function in airway remodelling and hyperresponsiveness. The missing link? Am. J. Respir. Cell Mol. Biol. 2017, 56, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, Z.; Wen, X.; Huang, G.; Nian, S.; Li, L.; Guo, X.; Ye, Y.; Yuan, Q. The onset, development, and pathogenesis of severe neutrophilic asthma. Immunol. Cell Biol. 2022, 100, 144–159. [Google Scholar] [CrossRef]
- Hammad, H.; Lambrecht, B.N. The basic immunology of asthma. Cell 2021, 184, 1469–1485. [Google Scholar] [CrossRef]
- Smolinska, S.; Antolín-Amérigo, D.; Popescu, F.-D.; Jutel, M. Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. Int. J. Mol. Sci. 2023, 24, 12725. [Google Scholar] [CrossRef]
- Bai, T.R.; Vonk, J.M.; Postma, D.S.; Boezen, H.M. Severe exacerbations predict excess lung function decline in asthma. Eur. Respir. J. 2007, 30, 452–456. [Google Scholar] [CrossRef]
- O’Byrne, P.M.; Pedersen, S.; Lamm, C.J.; Tan, W.C.; Busse, W.W. Severe exacerbations and decline in lung function in asthma. Am. J. Respir. Crit. Care Med. 2009, 179, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.K.; Lee, J.H.; Miller, D.P.; Wenzel, S.E.; TENOR Study Group. Recent asthma exacerbations: A key predictor of future exacerbations. Respir. Med. 2007, 101, 481–489. [Google Scholar] [CrossRef]
- Nicholson, K.G.; Kent, J.; Ireland, D.C. Respiratory viruses and exacerbations of asthma in adults. BMJ 1993, 307, 982–986. [Google Scholar] [CrossRef]
- Johnston, S.L.; Pattemore, P.K.; Sanderson, G.; Smith, S.; Campbell, M.J.; Josephs, L.K.; Cunningham, A.; Robinson, B.S.; Myint, S.H.; Ward, M.E.; et al. The relationship between upper respiratory infections and hospital admissions for asthma: A time-trend analysis. Am. J. Respir. Crit. Care Med. 1996, 154, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Johnston, N.W.; Johnston, S.L.; Norman, G.R.; Dai, J.; Sears, M.R. The September epidemic of asthma hospitalization: School children as disease vectors. J. Allergy Clin. Immunol. 2006, 117, 557–562. [Google Scholar] [CrossRef] [PubMed]
- O’riordan, S.; Barton, M.; Yau, Y.; Read, S.E.; Allen, U.; Tran, D. Risk factors and outcomes among children admitted to hospital with pandemic H1N1 influenza. Can. Med Assoc. J. 2010, 182, 39–44. [Google Scholar] [CrossRef]
- Plessa, E.; Diakakis, P.; Gardelis, J.; Thirios, A.; Koletsi, P.; Falagas, M.E. Clinical features, risk factors, and complications among pediatric patients with pandemic influenza A (H1N1). Clin. Pediatr. 2010, 49, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Libster, R.; Bugna, J.; Coviello, S.; Hijano, D.R.; Dunaiewsky, M.; Reynoso, N.; Cavalieri, M.L.; Guglielmo, M.C.; Areso, M.S.; Gilligan, T.; et al. Pediatric hospitalizations associated with 2009 pandemic influenza A (H1N1) in Argentina. N. Engl. J. Med. 2010, 362, 45–55. [Google Scholar] [CrossRef]
- Yoo, J.-K.; Kim, T.S.; Hufford, M.M.; Braciale, T.J. Viral infection of the lung: Host response and sequelae. J. Allergy Clin. Immunol. 2013, 132, 1263–1276. [Google Scholar] [CrossRef]
- Von, H.L. Role of persistent infection in the control and severity of asthma: Focus on Chlamydia pneumoniae. Eur. Respir. J. 2002, 19, 546–556. [Google Scholar]
- Oliver, B.G.; Lim, S.; Wark, P.; Laza-Stanca, V.; King, N.; Black, J.L.; Burgess, J.K.; Roth, M.; Johnston, S.L. Rhinovirus exposure impairs immune responses to bacterial products in human alveolar macrophages. Thorax 2008, 63, 519–525. [Google Scholar] [CrossRef]
- Message, S.D.; Laza-Stanca, V.; Mallia, P.; Parker, H.L.; Zhu, J.; Kebadze, T.; Contoli, M.; Sanderson, G.; Kon, O.M.; Papi, A.; et al. Rhinovirus-induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL-10 production. Proc. Natl. Acad. Sci. USA 2008, 105, 13562–13567. [Google Scholar] [CrossRef]
- Eisner, M.D.; Klein, J.; Hammond, S.K.; Koren, G.; Lactao, G.; Iribarren, C. Directly measured second hand smoke exposure and asthma health outcomes. Thorax 2005, 60, 814–821. [Google Scholar] [CrossRef]
- Hansel, N.N.; Breysse, P.N.; McCormack, M.C.; Matsui, E.C.; Curtin-Brosnan, J.; Williams, D.L.; Moore, J.L.; Cuhran, J.L.; Diette, G.B. A longitudinal study of indoor nitrogen dioxide levels and respiratory symptoms in inner-city children with asthma. Environ. Health Perspect. 2008, 116, 1428–1432. [Google Scholar] [CrossRef] [PubMed]
- Petsky, H.L.; Cates, C.J.; Lasserson, T.J.; Li, A.M.; Turner, C.; Kynaston, J.A.; Chang, A.B. A systematic review and meta-analysis: Tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils). Thorax 2012, 67, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Little, S.A.; MacLeod, K.J.; Chalmers, G.W.; Love, J.G.; McSharry, C.; Thomson, N.C. Association of forced expiratory volume with disease duration and sputum neutrophils in chronic asthma. Am. J. Med. 2002, 112, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Gans, M.D.; Gavrilova, T. Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatr. Respir. Rev. 2020, 36, 118–127. [Google Scholar] [CrossRef]
- Agache, I.; Eguiluz-Gracia, I.; Cojanu, C.; Laculiceanu, A.; del Giacco, S.; Zemelka-Wiacek, M.; Kosowska, A.; Akdis, C.A.; Jutel, M. Advances and highlights in asthma in 2021. Allergy 2021, 76, 3390–3407. [Google Scholar] [CrossRef]
- Schleich, F.; Bougard, N.; Moermans, C.; Sabbe, M.; Louis, R. Cytokine-targeted therapies for asthma and COPD. Eur. Respir. Rev. 2023, 32, 220193. [Google Scholar] [CrossRef]
- Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.-C.; Plummer, A.L.; Taylor, D.R. An official ATS clinical practice guideline: Interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 2011, 184, 602–615. [Google Scholar] [CrossRef]
- Peters-Golden, M.; Henderson, W.R., Jr. Leukotrienes. N. Engl. J. Med. 2007, 357, 1841–1854. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.D.; Korn, S.; Howarth, P.; Bleecker, E.R.; Buhl, R.; Keene, O.N.; Ortega, H.; Chanez, P. Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet 2012, 380, 651–659. [Google Scholar] [CrossRef] [PubMed]
- McDowell, P.J.; Diver, S.; Yang, F.; Borg, C.; Busby, J.; Brown, V.; Shrimanker, R.; Cox, C.; Brightling, C.E.; Chaudhuri, R.; et al. The inflammatory profile of exacerbations in patients with severe refractory eosinophilic asthma receiving mepolizumab (the MEX study): A prospective observational study. Lancet Respir. Med. 2021, 9, 1174–1184. [Google Scholar] [CrossRef] [PubMed]
- Bafadhel, M.; Haldar, K.; Barker, B.; Patel, H.; Mistry, V.; Barer, M.R.; Pavord, I.D.; Brightling, C. AAirway bacteria measured by quantitative polymerase chain reaction and culture in patients with stable COPD: Relationship with neutrophilic airway inflammation, exacerbation frequency, and lung function. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 1075–1083. [Google Scholar] [CrossRef]
- Poznanski, S.M.; Mukherjee, M.; Zhao, N.; Huang, C.; Radford, K.; Ashkar, A.A.; Nair, P. Asthma exacerbations on benralizumab are largely non-eosinophilic. Allergy 2021, 76, 375–379. [Google Scholar] [CrossRef]
- Nair, P.; O’Byrne, P.M. Medical algorithms: Approach to adult asthma exacerbations. Allergy 2021, 76, 3556–3559. [Google Scholar] [CrossRef]
- Humbert, M.; Busse, W.; Hanania, N.A.; Lowe, P.J.; Canvin, J.; Erpenbeck, V.J.; Holgate, S. Omalizumab in asthma: An update on recent developments. J. Allergy Clin. Immunol. Pract. 2014, 2, 525–536.e1. [Google Scholar] [CrossRef]
- Novak, N.; Bieber, T. Allergic and nonallergic forms of atopic diseases. J. Allergy Clin. Immunol. 2003, 112, 252–262. [Google Scholar] [CrossRef]
- Manka, L.A.; Wechsler, M.E. Selecting the right biologic for your patients with severe asthma. Ann. Allergy Asthma Immunol. 2018, 121, 406–413. [Google Scholar] [CrossRef]
- Kavanagh, J.E.; Hearn, A.P.; Jackson, D.J. A pragmatic guide to choosing biologic therapies in severe asthma. Breathe 2022, 17, 210144. [Google Scholar] [CrossRef]
- Teach, S.J.; Gill, M.A.; Togias, A.; Sorkness, C.A.; Arbes, S.J., Jr.; Calatroni, A.; Wildfire, J.J.; Gergen, P.J.; Cohen, R.T.; Pongracic, J.A.; et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J. Allergy Clin. Immunol. 2015, 136, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- Normansell, R.; Walker, S.; Milan, S.J.; Walters, E.H.; Nair, P. Omalizumab for Asthma in Adults and Children. Cochrane Database Syst. Rev. 2014, 1, CD003559. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.T.; Chuchalin, A.G.; Hebert, J.; Lötvall, J.; Persson, G.B.; Chung, K.F.; Bousquet, J.; Kerstjens, H.A.; Fox, H.; Thirlwell, J.; et al. Omalizumab 011 International Study Group. Efficacy and safety of a recombinant anti-immunoglobulin E antibody (omalizumab) in severe allergic asthma. Clin. Exp. Allergy 2004, 34, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Soler, M.; Matz, J.; Townley, R.; Buhl, R.; O’brien, J.; Fox, H.; Thirlwell, J.; Gupta, N.; Della Cioppa, G.A. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur. Respir. J. 2001, 18, 254–261. [Google Scholar] [CrossRef]
- Busse, W.; Corren, J.; Lanier, B.Q.; McAlary, M.; Fowler-Taylor, A.; Della Cioppa, G.; van As, A.; Gupta, N. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J. Allergy Clin. Immunol. 2001, 108, 184–190. [Google Scholar] [CrossRef]
- Busse, W.W.; Morgan, W.J.; Gergen, P.J.; Mitchell, H.E.; Gern, J.E.; Liu, A.H.; Gruchalla, R.S.; Kattan, M.; Teach, S.J.; Pongracic, J.A.; et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N. Engl. J. Med. 2011, 364, 1005–1015. [Google Scholar] [CrossRef]
- Menzella, F.; Piro, R.; Facciolongo, N.; Castagnetti, C.; Simonazzi, A.; Zucchi, L. Long-term benefits of omalizumab in a patient with severe non-allergic asthma. Allergy Asthma Clin. Immunol. 2011, 7, 9. [Google Scholar] [CrossRef]
- Bousquet, J.; Humbert, M.; Gibson, P.G.; Kostikas, K.; Jaumont, X.; Pfister, P.; Nissen, F. Real-World Effectiveness of Omalizumab in Severe Allergic Asthma: A Meta-Analysis of Observational Studies. J Allergy Clin Immunol Pract. 2021, 9, 2702–2714. [Google Scholar] [CrossRef]
- Niven, R.M.; Saralaya, D.; Chaudhuri, R.; Masoli, M.; Clifton, I.; Mansur, A.H.; Hacking, V.; McLain-Smith, S.; Menzies-Gow, A. Impact of omalizumab on treatment of severe allergic asthma in UK clinical practice: A UK multicentre observational study (the APEX II study). BMJ Open 2016, 6, e011857. [Google Scholar] [CrossRef]
- Casale, T.B.; Luskin, A.T.; Busse, W.; Zeiger, R.S.; Trzaskoma, B.; Yang, M.; Griffin, N.M.; Chipps, B.E. Omalizumab effectiveness by biomarker status in patients with asthma: Evidence from PROSPERO, a prospective real-world study. J. Allergy Clin. Immunol. Pract. 2019, 7, 156–164.e1. [Google Scholar] [CrossRef]
- Hanania, N.A.; Wenzel, S.; Rosén, K.; Hsieh, H.J.; Mosesova, S.; Choy, D.F.; Lal, P.; Arron, J.R.; Harris, J.M.; Busse, W. Exploring the effects of omalizumab in allergic asthma: An analysis of biomarkers in the EXTRA study. Am. J. Respir. Crit. Care Med. 2013, 187, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.; Magnan, A.; Chiron, R.; Contin-Bordes, C.; Berger, P.; Taillé, C.; Devouassoux, G.; de Blay, F.; Couderc, L.-J.; Didier, A.; et al. A proof-of-concept, randomized, controlled trial of omalizumab in patients with severe, difficult-to-control, nonatopic asthma. Chest 2013, 144, 411–419. [Google Scholar] [CrossRef]
- Ledford, D.; Busse, W.; Trzaskoma, B.; Omachi, T.A.; Rosén, K.; Chipps, B.E.; Luskin, A.T.; Solari, P.G. A randomized multicenter study evaluating Xolair persistence of response after long-term therapy. J. Allergy Clin. Immunol. 2017, 140, 162–169.e2. [Google Scholar] [CrossRef] [PubMed]
- Corren, J.; Casale, T.B.; Lanier, B.; Buhl, R.; Holgate, S.; Jimenez, P. Safety and tolerability of omalizumab. Clin Exp Allergy 2009, 39, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Kardas, G.; Kuna, P.; Panek, M. Biological Therapies of Severe Asthma and Their Possible Effects on Airway Remodeling. Front. Immunol. 2020, 11, 1134. [Google Scholar] [CrossRef]
- McCracken, J.L.; Tripple, J.W.; Calhoun, W.J. Biologic Therapy in the Management of Asthma. Curr. Opin. Allergy Clin. Immunol. 2016, 16, 375–382. [Google Scholar] [CrossRef]
- Humbert, M.; Beasley, R.; Ayres, J.; Slavin, R.; Hébert, J.; Bousquet, J.; Beeh, K.M.; Ramos, S.; Canonica, G.W.; Hedgecock, S.; et al. Benefits of Omalizumab as Add-on Therapy in Patients with Severe Persistent Asthma Who Are Inadequately Controlled despite Best Available Therapy (Gina 2002 Step 4 Treatment): Innovate. Allergy 2005, 60, 309–316. [Google Scholar] [CrossRef]
- Fowler, S.J.; Tavernier, G.; Niven, R. High blood eosinophil counts predict sputum eosinophilia in patients with severe asthma. J. Allergy Clin. Immunol. 2015, 135, 822–824.e2. [Google Scholar] [CrossRef]
- Mukherjee, M.; Nair, P. Blood or sputum eosinophils to guide asthma therapy? Lancet Respir. Med. 2015, 3, 824–825. [Google Scholar] [CrossRef]
- Bhalla, A.; Mukherjee, M.; Nair, P. Airway eosinophilopoietic and autoimmune mechanisms of eosinophilia in severe asthma. Immunol. Allergy Clin. N. Am. 2018, 38, 639–654. [Google Scholar] [CrossRef]
- Sehmi, R.; Smith, S.G.; Kjarsgaard, M.; Radford, K.; Boulet, L.; Lemiere, C.; Prazma, C.M.; Ortega, H.; Martin, J.G.; Nair, P. Role of local eosinophilopoietic processes in the development of airway eosinophilia in prednisone-dependent severe asthma. Clin. Exp. Allergy 2016, 46, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Menzies-Gow, A.; Flood-Page, P.; Sehmi, R.; Burman, J.; Hamid, Q.; Robinson, D.S.; Kay, A.; Denburg, J. Anti-IL-5 (mepolizumab) therapy induces bone marrow eosinophil maturational arrest and decreases eosinophil progenitors in the bronchial mucosa of atopic asthmatics. J. Allergy Clin. Immunol. 2003, 111, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Paramo, F.A.; Kjarsgaard, M.; Salter, B.; Nair, G.; LaVigne, N.; Radford, K.; Sehmi, R.; Nair, P. Weight-adjusted intravenous reslizumab in severe asthma with inadequate response to fixed-dose subcutaneous mepolizumab. Am. J. Respir. Crit. Care Med. 2018, 197, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Lim, H.F.; Thomas, S.; Miller, D.; Kjarsgaard, M.; Tan, B.; Sehmi, R.; Khalidi, N.; Nair, P. Airway autoimmune responses in severe eosinophilic asthma following low-dose mepolizumab therapy. Allergy Asthma Clin. Immunol. 2017, 13, 2. [Google Scholar] [CrossRef]
- Nair, P.; Pizzichini, M.M.; Kjarsgaard, M.; Inman, M.D.; Efthimiadis, A.; Pizzichini, E.; Hargreave, F.E.; O’BYrne, P.M. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 2009, 360, 985–993. [Google Scholar] [CrossRef]
- Bel, E.H.; Wenzel, S.E.; Thompson, P.J.; Prazma, C.M.; Keene, O.N.; Yancey, S.W.; Ortega, H.G.; Pavord, I.D.; SIRIUS Investigators. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N. Engl. J. Med. 2014, 371, 1189–1197. [Google Scholar] [CrossRef]
- Pavord, I.D.; Menzies-Gow, A.; Buhl, R.; Chanez, P.; Dransfield, M.; Lugogo, N.; Keene, O.N.; Bradford, E.S.; Yancey, S.W. Clinical Development of Mepolizumab for the Treatment of Severe Eosinophilic Asthma: On the Path to Personalized Medicine. J. Allergy Clin. Immunol. Pract. 2021, 9, 1121–1132.e7. [Google Scholar] [CrossRef]
- Máspero, J. Reslizumab in the Treatment of Inadequately Controlled Asthma in Adults and Adolescents with Elevated Blood Eosinophils: Clinical Trial Evidence and Future Prospects. Ther. Adv. Respir. Dis. 2017, 11, 311–325. [Google Scholar] [CrossRef]
- Pilette, C.; Canonica, G.W.; Chaudhuri, R.; Chupp, G.; Lee, F.E.; Lee, J.K.; Almonacid, C.; Welte, T.; Alfonso-Cristancho, R.; Jakes, R.W.; et al. REALITI-A Study: Real-World Oral Corticosteroid-Sparing Effect of Mepolizumab in Severe Asthma. J. Allergy Clin. Immunol. Pract. 2022, 10, 2646–2656. [Google Scholar] [CrossRef]
- Mihaltan, F.; Csoma, Z.; Pauk, N.; Irás, B.; Baukienė, J.; Teodorescu, G.; Malakauskas, K.; Staevska, M. Benralizumab Outcomes in Patients with Severe Eosinophilic Asthma Treated in Real-Life Settings: Results of the BREEZE Study in 5 Countries from Central Eastern Europe and Baltics. J. Asthma Allergy 2025, 18, 195–210. [Google Scholar] [CrossRef]
- Carstens, D.D.; Genofre, E.H.; Young, J.A.; Yang, D.; Mu, F.; Cook, E.E.; Betts, K.A.; Chung, Y. Long-Term Real-World Effectiveness of Benralizumab in Patients with Severe Eosinophilic Asthma: Results from the Zephyr 2 Study. Chest 2022, 162, A7. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Faverio, P.; Sussman, G.; Lang, D.M.; Heaney, L.G.; Kolbeck, R.; Yancey, S.W.; Lee, D.; Le, M.; Kwon, N.; et al. Mepolizumab or Benralizumab for Eosinophilic Granulomatosis with Polyangiitis. N. Engl. J. Med. 2024, 390, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, H.F.; Dyer, K.D.; Foster, P.S. Eosinophils: Changing perspectives in health and disease. Nat. Rev. Immunol. 2013, 13, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Ortega, H.G.; Liu, M.C.; Pavord, I.D.; Brusselle, G.G.; Fitzgerald, J.M.; Chetta, A.; Humbert, M.; Katz, L.E.; Keene, O.N.; Yancey, S.W.; et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 2014, 371, 1198–1207. [Google Scholar] [CrossRef]
- Casale, T.B.; Burnette, A.; Bourdin, A.; Howarth, P.; Hahn, B.; Stach-Klysh, A.; Khurana, S. Oral corticosteroid-sparing effects of mepolizumab in severe eosinophilic asthma: Evidence from randomized controlled trials and real-world studies. Ther. Adv. Respir. Dis. 2022, 16, 17534666221107313. [Google Scholar] [CrossRef]
- Chupp, G.L.; Bradford, E.S.; Albers, F.C.; Bratton, D.J.; Wang-Jairaj, J.; Nelsen, L.M.; Trevor, J.L.; Magnan, A.; Brinke, A.T. Efficacy of mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA): A randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir. Med. 2017, 5, 390–400. [Google Scholar] [CrossRef]
- Principe, S.; Porsbjerg, C.; Bolm Ditlev, S.; Kjaersgaard Klein, D.; Golebski, K.; Dyhre-Petersen, N.; van Dijk, Y.E.; van Bragt, J.J.M.H.; Dankelman, L.L.H.; Dahlen, S.E.; et al. Treating severe asthma: Targeting the IL-5 pathway. Clin. Exp. Allergy 2021, 51, 992–1005. [Google Scholar] [CrossRef]
- Pelaia, C.; Crimi, C.; Pelaia, G.; Nolasco, S.; Campisi, R.; Heffler, E.; Valenti, G.; Crimi, N. Real-life evaluation of mepolizumab efficacy in patients with severe eosinophilic asthma, according to atopic trait and allergic phenotype. Clin. Exp. Allergy 2020, 50, 780–788. [Google Scholar] [CrossRef]
- Carpagnano, G.E.; Pelaia, C.; D’Amato, M.; Crimi, N.; Scichilone, N.; Scioscia, G.; Resta, O.; Calabrese, C.; Pelaia, G.; Quarato, C.M.I.; et al. Switching from omalizumab to mepolizumab: Real-life experience from Southern Italy. Ther. Adv. Respir. Dis. 2020, 14, 1753466620929231. [Google Scholar] [CrossRef]
- Lombardi, C.; Comberiati, P.; Ridolo, E.; Cottini, M.; Yacoub, M.R.; Casagrande, S.; Riccò, M.; Bottazzoli, M.; Berti, A. Anti-IL-5 Pathway Agents in Eosinophilic-Associated Disorders Across the Lifespan. Drugs 2024, 84, 661–684. [Google Scholar] [CrossRef]
- Kroes, J.A.; Zielhuis, S.W.; van der Meer, A.-N.; de Jong, K.; van Roon, E.N.; ten Brinke, A. Optimizing Omalizumab Dosing in Severe Asthma—The Exploration of Therapeutic Drug Monitoring. J. Allergy Clin. Immunol. Pract. 2021, 9, 1408–1410. [Google Scholar] [CrossRef] [PubMed]
- Iribarren, C.; Rahmaoui, A.; Long, A.A.; Szefler, S.J.; Bradley, M.S.; Carrigan, G.; Eisner, M.D.; Chen, H.; Omachi, T.A.; Farkouh, M.E.; et al. Cardiovascular and Cerebrovascular Events among Patients Receiving Omalizumab: Results from Excels, a Prospective Cohort Study in Moderate to Severe Asthma. J. Allergy Clin. Immunol. 2017, 139, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- CINQAIR. Prescribing Information. Teva Respiratory. 2020. Available online: https://www.cinqair.com/globalassets/cinqair/prescribinginformation.pdf (accessed on 1 June 2025).
- Hom, S.; Pisano, M. Reslizumab (Cinqair): An Interleukin-5 Antagonist for Severe Asthma of the Eosinophilic Phenotype. Pharm. Ther. 2017, 42, 564–568. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565129/ (accessed on 1 June 2025).
- Bjermer, L.; Lemiere, C.; Maspero, J.; Weiss, S.; Zangrilli, J.; Germinaro, M. Reslizumab for Inadequately Controlled Asthma with Elevated Blood Eosinophil Levels. Chest 2016, 150, 789–798. [Google Scholar] [CrossRef] [PubMed]
- CTG Labs—NCBI. A Study to Evaluate the Efficacy and Safety of Reslizumab in Patients with Eosinophilic Asthma; Teva Branded Pharmaceutical Products R&D, Inc.: West Chester, PA, USA, 2021. Available online: https://beta.clinicaltrials.gov/study/NCT01285323?tab=results#publications (accessed on 1 June 2025).
- Pelaia, C.; Calabrese, C.; Vatrella, A.; Busceti, M.T.; Garofalo, E.; Lombardo, N.; Terracciano, R.; Pelaia, G. Benralizumab: From the basic mechanism of action to the potential use in the biological therapy of severe eosinophilic asthma. BioMed Res. Int. 2018, 2018, 4839230. [Google Scholar] [CrossRef]
- Farne, H.A.; Wilson, A.; Powell, C.; Bax, L.; Milan, S.J. Anti-IL5 therapies forasthma. Cochrane Database Syst. Rev. 2017, 9, CD010834. [Google Scholar]
- Nanzer, A.M.; Dhariwal, J.; Thomson, L.; Green, L.; Fernandes, M.; Roxas, C.; Haris, F.; Cefaloni, F.; Gates, J.; Jackson, D.J. Benralizumab in Eosinophilic Granulomatosis with Polyangiitis: Real-World Experience. J. Allergy Clin. Immunol. Pract. 2024, 12, 724–732. [Google Scholar] [CrossRef]
- Hanania, N.A.; Alpan, O.; Hamilos, D.L.; Condemi, J.J.; Reyes-Rivera, I.; Zhu, J.; Rosen, K.E.; Eisner, M.D.; Wong, D.A.; Busse, W. Omalizumab in Severe Allergic Asthma Inadequately Controlled with Standard Therapy. Ann. Intern. Med. 2011, 154, 573–582. [Google Scholar] [CrossRef]
- CTG Labs—NCBI. A Study to Evaluate the Efficacy and Safety of Reslizumab (0.3 or 3.0 Mg/Kg) as Treatment for Patients (12–75 Years of Age) with Eosinophilic Asthma; Teva Branded Pharmaceutical Products R&D, Inc.: West Chester, PA, USA, 2016. Available online: https://beta.clinicaltrials.gov/study/NCT01270464 (accessed on 1 June 2025).
- Corren, J.; Weinstein, S.; Janka, L.; Zangrilli, J.; Garin, M. Phase 3 Study of Reslizumab in Patients with Poorly Controlled Asthma. Chest 2016, 150, 799–810. [Google Scholar] [CrossRef]
- Bleecker, E.R.; FitzGerald, J.M.; Chanez, P.; Papi, A.; Weinstein, S.F.; Barker, P.; Sproule, S.; Gilmartin, G.; Aurivillius, M.; Werkström, V.; et al. Efficacy and Safety of Benralizumab for Patients with Severe Asthma Uncontrolled with High-Dosage Inhaled Corticosteroids and Long-Acting 2-Agonists (SIROCCO): A Randomised, Multicentre, Placebo-Controlled Phase 3 Trial. Lancet 2016, 388, 2115–2127. [Google Scholar] [CrossRef]
- FitzGerald, J.M.; Bleecker, E.R.; Nair, P.; Korn, S.; Ohta, K.; Lommatzsch, M.; Ferguson, G.T.; Busse, W.W.; Barker, P.; Sproule, S.; et al. Benralizumab, an Anti-Interleukin-5 Receptor Monoclonal Antibody, as Add-on Treatment for Patients with Severe, Uncontrolled, Eosinophilic Asthma (Calima): A Randomised, Double-Blind, Placebo-Controlled Phase 3 Trial. Lancet 2016, 388, 2128–2141. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, N.A.; Bennett, B.L.; Graham, N.M.H.; Pirozzi, G.; Stahl, N.; Yancopoulos, G.D. Targeting key proximal drivers of type 2 in-flammation in disease. Nat. Rev. Drug Discov. 2016, 15, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Le Floc’h, A.; Allinne, J.; Nagashima, K.; Scott, G.; Birchard, D.; Asrat, S.; Bai, Y.; Lim, W.K.; Martin, J.; Huang, T.; et al. Dual blockade of IL-4 and IL-13 with dupilumab, an IL-4Ralpha antibody, is required to broadly inhibit type 2 inflammation. Allergy 2020, 75, 1188–1204. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Klion, A.D.; Paggiaro, P.; Nair, P.; Staumont-Salle, D.; Radwan, A.; Johnson, R.R.; Kapoor, U.; Khokhar, F.A.; Daizadeh, N.; et al. Effect of dupilumab on blood eosinophil counts in patients with asthma, chronic rhinosinusitis with nasal polyps, atopic dermatitis, or eosinophilic esophagitis. J. Allergy Clin. Immunol. Pract. 2022, 10, 2695–2709. [Google Scholar] [CrossRef]
- Gates, L.E.; Park, H.; Vasu, T.; Vandeplas, G.; White, M.; Brightling, C.E.; Bel, E.H.; Bleecker, E.R.; Canonica, G.W.; Menzies-Gow, A.; et al. Long-Term Effectiveness of Anti-IL-4R Therapy Following Suboptimal Response to Anti-IL-5/5R Therapy in Severe Eosinophilic Asthma. J. Allergy Clin. Immunol. Pract. 2024, 12, 1794–1800. [Google Scholar] [CrossRef]
- Silverberg, J.I.; Yosipovitch, G.; Simpson, E.L.; Kim, B.S.; Wu, J.J.; Eckert, L.; Guillemin, I.; Chen, Z.; Ardeleanu, M.; Bansal, A.; et al. Dupilumab Treatment Results in Early and Sustained Improvements in Itch in Adolescents and Adults with Moderate to Severe Atopic Dermatitis: Analysis of the Randomized Phase 3 Studies SOLO 1 and SOLO 2, AD ADOL, and CHRONOS. J. Am. Acad. Dermatol. 2020, 82, 1328–1336. [Google Scholar] [CrossRef]
- Paller, A.S.; Siegfried, E.C.; Yosipovitch, G.; Silverberg, J.I.; Wu, J.J.; Chen, Z.; Prescilla, R.; Rossi, A.B.; Delevry, D. Rapid and Sustained Improvement in Itch in Children Aged 6–11 Years with Severe Atopic Dermatitis (AD) Treated with Dupilumab: Analysis from the LIBERTY AD PEDS Phase 3 Trial. J. Am. Acad. Dermatol. 2021, 85, AB140. [Google Scholar] [CrossRef]
- Busse, W.W.; Maspero, J.F.; Rabe, K.F.; Papi, A.; Wenzel, S.E.; Ford, L.B.; Pavord, I.D.; Zhang, B.; Staudinger, H.; Pirozzi, G.; et al. Liberty Asthma QUEST: Phase 3 Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study to Evaluate Dupilumab Efficacy/Safety in Patients with Uncontrolled, Moderate-to-Severe Asthma. Adv. Ther. 2018, 35, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Bacharier, L.B.; Maspero, J.F.; Katelaris, C.H.; Fiocchi, A.G.; Gagnon, R.; de Mir, I.; Jain, N.; Sher, L.D.; Mao, X.; Liu, D.; et al. Dupilumab in Children with Uncontrolled Moderate-to-Severe Asthma. N. Engl. J. Med. 2021, 385, 2230–2240. [Google Scholar] [CrossRef]
- Han, J.K.; Bachert, C.; Desrosiers, M.; Laidlaw, T.M.; Hopkins, C.; Fokkens, W.J.; Paggiaro, P.; Ho Cho, S.; Olze, H.; Greos, L.S.; et al. Efficacy and Safety of Dupilumab in Patients with Chronic Rhinosinusitis with Nasal Polyps: Results from the Randomized Phase 3 SINUS-24 Study. J. Allergy Clin. Immunol. 2019, 143, AB422. [Google Scholar] [CrossRef]
- Spergel, J.; Sher, L.; Durrani, S.; Dellon, E.; Rothenberg, M.; Sun, X.; Beazley, B.; Patel, K.; Shabbir, A. Dupilumab Improves Type 2 Comorbidity Outcomes in Patients with Eosinophilic Esophagitis and Comorbid Disease at Baseline: From Parts A and B of LIBERTY-EoE-TREET. J. Allergy Clin. Immunol. 2023, 151, AB199. [Google Scholar] [CrossRef]
- Chehade, M.; Dellon, E.S.; Spergel, J.M.; Collins, M.H.; Rothenberg, M.E.; Pesek, R.D.; Hirano, I.; Liu, R.; Laws, E.; Mortensen, E.; et al. Dupilumab for Eosinophilic Esophagitis in Patients 1 to 11 Years of Age. N. Engl. J. Med. 2024, 390, 2239–2251. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, K.; Peelman, F.; Braun, H.; Lopez, J.; Van Rompaey, D.; Dansercoer, A.; Vandenberghe, I.; Pauwels, K.; Tavernier, J.; Lambrecht, B.N.; et al. Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. Nat. Commun. 2017, 8, 14937. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; Hu, S.; Cheung, P.F.; Lam, C.W. Thymic stromal lymphopoietin induces chemotactic and prosurvival effects in eosinophils: Implications in allergic inflammation. Am. J. Respir. Cell Mol. Biol. 2010, 43, 305–315. [Google Scholar] [CrossRef]
- Cook, E.B.; Stahl, J.L.; Schwantes, E.A.; Fox, K.E.; Mathur, S.K. IL-3 and TNFa increase thymic stromal lymphopoietin receptor (TSLPR) expression on eosinophils and enhance TSLP-stimulated degranulation. Clin. Mol. Allergy 2012, 10, 8. [Google Scholar] [CrossRef]
- Pelaia, C.; Pelaia, G.; Crimi, C.; Maglio, A.; Gallelli, L.; Terracciano, R.; Vatrella, A. Tezepelumab: A potential new biological therapy for severe refractory asthma. Int. J. Mol. Sci. 2021, 22, 4369. [Google Scholar] [CrossRef]
- Gates, J.; Haris, F.; Cefaloni, F.; Khooshemehri, P.; Green, L.; Fernandes, M.; Thomson, L.; Roxas, C.; Lam, J.; d’Ancona, G.; et al. Clinical and Biological Remission With Tezepelumab: The Real-World Response in Severe Uncontrolled Asthma. Allergy 2025, 80, 1669–1676. [Google Scholar] [CrossRef]
- Available online: https://www.fdanews.com/articles/188355-fda-awards-astrazeneca-and-amgens-tezepelumab-breakthrough-designation (accessed on 2 June 2025).
- Lipworth, B.J.; Caruso, M.; Corren, J.; Klimek, L.; Canonica, G.W.; Han, J.K.; Naclerio, R.M.; Hellings, P.W.; Bachert, C. Tezepelumab in Patients with Severe Chronic Rhinosinusitis with Nasal Polyps. N. Engl. J. Med. 2025, 392, 1178–1188. [Google Scholar] [CrossRef]
- Gelhorn, H.L.; Balantac, Z.; Ambrose, C.S.; Chung, Y.N.; Stone, B. Patient and physician preferences for attributes of biologic medications for severe asthma. Patient Prefer. Adherence 2019, 13, 1253–1268. [Google Scholar] [CrossRef]
- Jackson, D.J.; Wechsler, M.E.; Jackson, D.J.; Bernstein, D.; Korn, S.; Pfeffer, P.E.; Chen, R.; Saito, J.; de Luíz Martinez, G.; Dymek, L.; et al. SWIFT 1 and SWIFT-2 Investigators; SWIFT-1 Investigators; SWIFT-2 Investigators. Twice-yearly depemokimab in severe asthma with an eosinophilic phenotype. N. Engl. J. Med. 2024, 391, 2337–2349. [Google Scholar] [CrossRef]
- Antalfy, A.; Berman, K.; Everitt, C.; Alten, R.; Latymer, M.; Godfrey, C.M. The adherence and outcomes ben efits of using a connected, reusable auto-injector for self-injecting biologics: A narrative review. Adv. Ther. 2023, 40, 4758–4776. [Google Scholar] [CrossRef] [PubMed]
- van den Bemt, B.J.F.; Gettings, L.; Domańska, B.; Bruggraber, R.; Mountian, I.; Kristensen, L.E. A portfolio of biologic self-injection devices in rheumatology: How patient involvement in device design can improve treatment experience. Drug Deliv. 2019, 26, 384–392. [Google Scholar] [CrossRef]
- Stauffer, V.L.; Sides, R.; Lanteri-Minet, M.; Kielbasa, W.; Jin, Y.; Selzler, K.J.; Tepper, S.J. Com parison between prefilled syringe and autoinjector devices on patient-reported experiences and pharma cokinetics in galcanezumab studies. Patient Prefer. Adherence 2018, 12, 1785–1795. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; D’HEygere, F.; Nakad, A.; Franchimont, D.; Fontaine, F.; Louis, E.; Van Hootegem, P.; Dewit, O.; Lambrecht, G.; Strubbe, B.; et al. Preference for a prefilled syringe or an auto-injection device for de livering golimumab in patients with moderate-to-severe ulcerative colitis: A randomized crossover study. Patient Prefer. Adherence 2018, 12, 1193–1202. [Google Scholar] [CrossRef]
- Demary, W.; Schwenke, H.; Rockwitz, K.; Kästner, P.; Liebhaber, A.; Schoo, U.; Hübner, G.; Pichlmeier, U.; Guimbal-Schmolck, C.; Müller-Ladner, U. Subcu taneously administered methotrexate for rheumatoid arthritis, by prefilled syringes versus prefilled pens: Patient preference and comparison of the self-injection experience. Patient Prefer. Adherence 2014, 8, 1061–1071. [Google Scholar]
- Shabbir, S.; Pouliquen, I.J.; Bentley, J.H.; Bradford, E.S.; Kaisermann, M.C.; Albayaty, M. The pharmacokinetics and relative bioavailability of mepolizumab 100 mg liquid formu lation administered subcutaneously to healthy partici pants: A randomized trial. Clin. Pharmacol. Drug Dev. 2020, 9, 375–385. [Google Scholar] [CrossRef]
- Martin, U.J.; Fuhr, R.; Forte, P.; Barker, P.; Axley, M.J.; Aurivillius, M.; Yan, L.; Roskos, L. Comparison of au toinjector with accessorized prefilled syringe for benral izumab pharmacokinetic exposure: AMES trial results. J Asthma 2021, 58, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.T.; Martin, M.U. Interleukin 33 is a guardian of barriers and a local alarmin. Nat. Immunol. 2016, 17, 122–131. [Google Scholar] [CrossRef]
- Cayrol, C.; Girard, J.P. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol. Rev. 2018, 281, 154–168. [Google Scholar] [CrossRef]
- Hong, H.; Liao, S.; Chen, F.; Yang, Q.; Wang, D.Y. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type2 inflammation. Allergy 2020, 75, 2794–2804. [Google Scholar] [CrossRef]
- Macdonald, L.E.; Karow, M.; Stevens, S.; Auerbach, W.; Poueymirou, W.T.; Yasenchak, J.; Frendewey, D.; Valenzuela, D.M.; Giallourakis, C.C.; Alt, F.W.; et al. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes. Proc. Natl. Acad. Sci. USA 2014, 111, 5147–5152. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.J.; Macdonald, L.E.; Stevens, S.; Karow, M.; Dore, A.T.; Pobursky, K.; Huang, T.T.; Poueymirou, W.T.; Esau, L.; Meola, M.; et al. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc. Natl. Acad. Sci. USA 2014, 111, 5153–5158. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ambrogelly, A. Enlarging the repertoire of therapeutic monoclonal antibodies platforms: Domesticating half molecule exchange to produce stable IgG4 and IgG1 bispecific antibodies. Curr. Opin. Biotechnol. 2014, 30, 225–229. [Google Scholar] [CrossRef]
- Allinne, J.; Scott, G.; Lim, W.K.; Birchard, D.; Erjefält, J.S.; Sandén, C.; Ben, L.-H.; Agrawal, A.; Kaur, N.; Kim, J.H.; et al. IL-33 blockade affects mediators of persistence and exacerbation in a model of chronic airway inflammation. J. Allergy Clin. Immunol. 2019, 144, 1624–1637.e10. [Google Scholar] [CrossRef]
- Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention. GINA. 2015. Available online: https://ginasthma.org/wp-content/uploads/2016/01/GINA_Report_2015_Aug11-1.pdf (accessed on 1 June 2025).
- .Kim, S.W.; Rhee, C.K.; Kim, K.U.; Lee, S.H.; Hwang, H.G.; Kim, Y.I.; Kim, D.K.; Oh, Y.M.; Yoon, H.K. Factors associated with plasma IL-33 levels in patients with chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulmon. Dis. 2017, 12, 395–402. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, B.; Shen, S.; Song, X.; Jiang, Y.; Shi, L.; Zhao, C.; Yang, Y.; Jiang, L.; Li, J.; et al. Efficacy and safety of CM310 in severe eosinophilic chronic rhinosinusitis with nasal polyps (CROWNS-1): A multicentre, randomised, double-blind, placebo-controlled phase 2 clinical trial. eClinicalMedicine 2023, 61, 102076. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, L.; Zhang, J.; CM310AD005 Study Investigators. Efficacy and safety of stapokibart (CM310) in adults with moderate-to-severe atopic dermatitis: A multicenter, randomized, double-blind, placebo-controlled phase 3 trial. J. Am. Acad. Dermatol. 2024, 190, 2498. [Google Scholar] [CrossRef] [PubMed]
- Bachert, C.; Han, J.K.; Desrosiers, M.; Hellings, P.W.; Amin, N.; Lee, S.E.; Mullol, J.; Greos, L.S.; Bosso, J.V.; Laidlaw, T.M.; et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): Results from two multicentre, randomised, double-blind,placebo-controlled, parallel-group phase 3 trials. Lancet 2019, 394, 1638–1650. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, L.; Lu, Q.; Gao, X.; Zhu, X.; Yao, X.; Li, L.; Li, W.; Ding, Y.; Song, Z.; et al. The efficacy and safety of dupilumab in Chinese patients with moderate-to-severe atopic dermatitis: A randomized, double-blind, placebo-controlled study. Br. J. Dermatol. 2022, 186, 633–641. [Google Scholar] [CrossRef]
- Piper, E.; Brightling, C.; Niven, R.; Oh, C.; Faggioni, R.; Poon, K.; She, D.; Kell, C.; May, R.D.; Geba, G.P.; et al. A Phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur. Respir. J. 2013, 41, 330–338. [Google Scholar] [CrossRef]
- Brightling, C.E.; Chanez, P.; Leigh, R.; O’BYrne, P.M.; Korn, S.; She, D.; May, R.D.; Streicher, K.; Ranade, K.; Piper, E. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: A randomised, double-blind, placebo-controlled, Phase 2b trial. Lancet Respir. Med. 2015, 3, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Baverel, P.G.; White, N.; Vicini, P.; Karlsson, M.O.; Agoram, B. Dose-exposure–response relationship of the investigational anti-IL-13 monoclonal antibody tralokinumab in patients with severe, uncontrolled asthma. Clin. Pharmacol. Ther. 2017, 103, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Corren, J.; Szefler, S.J.; Sher, E.; Korenblat, P.; Soong, W.; Hanania, N.A.; Berman, G.; Brusselle, G.; Zitnik, R.; Natalie, C.R.; et al. Lebrikizumab in Uncontrolled Asthma: Reanalysis in a Well-Defined Type 2 Population. J. Allergy Clin. Immunol. Pract. 2024, 12, 1215–1224.e3. [Google Scholar] [CrossRef]
- Wenzel, S.; Castro, M.; Corren, J.; Maspero, J.; Wang, L.; Zhang, B.; Pirozzi, G.; Sutherland, E.R.; Evans, R.R.; Joish, V.N.; et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: A randomised double-blind placebo controlled pivotal Phase 2b dose-ranging trial. Lancet 2016, 388, 31–44. [Google Scholar] [CrossRef]
- Baverel, P.; She, D.; Piper, E.; Ueda, S.; Yoshioka, T.; Faggioni, R.; Gevorkyan, H. A Randomized, Placebo-Controlled, Single Ascending-Dose Study to Assess the Safety, Tolerability, Pharmacokinetics, and Immunogenicity of Subcutaneous Tralokinumab in Japanese Healthy Volunteers. Drug Metab. Pharmacokinet. 2018, 33, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Panettieri, R.A., Jr.; Wang, M.; Braddock, M.; Bowen, K.; Colice, G. Tralokinumab for the Treatment of Severe, Uncontrolled Asthma: The ATMOSPHERE Clinical Development Program. Immunotherapy 2018, 10, 473–490. [Google Scholar] [CrossRef]
- Panettieri, R.A., Jr.; Sjöbring, U.; Péterffy, A.; Wessman, P.; Bowen, K.; Piper, E.; Colice, G.; Brightling, C.E. Tralokinumab for Severe, Uncontrolled Asthma (STRATOS 1 and STRATOS 2): Two Randomised, Double-Blind, Placebo-Controlled, Phase 3 Clinical Trials. Lancet Respir. Med. 2018, 6, 511–525. [Google Scholar] [CrossRef]
- Corren, J.; Lemanske, R.F., Jr.; Hanania, N.A.; Korenblat, P.E.; Parsey, M.V.; Arron, J.R.; Harris, J.M.; Scheerens, H.; Wu, L.C.; Su, Z.; et al. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med. 2011, 365, 1088–1098. [Google Scholar] [CrossRef]
- Ultsch, M.; Bevers, J.; Nakamura, G.; Vandlen, R.; Kelley, R.F.; Wu, L.C.; Eigenbrot, C. Structural basis of signaling blockade by anti-IL-13 antibody lebrikizumab. J. Mol. Biol. 2013, 425, 1330–1339. [Google Scholar] [CrossRef]
- Scheerens, H.; Arron, J.R.; Zheng, Y.; Putnam, W.S.; Erickson, R.W.; Choy, D.F.; Harris, J.M.; Lee, J.; Jarjour, N.N.; Matthews, J.G. The effects of lebrikizumab in patients with mild asthma following whole lungallergen challenge. Clin. Exp. Allergy 2014, 44, 38–46. [Google Scholar] [CrossRef]
- Hanania, N.A.; Korenblat, P.; Chapman, K.R.; Bateman, E.D.; Kopecky, P.; Paggiaro, P.; Yokoyama, A.; Olsson, J.; Gray, S.; Holweg, C.T.J.; et al. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma(LAVOLTA I and LAVOLTA II): Replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir. Med. 2016, 4, 781–796. [Google Scholar] [CrossRef] [PubMed]
- Szefler, S.; Roberts, G.; Rubin, A.S.; Zielen, S.; Kuna, P.; Alpan, O.; Anzures-Cabrera, J.; Chen, Q.; Holweg, C.; Kaminski, J.; et al. Efficacy, safety, and tolerability of lebrikizumab in adolescent patients with uncontrolled asthma (ACOUSTICS). Clin. Transl. Allergy 2022, 12, e12176. [Google Scholar] [CrossRef] [PubMed]
- Harrison, T.; Canonica, G.W.; Chupp, G.; Lee, J.; Schleich, F.; Welte, T.; Valero, A.; Gemzoe, K.; Maxwell, A.; Joksaite, S.; et al. Real-world mepolizumab in the prospective severe asthma REALITI—A study: Initial analysis. Eur. Respir. J. 2020, 56, 2000151. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, B.; Georas, S.N.; Khurana, S. Biologics in severe asthma: A state-of-the-art review. Eur. Respir. Rev. 2025, 34, 240088. [Google Scholar] [CrossRef]
Cytokine | Primary Targets | Role in Asthma Pathogenesis | Ref. |
---|---|---|---|
IL-4 | Th2 lymphocytes, B cells | Orchestrates Th2 polarization and drives IgE class switching, fueling allergic sensitization. | [47] |
IL-5 | Eosinophils | Promotes eosinophil maturation, survival and trafficking to the airways, a hallmark of eosinophilic asthma. | [48] |
IL-6 | T cells, B cells, macrophages | Acts as an acute-phase mediator; elevated in severe exacerbations and linked to systemic inflammation. | [49] |
IL-9 | Mast cells | Enhances mast cell proliferation and stimulates mucus gland secretion, contributing to airway obstruction. | [50] |
IL-10 | Regulatory T cells, macrophages | Dampens excessive inflammation by suppressing pro-inflammatory cytokines, helping maintain immune balance. | [51] |
IL-13 | Airway epithelial cells, goblet cells | Triggers goblet-cell hyperplasia and mucus overproduction; increases airway hyperresponsiveness and contributes to airway remodeling. | [52] |
IL-17 | Neutrophils | Recruits and activates neutrophils, driving neutrophilic inflammation seen in severe, steroid-resistant asthma. | [53,54] |
IL-25 | Dendritic cells, ILC2 | Potentiates innate type-2 responses by activating ILC2s and priming DCs for Th2 cytokine release. | [55] |
IL-33 | ILC2, mast cells, eosinophils | Functions as an alarmin; amplifies type-2 inflammation and remodels airway tissue via multiple effector cells. | [52] |
TGF-β | Fibroblasts, airway smooth muscle | Drives subepithelial fibrosis and smooth muscle proliferation, key processes in airway remodeling. | [56] |
TNF-α | Neutrophils, eosinophils, macrophages | Potent pro-inflammatory mediator that recruits innate cells and exacerbates airway inflammation. | [57] |
IFN-γ | Th1 lymphocytes, macrophages | Exerts a modulatory role by counterbalancing Th2 activity but may also contribute to chronic inflammation. | [58] |
TSLP | Dendritic cells, Group 2 innate lymphoid cells (ILC2), eosinophils, basophils | Functions as an epithelial cell-derived alarmin; activates dendritic cells and ILC2s, promoting type 2 inflammation and bridging innate and adaptive immune responses; key initiator of airway inflammation and a therapeutic target for tezepelumab | [59] |
Study/Trial Name | Study Type | Key Findings | Reference |
---|---|---|---|
Systematic Review | 25 Randomized Controlled Trials | Omalizumab led to ~25% reduction in asthma exacerbations and reduced need for ICS use. | [105] |
INNOVATE Study | Randomized Controlled Trial | In patients with severe asthma on high-dose ICS + LABA, omalizumab significantly reduced exacerbations. | [106] |
EXTRA Trial | Randomized Controlled Trial | Omalizumab treatment resulted in a ~25% decrease in asthma exacerbation rates. | [92] |
Prospective Study | Observational (806 patients) | 87% of patients showed improvement in asthma symptoms and lung function. | [107] |
Biologic | Mechanism of Action | Approved Age | Eosinophil Threshold | Dosage | Key Efficacy Results | Notable Trials |
---|---|---|---|---|---|---|
Mepolizumab (Nucala) | Anti-IL-5; blocks IL-5 from binding to IL-5Rα on eosinophils | ≥6 years | ≥150 cells/μL | 100 mg SC every 4 weeks | 53% reduction in exacerbations (MENSA); OCS reduction (SIRIUS); QoL improvement (MUSCA) | MENSA, SIRIUS, MUSCA [117] |
Reslizumab (Cinqair) | Anti-IL-5; binds circulating IL-5 to prevent receptor engagement | ≥18 years | >400 cells/μL for best response | IV infusion (dose vary by weight) every 4 weeks | 92% eosinophil reduction; 50% and 41% reduction in exacerbations; 0.160 L FEV1 improvement | Study 3082 (Phase 3) Study 3083 (Phase 3) 3084 (Phase 3); Study 3085 (Phase 3) [118]; REALITI-A real-world cohort [119] |
Benralizumab (Fasenra) | Anti-IL-5Rα; induces ADCC leading to eosinophil apoptosis | ≥12 years | >300 cells/μL | 30 mg SC every 4 weeks (3 doses), then every 8 weeks | 51% reduction in exacerbations (SIROCCO, CALIMA); 75% reduction in oral corticosteroid use (ZONDA); FEV1 improvement | SIROCCO, CALIMA, ZEPHYR 2, ZONDA [120] |
Effect | Study Type | Key Findings | Reference |
---|---|---|---|
Eosinophil Reduction Study (Phase 3) | Clinical Trial | Reslizumab reduced eosinophil levels by 92%, compared to 21% in placebo group. | [132] |
Exacerbation Reduction Trial 1 (Phase 3) | RCT, Double-Blind, Placebo-Controlled | Demonstrated a 50% decrease in asthma exacerbations in reslizumab-treated patients. | [133] |
Exacerbation Reduction Trial 2 (Phase 3) | RCT, Double-Blind, Placebo-Controlled | Showed a 41% reduction in asthma exacerbation rate with reslizumab use. | [134] |
Lung Function Improvement Study (Phase 3) | RCT | Found a 0.160 L greater improvement in FEV1 in the treatment group vs. placebo. | [135] |
Regulatory Summary | Clinical Overview | Approved as add-on therapy for adults (≥18 years) with severe eosinophilic asthma. | [131] |
Stratified Eosinophil Response Study (Phase 3) | Clinical Trial | Enhanced lung function seen only in patients with eosinophil counts > 400 cells/μL; no FEV1 improvement in lower counts. | [136] |
Disease Area | Study Name (Clinical Trial ID) | Participant Criteria | Dosage Scheme | Study Duration | Primary Outcome |
---|---|---|---|---|---|
Atopic Dermatitis | SOLO-1 (Phase 3; NCT02277743) | Adults (≥18 yrs), moderate to severe cases, n = 671 | 300 mg weekly/biweekly; placebo | 16 weeks | Investigator’s Global Assessment (IGA) score 0/1 with ≥2-point drop [149] |
SOLO-2 (Phase 3; NCT02277769) | Adults (≥18 yrs), moderate to severe, n = 708 | 300 mg weekly/biweekly; placebo | 16 weeks | IGA score 0/1 and ≥2-point drop [149] | |
CHRONOS (Phase 3; (NCT02260986) | Adults (≥18 yrs), moderate to severe, n = 740 | 300 mg weekly/biweekly; placebo | 52 weeks | IGA score 0/1 and ≥2-point drop [149] | |
LIBERTY AD ADOL (NCT03054428) | Adolescents 12–17 yrs, moderate to severe | <60 kg: 200 mg biweekly; ≥60 kg: 300 mg biweekly; placebo | 16 weeks | IGA score 0/1 and ≥2-point drop [149] | |
LIBERTY AD PEDS (Phase 3; NCT03345914) | Children 6–11 yrs, severe | <30 kg: 100 mg biweekly; ≥30 kg: 200 mg biweekly or 300 mg every 4 weeks; placebo | 16 weeks | IGA score 0/1 [150] | |
LIBERTY AD PRESCHOOL (Phase 3; NCT03346434) | Children 6 months–5 years, moderate to severe | 5–15 kg: 200 mg every 4 weeks; 15–30 kg: 300 mg every 4 weeks; placebo | 16 weeks | IGA score 0/1 [150] | |
Asthma | LIBERTY ASTHMA QUEST (Phase 3; NCT02414854) | Patients ≥ 12 yrs, moderate to severe, n = 1902 | 200 mg or 300 mg biweekly; placebo | 52 weeks | Exacerbation frequency; FEV1 change [151] |
LIBERTY ASTHMA VOYAGE (Phase 3; NCT02948959) | Children 6–11 yrs, moderate to severe, n = 408 | <30 kg: 100 mg biweekly; ≥30 kg: 200 mg biweekly; placebo | 52 weeks | Annualized exacerbation rate [152]. | |
hronic Rhinosinusitis with Nasal Polyps | NP SINUS-24 (Phase 3; NCT02912468) | Adults (≥18 yrs), severe symptoms, n = 276 | 300 mg biweekly; placebo | 24 weeks | Change in nasal congestion, polyp score, and CT findings [153] |
NP SINUS-52 (Phase 3; NCT02898454) | Adults (≥18 yrs), severe symptoms, n = 448 | 300 mg biweekly for 24 weeks, then monthly; placebo | 52 weeks | Change in nasal polyps, congestion, CT at 24 weeks [153] | |
Eosinophilic Esophagitis | Parts A, B, C (Phase 3; NCT03633617) | Adults ≥ 12 yrs | 300 mg weekly or biweekly; placebo | 24–28 weeks | Histological remission (≤6 eos/hpf), symptom reduction [154]. |
EoE KIDS (Phase 3; NCT04394351) | Children 1–11 yrs | <30 kg: 200 mg biweekly; 30–60 kg: 300 mg biweekly; placebo | 16–52 weeks | Histologic response defined as ≤6 eosinophils per hpf [155]. |
Study (ID) | Japanese LTS Phase 3 | MESOS Phase 2 | TROPOS Phase 3 | STRATOS 2 Phase 3 | STRATOS 1 Phase 3 |
---|---|---|---|---|---|
Subjects Enrolled | 28 | 79 | 140 | 856 | 1207 |
Lead-in Phase | Up to 2 weeks | — | 2 weeks | 4–6 weeks | 4–6 weeks |
Active Treatment Span | 52 weeks | 12 weeks | 40 weeks | 52 weeks | 52 weeks |
Post-treatment Follow-up | 14 weeks | 14 weeks | 14 weeks | 20 weeks | 20 weeks |
Enrollment Criteria | Japanese adults with asthma not controlled on ICS + LABA | Asthmatics uncontrolled on ICS alone | Asthmatics requiring maintenance OCS + ICS/LABA | Adults with asthma inadequately managed on ICS/LABA | Adults with asthma inadequately managed on ICS/LABA |
Investigational Dose | 300 mg SC every 2 weeks | 300 mg SC every 2 weeks | 300 mg SC every 2 weeks | 300 mg SC every 2 weeks | 300 mg SC every 2 weeks or 300 mg SC every 4 weeks |
Comparator Arm | None (open-label) | Placebo SC every 2 weeks | Placebo SC every 2 weeks | Placebo SC every 2 weeks | Placebo SC every 4 weeks |
Primary Aim | Evaluate long-term tolerability and safety in Japanese patients | Examine impact on eosinophil-driven airway inflammation and remodeling | Determine whether tralokinumab allows reduction in maintenance OCS dose | Confirm efficacy/safety in biomarker-positive subgroup | Assess efficacy/safety in overall population and identify biomarker-positive subgroup |
Primary Endpoint | Rate and severity of adverse events (AEs) [190] | Change in submucosal eosinophil density (cells/mm2) after 12 weeks [190] | Percent change in average daily OCS dosage at week 40 [191] | Annualized asthma exacerbation rate (AAER) through week 52 [192] | AAER through week 52 [192] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Văruț, R.M.; Dalia, D.; Radivojevic, K.; Trasca, D.M.; Stoica, G.-A.; Adrian, N.S.; Carmen, N.E.; Singer, C.E. Targeted Biologic Therapies in Severe Asthma: Mechanisms, Biomarkers, and Clinical Applications. Pharmaceuticals 2025, 18, 1021. https://doi.org/10.3390/ph18071021
Văruț RM, Dalia D, Radivojevic K, Trasca DM, Stoica G-A, Adrian NS, Carmen NE, Singer CE. Targeted Biologic Therapies in Severe Asthma: Mechanisms, Biomarkers, and Clinical Applications. Pharmaceuticals. 2025; 18(7):1021. https://doi.org/10.3390/ph18071021
Chicago/Turabian StyleVăruț, Renata Maria, Dop Dalia, Kristina Radivojevic, Diana Maria Trasca, George-Alin Stoica, Niculescu Stefan Adrian, Niculescu Elena Carmen, and Cristina Elena Singer. 2025. "Targeted Biologic Therapies in Severe Asthma: Mechanisms, Biomarkers, and Clinical Applications" Pharmaceuticals 18, no. 7: 1021. https://doi.org/10.3390/ph18071021
APA StyleVăruț, R. M., Dalia, D., Radivojevic, K., Trasca, D. M., Stoica, G.-A., Adrian, N. S., Carmen, N. E., & Singer, C. E. (2025). Targeted Biologic Therapies in Severe Asthma: Mechanisms, Biomarkers, and Clinical Applications. Pharmaceuticals, 18(7), 1021. https://doi.org/10.3390/ph18071021