3D-QSAR Design of New Bcr-Abl Inhibitors Based on Purine Scaffold and Cytotoxicity Studies on CML Cell Lines Sensitive and Resistant to Imatinib
Abstract
:1. Introduction
2. Results and Discussion
2.1. 3D-QSAR
2.1.1. Statistical Results
2.1.2. Outliers
2.1.3. Applicability Domain
2.1.4. Contour Map Analysis
2.2. Design and Synthesis
- (i)
- Considering the CoMFA and CoMSIA contour maps (green and yellow polyhedra in Figure 3A,B and Figure 4A,B) and by comparing the results of both models for purine 51 (or VII, the most active compound of the series, IC50 = 0.015 μM), it can be determined that the methylcyclopropyl substituent is much more favourable than the n-hexyl substituent (less active compound, 32, IC50 = 86.46 μM). Therefore, it is important to maintain the substitution at N-9 with a methylcyclopropyl group (blue region in Figure 5);
- (ii)
- It is important to maintain the hydroxymethyl group attached to piperazine, because it is the most active compound (VII and VIII, Figure 1), and according to CoMSIA (Figure 4E), the presence of a hydrophilic group favours activity on Bcr-Abl. Likewise, it is interesting to explore the increase in the size of this fragment (green region in Figure 5) because we reported that this fragment is in the solvent-exposed region and is present in dasatinib;
- (iii)
- Based on the CoMSIA analysis, it is proposed that the presence of an electronegative atom in the phenylamino fragment at C-2 of purine would favour activity. That is, the isosteric replacement of benzene by pyridine was considered for these new purine derivatives (orange region in Figure 5);
- (iv)
- In Figure 4C,D, it is observed that the inhibitory activity of Bcr-Abl is stronger in the presence of electron-rich groups or electronegative atoms in the red polyhedra, as well as in the presence of electron-deficient substituents in the blue polyhedra. Thus, the substitution of the fluorine atoms in the meta- and/or para-positions of the C-6 phenylamino ring by atoms or groups with different electronic and steric properties will be considered (red region in Figure 5). These modifications will allow us to obtain more conclusive information regarding the optimal subtraction patterns of this moiety because this issue is still unclear.
2.3. Kinase Inhibition and Structure–Activity Relationship
2.4. In Silico Studies for Validation Design of New Purines
2.5. Cytotoxic Studies on CML Cell Lines Sensitive and Resistant to Imatinib
2.6. In Silico Studies for Bcr-AblT15I
2.7. Calculated Physicochemical Properties and ADME Parameters
3. Materials and Methods
3.1. 3D-QSAR Studies
3.1.1. Selection of Conformers and Molecular Alignment
3.1.2. CoMFA and CoMSIA Field Calculation
3.1.3. Internal Validation and Partial Least Squares (PLS) Analysis
3.1.4. External Validation
3.1.5. Applicability Domain Calculation
3.2. Chemistry
3.2.1. General Procedure for the Synthesis of Intermediates 2a–2a′
3.2.2. General Procedure for the Synthesis of Intermediates 3a–f
3.2.3. General Procedures for the Synthesis of Intermediates 5a–c
3.2.4. General Procedures for the Synthesis Compounds 6a–c
3.2.5. General Procedures for the Synthesis of Final Compounds for Biological Assays 7a–g
3.3. Biological Activity
3.3.1. Kinase Assays
3.3.2. Cell Cultures
3.3.3. Cytotoxicity Assay
3.4. Molecular Docking Studies
3.5. Molecular Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Westerweel, P.E.; Te Boekhorst, P.A.W.; Levin, M.-D.; Cornelissen, J.J. New Approaches and Treatment Combinations for the Management of Chronic Myeloid Leukemia. Front. Oncol. 2019, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Komorowski, L.; Fidyt, K.; Patkowska, E.; Firczuk, M. Philadelphia Chromosome-Positive Leukemia in the Lymphoid Lineage-Similarities and Differences with the Myeloid Lineage and Specific Vulnerabilities. Int. J. Mol. Sci. 2020, 21, 5776. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Tiwari, A.K.; Sun, Y.; Ding, P.-R.; Ashby, C.R.; Chen, Z.-S. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: A review. Leuk. Res. 2010, 34, 1255–1268. [Google Scholar] [CrossRef]
- Baran, Y.; Saydam, G. Cumulative clinical experience from a decade of use: Imatinib as first-line treatment of chronic myeloid leukemia. J. Blood Med. 2012, 3, 139–150. [Google Scholar] [CrossRef]
- Laganà, A.; Scalzulli, E.; Bisegna, M.L.; Ielo, C.; Martelli, M.; Breccia, M. Understanding and overcoming resistance to tyrosine kinase inhibitors (TKIs) in Chronic myeloid leukemia (CML). Expert. Rev. Hematol. 2025, 18, 65–79. [Google Scholar] [CrossRef]
- Carofiglio, F.; Trisciuzzi, D.; Gambacorta, N.; Leonetti, F.; Stefanachi, A.; Nicolotti, O. Bcr-Abl Allosteric Inhibitors: Where We Are and Where We Are Going to. Molecules 2020, 25, 4210. [Google Scholar] [CrossRef]
- Rossari, F.; Minutolo, F.; Orciuolo, E. Past, present, and future of Bcr-Abl inhibitors: From chemical development to clinical efficacy. J. Hematol. Oncol. 2018, 11, 84. [Google Scholar] [CrossRef]
- Nascimento, M.; Moura, S.; Parra, L.; Vasconcellos, V.; Costa, G.; Leite, D.; Dias, M.; Fernandes, T.V.A.; Hoelz, L.; Pimentel, L.; et al. Ponatinib: A Review of the History of Medicinal Chemistry behind Its Development. Pharmaceuticals 2024, 17, 1361. [Google Scholar] [CrossRef]
- Azam, M.; Nardi, V.; Shakespeare, W.C.; Metcalf, C.A., 3rd; Bohacek, R.S.; Wang, Y.; Sundaramoorthi, R.; Sliz, P.; Veach, D.R.; Bornmann, W.G.; et al. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance. Proc. Natl. Acad. Sci. USA 2006, 103, 9244–9249. [Google Scholar] [CrossRef]
- Delgado, T.; Veselá, D.; Dostálová, H.; Kryštof, V.; Vojáčková, V.; Jorda, R.; Castro, A.; Bertrand, J.; Rivera, G.; Faúndez, M.; et al. New Inhibitors of Bcr-Abl Based on 2,6,9-Trisubstituted Purine Scaffold Elicit Cytotoxicity in Chronic Myeloid Leukemia-Derived Cell Lines Sensitive and Resistant to TKIs. Pharmaceutics 2024, 16, 649. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, J.; Dostálová, H.; Kryštof, V.; Jorda, R.; Delgado, T.; Castro-Alvarez, A.; Mella, J.; Cabezas, D.; Faúndez, M.; Espinosa-Bustos, C.; et al. Design, Synthesis, In Silico Studies and Inhibitory Activity towards Bcr-Abl, BTK and FLT3-ITD of New 2,6,9-Trisubstituted Purine Derivatives as Potential Agents for the Treatment of Leukaemia. Pharmaceutics 2022, 14, 1294. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, J.; Dostálová, H.; Krystof, V.; Jorda, R.; Castro, A.; Mella, J.; Espinosa-Bustos, C.; María Zarate, A.; Salas, C.O. New 2,6,9-trisubstituted purine derivatives as Bcr-Abl and Btk inhibitors and as promising agents against leukemia. Bioorg. Chem. 2020, 94, 103361. [Google Scholar] [CrossRef] [PubMed]
- Gagic, Z.; Ruzic, D.; Djokovic, N.; Djikic, T.; Nikolic, K. In silico Methods for Design of Kinase Inhibitors as Anticancer Drugs. Front. Chem. 2019, 7, 873. [Google Scholar] [CrossRef]
- Urich, R.; Wishart, G.; Kiczun, M.; Richters, A.; Tidten-Luksch, N.; Rauh, D.; Sherborne, B.; Wyatt, P.G.; Brenk, R. De Novo Design of Protein Kinase Inhibitors by in Silico Identification of Hinge Region-Binding Fragments. ACS Chem. Biol. 2013, 8, 1044–1052. [Google Scholar] [CrossRef]
- Golestanifar, F.; Garkani-Nejad, Z. In silico design and ADMET evaluation of new inhibitors for PIM1 kinase using QSAR studies, molecular docking, and molecular dynamic simulation. Heliyon 2024, 10, e38309. [Google Scholar] [CrossRef]
- Azimi, S.; Bagher, M.; Shahram, B.; Vessally, E. In Silico study and design of some new potent threonine tyrosine kinase inhibitors using molecular docking simulation. Mol. Simul. 2023, 49, 517–524. [Google Scholar] [CrossRef]
- Gond, C.; Kumar, N.; Mishra, A.; Daksh, S.; Datta, A.; Tiwari, A.K. Rational computational Design of new-Generation EGFR tyrosine kinase (EGFR-TK) inhibitors. Results Chem. 2025, 15, 102239. [Google Scholar] [CrossRef]
- Martins, D.M.; Fernandes, P.O.; Vieira, L.A.; Maltarollo, V.G.; Moraes, A.H. Structure-Guided Drug Design Targeting Abl Kinase: How Structure and Regulation Can Assist in Designing New Drugs. ChemBioChem 2024, 25, e202400296. [Google Scholar] [CrossRef]
- Koroleva, E.V.; Ermolinskaya, A.L.; Ignatovich, Z.V.; Kornoushenko, Y.V.; Panibrat, A.V.; Potkin, V.I.; Andrianov, A.M. Design, in silico Evaluation, and Determination of Antitumor Activity of Potential Inhibitors Against Protein Kinases: Application to BCR-ABL Tyrosine Kinase. Biochemistry 2024, 89, 1094–1108. [Google Scholar] [CrossRef]
- Harrington, E.A.; Bebbington, D.; Moore, J.; Rasmussen, R.K.; Ajose-Adeogun, A.O.; Nakayama, T.; Graham, J.A.; Demur, C.; Hercend, T.; Diu-Hercend, A.; et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat. Med. 2004, 10, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Parate, S.; Danishuddin; Zeb, A.; Singh, P.; Lee, G.; Jung, T.S.; Lee, K.W.; Ha, M.W. 3D-QSAR-Based Pharmacophore Modeling, Virtual Screening, and Molecular Dynamics Simulations for the Identification of Spleen Tyrosine Kinase Inhibitors. Front. Cell. Infect. Microbiol. 2022, 12, 909111. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, P.K.; Balupuri, A.; Cho, S.J. 3D-QSAR studies on disubstituted dibenzosuberone derivatives as p38α MAP kinase inhibitors using CoMFA and COMSIA. Med. Chem. Res. 2016, 25, 2349–2359. [Google Scholar] [CrossRef]
- Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269–276. [Google Scholar] [CrossRef]
- Tropsha, A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inform. 2010, 29, 476–488. [Google Scholar] [CrossRef]
- Tropsha, A.; Gramatica, P.; Gombar, V.K. The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models. QSAR Comb. Sci. 2003, 22, 69–77. [Google Scholar] [CrossRef]
- Roy, P.P.; Roy, K. On Some Aspects of Variable Selection for Partial Least Squares Regression Models. QSAR Comb. Sci. 2008, 27, 302–313. [Google Scholar] [CrossRef]
- Espinosa-Bustos, C.; Zárate, A.M.; Castro-Álvarez, A.; Guerrero, S.; Kogan, M.J.; Salas, C.O. Synthesis, antitumoral activity, and in silico studies on Smoothened receptor of new 2,6,9-trisubstituted purine derivatives. J. Mol. Struct. 2025, 1328, 141228. [Google Scholar] [CrossRef]
- Espinosa-Bustos, C.; Bertrand, J.; Villegas-Menares, A.; Guerrero, S.; Di Marcotullio, L.; Navacci, S.; Schulte, G.; Kozielewicz, P.; Bloch, N.; Villela, V.; et al. New Smoothened ligands based on the purine scaffold as potential agents for treating pancreatic cancer. Bioorg. Chem. 2024, 151, 107681. [Google Scholar] [CrossRef]
- Villegas, A.; Satheeshkumar, R.; Ballesteros-Casallas, A.; Paulino, M.; Castro, A.; Espinosa-Bustos, C.; Salas, C.O. Convergent synthesis, drug target prediction, and docking studies of new 2,6,9-trisubstituted purine derivatives. J. Heterocycl. Chem. 2022, 59, 97–111. [Google Scholar] [CrossRef]
- Meng, Y.; Gao, C.; Clawson, D.K.; Atwell, S.; Russell, M.; Vieth, M.; Roux, B. Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models. J. Chem. Theory Comput. 2018, 14, 2721–2732. [Google Scholar] [CrossRef]
- Willis, S.G.; Lange, T.; Demehri, S.; Otto, S.; Crossman, L.; Niederwieser, D.; Stoffregen, E.P.; McWeeney, S.; Kovacs, I.; Park, B.; et al. High-sensitivity detection of BCR-ABL kinase domain mutations in imatinib-naive patients: Correlation with clonal cytogenetic evolution but not response to therapy. Blood 2005, 106, 2128–2137. [Google Scholar] [CrossRef] [PubMed]
- Weisberg, E.; Manley, P.; Mestan, J.; Cowan-Jacob, S.; Ray, A.; Griffin, J.D. AMN107 (nilotinib): A novel and selective inhibitor of BCR-ABL. Br. J. Cancer 2006, 94, 1765–1769. [Google Scholar] [CrossRef] [PubMed]
- Pemovska, T.; Johnson, E.; Kontro, M.; Repasky, G.A.; Chen, J.; Wells, P.; Cronin, C.N.; McTigue, M.; Kallioniemi, O.; Porkka, K.; et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature 2015, 519, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; Tan, S.; Xu, T.; Liu, H.; Huang, J.; Yao, X. MolAICal: A soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Brief. Bioinform. 2020, 22, bbaa161. [Google Scholar] [CrossRef]
- Meanwell, N.A. Improving Drug Candidates by Design: A Focus on Physicochemical Properties as a Means of Improving Compound Disposition and Safety. Chem. Res. Toxicol. 2011, 24, 1420–1456. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development. Adv. Drug Deliv. Rev. 1997, 23, 3–25.1, Erratum in Adv. Drug Deliv. Rev. 2001, 46, 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Powell, M.J.D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 1964, 7, 155–162. [Google Scholar] [CrossRef]
- Klebe, G.; Abraham, U.; Mietzner, T. Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. J. Med. Chem. 1994, 37, 4130–4146. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.; Cramer III, R.D.; Van Opdenbosch, N. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 1989, 10, 982–1012. [Google Scholar] [CrossRef]
- Roy, K.; Kar, S.; Ambure, P. On a simple approach for determining applicability domain of QSAR models. Chemom. Intell. Lab. Syst. 2015, 145, 22–29. [Google Scholar] [CrossRef]
- Curik, N.; Polivkova, V.; Burda, P.; Koblihova, J.; Laznicka, A.; Kalina, T.; Kanderova, V.; Brezinova, J.; Ransdorfova, S.; Karasova, D.; et al. Somatic Mutations in Oncogenes Are in Chronic Myeloid Leukemia Acquired De Novo via Deregulated Base-Excision Repair and Alternative Non-Homologous End Joining. Front. Oncol. 2021, 11, 744373. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Huang, J.; MacKerell, A.D., Jr. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013, 34, 2135–2145. [Google Scholar] [CrossRef]
Contribution (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | q2 | r2 | SEE | F | SEP | r2pred | Steric | Electrostatic | Hydrophobic | |
CoMFA-SE | 6 | 0.576 | 0.939 | 0.241 | 82,729 | 0.637 | 0.863 | 0.587 | 0.413 | |
CoMSIA-SEH | 6 | 0.637 | 0.934 | 0.252 | 74,988 | 0.589 | 0.842 | 0.249 | 0.472 | 0.279 |
Condition | Parameters | Threshold Value | CoMFA | CoMSIA |
---|---|---|---|---|
1 | >0.5 | 0.576 | 0.637 | |
2 | >0.6 | 0.863 | 0.842 | |
3a | Close to value of | 0.999 | 0.999 | |
3b | Close to value of | 0.999 | 0.999 | |
4a | 0.85 < < 1.15 | 1.023 | 1.012 | |
4b | 0.85 < < 1.15 | 0.976 | 0.988 | |
5a | <0.1 | −0.157 | −0.186 | |
5b | <0.1 | −0.157 | −0.186 | |
6 | <0.3 | 0.00 | 0.00 | |
7 | >0.5 | 0.545 | 0.508 |
Compound | IC50 (µM) a | CoMFA | CoMSIA | |||
---|---|---|---|---|---|---|
Abl | pIC50 Exp | pIC50 Pred | Residual | pIC50 Pred | Residual | |
7a | 0.13 ± 0.03 | 6.886 | 7.111 | −0.23 | 7.347 | −0.46 |
7b | 0.46 ± 0.15 | 6.337 | 7.845 | −1.51 | 7.880 | −1.54 |
7c | 0.19 ± 0.05 | 6.721 | 7.957 | −1.24 | 7.960 | −1.24 |
7d | 0.21 ± 0.01 | 6.678 | 9.881 | −3.20 | 7.187 | −0.51 |
7e | 0.42 ± 0.08 | 6.377 | 7.761 | −1.38 | 7.836 | −1.46 |
7f | 1.26 ± 0.65 | 5.899 | 7.906 | −2.01 | 7.450 | −1.55 |
7g | 0.79 ± 0.14 | 6.102 | 7.904 | −1.80 | 7.740 | −1.64 |
imatinib | 0.33 ± 0.21 | - | - | - | - | - |
Compound | pIC50 | IFD Score (kcal/mol) |
---|---|---|
7a | 6.886 | −9.348 |
7b | 6.337 | −8.347 |
7c | 6.721 | −9.950 |
7d | 6.678 | −8.403 |
7e | 6.377 | −9.903 |
7f | 5.899 | −7.408 |
7g | 6.102 | −9.762 |
GI50 (μM) a | |||||||
---|---|---|---|---|---|---|---|
Compound | K562 | KCL22 | KCL22-B8 | HEK-293T | SI b | SI b | SI b |
7a | 1.37 ± 0.61 | 2.38 ± 1.12 | 17.37 ± 2.02 | 6.85 ± 0.66 | 5.0 | 2.9 | 0.4 |
7b | 4.04 ± 1.87 | 13.08 ± 2.21 | 17.90 ± 2.71 | 14.75 ± 0.91 | 3.6 | 1.1 | 0.8 |
7c | 0.30 ± 0.11 | 1.54 ± 1.02 | >25 | >25 | 82 | 16 | - |
7d | 1.44 ± 0.91 | 2.96 ± 0.97 | 20.08 ± 2.35 | 7.87 ± 1.53 | 5.5 | 2.7 | 0.4 |
7e | 2.19 ± 1.42 | 3.88 ± 1.46 | 15.43 ± 0.98 | 5.98 ± 2.78 | 2.7 | 1.7 | 0.4 |
7f | 3.56 ± 0.52 | 12.42 ± 4.28 | 13.80 ± 3.05 | 3.96 ± 0.57 | 1.1 | 0.3 | 0.3 |
7g | 2.34 ± 1.04 | 5.51 ± 1.08 | 16.56 ± 0.92 | 4.32 ± 1.42 | 1.8 | 0.8 | 0.3 |
imatinib | 0.23 ± 0.01 | 9.26 ± 1.00 | >20 | >10 | 43 | 1.1 | 0.5 |
MMGBSA | ||||
---|---|---|---|---|
Compound | ∆G Bcr-AblWT (kcal/mol) | Error | ∆G Bcr-AblT315I (kcal/mol) | Error |
7e | −26.83 | 0.22 | −33.52 | 0.11 |
7f | −26.72 | 0.10 | −32.06 | 0.11 |
Imatinib | −38.08 | 0.14 | −28.18 | 0.07 |
Compound | MW (Da) | HBA | HBD | cLogP | TPSA (Å2) | NRB | GI | BBB Permeant | P-gp Substrate | hERG |
---|---|---|---|---|---|---|---|---|---|---|
Desirable Value | ≤500 | ≤10 | ≤5 | ≤5 | ≤140 | ≤10 | ||||
7a | 546.64 | 7 | 3 | 3.38 | 103.60 | 12 | High | No | Yes | medium risk |
7b | 509.61 | 6 | 3 | 2.76 | 118.16 | 9 | High | No | Yes | high risk |
7c | 510.59 | 7 | 3 | 2.21 | 131.05 | 9 | High | No | Yes | high risk |
7d | 563.49 | 5 | 3 | 3.61 | 94.37 | 9 | High | No | Yes | medium risk |
7e | 577.08 | 7 | 3 | 3.36 | 120.67 | 11 | High | No | Yes | medium risk |
7f | 587.04 | 8 | 3 | 4.43 | 94.37 | 10 | High | No | Yes | medium risk |
7g | 593.52 | 6 | 3 | 3.53 | 103.60 | 10 | High | No | Yes | medium risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabezas, D.; Delgado, T.; Sepúlveda, G.; Krňávková, P.; Vojáčková, V.; Kryštof, V.; Strnad, M.; Silva, N.I.; Echeverría, J.; Espinosa-Bustos, C.; et al. 3D-QSAR Design of New Bcr-Abl Inhibitors Based on Purine Scaffold and Cytotoxicity Studies on CML Cell Lines Sensitive and Resistant to Imatinib. Pharmaceuticals 2025, 18, 925. https://doi.org/10.3390/ph18060925
Cabezas D, Delgado T, Sepúlveda G, Krňávková P, Vojáčková V, Kryštof V, Strnad M, Silva NI, Echeverría J, Espinosa-Bustos C, et al. 3D-QSAR Design of New Bcr-Abl Inhibitors Based on Purine Scaffold and Cytotoxicity Studies on CML Cell Lines Sensitive and Resistant to Imatinib. Pharmaceuticals. 2025; 18(6):925. https://doi.org/10.3390/ph18060925
Chicago/Turabian StyleCabezas, David, Thalía Delgado, Guisselle Sepúlveda, Petra Krňávková, Veronika Vojáčková, Vladimír Kryštof, Miroslav Strnad, Nicolás Ignacio Silva, Javier Echeverría, Christian Espinosa-Bustos, and et al. 2025. "3D-QSAR Design of New Bcr-Abl Inhibitors Based on Purine Scaffold and Cytotoxicity Studies on CML Cell Lines Sensitive and Resistant to Imatinib" Pharmaceuticals 18, no. 6: 925. https://doi.org/10.3390/ph18060925
APA StyleCabezas, D., Delgado, T., Sepúlveda, G., Krňávková, P., Vojáčková, V., Kryštof, V., Strnad, M., Silva, N. I., Echeverría, J., Espinosa-Bustos, C., Mellado, G., Luo, J., Mella, J., & Salas, C. O. (2025). 3D-QSAR Design of New Bcr-Abl Inhibitors Based on Purine Scaffold and Cytotoxicity Studies on CML Cell Lines Sensitive and Resistant to Imatinib. Pharmaceuticals, 18(6), 925. https://doi.org/10.3390/ph18060925