Development of Mannitol-Based Microparticles for Dry Powder Inhalers: Enhancing Pulmonary Delivery of NSAIDs
Abstract
:1. Introduction
2. Results
2.1. Result of Particle Size Analysis by Laser Diffraction
2.2. Outcomes of Density and Powder Flow Tests
2.3. Findings of Scanning Electron Microscopy Investigation
2.4. Results of Structure Analysis Using Powder X-Ray Diffraction
2.5. Evaluation of Fourier-Transform Infrared Spectroscopy Investigation
2.6. Outcomes of In Vitro Dissolution Investigation
2.7. Determined In Vitro Aerodynamic Properties of DPI Formulation
2.8. Results of Aerodynamic Characterization by Spraytec® Device
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Preparation of Solution of MXP and the Pre-Suspension of MX
4.2.2. Spray Drying of the Solution of MXP and the Pre-Suspension of MX
4.2.3. Preparation of Physical Mixtures
4.2.4. Determination of API Content
4.2.5. Laser Diffraction-Based Particle Size Measurement
4.2.6. Scanning Electron Microscopy Investigation
4.2.7. Density and Powder Flow Measurement
4.2.8. Powder X-Ray Diffraction Analysis
4.2.9. Fourier-Transform Infrared Spectroscopy Investigation
4.2.10. In Vitro Dissolution Test in Simulated Lung Media
4.2.11. In Vitro Aerodynamic Measurements
4.2.12. Aerodynamic Particle Size Analysis Using Spraytec® Device
4.2.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACI | Andersen cascade impactor |
API | Active pharmaceutical ingredient |
CI | Carr index |
D[0.1] | 10% of the volume distribution is below this value |
D[0.5] | 50% of the volume distribution is below this value |
D[0.9] | 90% of the volume distribution is below this value |
DE% | Dissolution efficiency |
DPI | Dry powder inhaler |
EF | Emitted fraction |
FPF | Fine particle fraction |
FT-IR | Fourier-transform infrared spectroscopy |
HR | Hausner ratio |
LEU | L-leucine |
MAN | Mannitol |
MMAD | Mass median aerodynamic diameter |
MX | Meloxicam |
MXP | Meloxicam-potassium monohydrate |
NSAID | Non-steroidal anti-inflammatory drug |
PM | Physical mixture |
POL | Poloxamer-188 |
PSD | Particle size distribution |
SD | Standard deviation |
SEM | Scanning electron microscopy |
SPD | Spray-dried |
PXRD | Powder X-ray diffraction |
ρb | Bulk density |
ρt | Tapped density |
References
- World Health Organization. Global Health Estimates: Leading Causes of Death. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed on 2 April 2025).
- Tzotzos, S.; Fischer, B.; Fischer, H.; Zeitlinger, M. Incidence of ARDS and Outcomes in Hospitalized Patients with COVID-19: A Global Literature Survey. Crit. Care 2020, 24, 516. [Google Scholar] [CrossRef] [PubMed]
- Thaker, R.; Shah, A.; Kim, J.H.; Kassi, M. Acute Circulatory Collapse and Advanced Therapies in Patients with COVID-19 Infection. Methodist Debakey Cardiovasc. J. 2021, 17, 43–52. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Jiang, X. Home-Nebulized Inhaled Glucocorticoid Therapy in Pediatric Respiratory Diseases. J. Clin. Nurs. Res. 2024, 8, 188–193. [Google Scholar] [CrossRef]
- Leonardsen, A.L.; Gulbrandsen, T.; Wasenius, C.; Fossen, L.T. Nursing Perspectives and Strategies in Patients with Respiratory Insufficiency. Nurs. Crit. Care 2020, 27, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Takumida, H.; Suzuki, M.; Suzuki, T.; Sakamoto, K.; Hashimoto, M.; Ishii, S.; Naka, G.; Iikura, M.; Izumi, S.; Takeda, Y.; et al. Usefulness of Jackson Mask Ventilation During Bronchoscopy in Patients with Acute Respiratory Failure. Medicine 2021, 100, e27943. [Google Scholar] [CrossRef]
- Moldovan, E.; Enoiu, R.S. The Role of Physical Therapy in the Afflictions of the Respiratory Apparatus. Gymnasium 2019, 19, 132–146. [Google Scholar] [CrossRef]
- Ferri, S.; Paoletti, G.; Pelaia, C.; Heffler, E.; Canonica, G.W.; Puggioni, F. COPD and Biologic Treatment: State of the Art. Curr. Opin. Allergy Clin. Immunol. 2023, 23, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Scherließ, R. Future of Nanomedicines for Treating Respiratory Diseases. Expert Opin. Drug Deliv. 2019, 16, 59–68. [Google Scholar] [CrossRef]
- Pavord, I. Biologics and Chronic Obstructive Pulmonary Disease. J. Allergy Clin. Immunol. 2018, 141, 1983–1991. [Google Scholar] [CrossRef]
- Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Carafa, M.; Alhaique, F. Pulmonary Delivery: Innovative Approaches and Perspectives. J. Biomater. Nanobiotechnol. 2011, 2, 567–575. [Google Scholar] [CrossRef]
- Ruge, C.C.; Kirch, J.; Lehr, C.M. Pulmonary Drug Delivery: From Generating Aerosols to Overcoming Biological Barriers-Therapeutic Possibilities and Technological Challenges. Lancet Respir. Med. 2013, 1, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Yıldız-Peköz, A.; Ehrhardt, C. Advances in Pulmonary Drug Delivery. Pharmaceutics 2020, 12, 911. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.S.; Kang, J.H.; Kim, D.W.; Park, C.W. Recent Developments in Dry Powder Inhalation (DPI) Formulations for Lung-Targeted Drug Delivery. J. Pharm. Investig. 2024, 54, 113–130. [Google Scholar] [CrossRef]
- Patton, J.S.; Byron, P.R. Inhaling Medicines: Delivering Drugs to the Body Through the Lungs. Nat. Rev. Drug Discov. 2007, 6, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Szabó-Révész, P. Modifying the Physicochemical Properties of NSAIDs for Nasal and Pulmonary Administration. Drug Discov. Today Technol. 2018, 27, 87–93. [Google Scholar] [CrossRef]
- Shahin, H.I.; Chablani, L. A Comprehensive Overview of Dry Powder Inhalers for Pulmonary Drug Delivery: Challenges, Advances, Optimization Techniques, and Applications. J. Drug Deliv. Sci. Technol. 2023, 84, 104553. [Google Scholar] [CrossRef]
- Scherließ, R.; Bock, S.; Bungert, N.; Neustock, A.; Valentin, L. Particle Engineering in Dry Powders for Inhalation. Eur. J. Pharm. Sci. 2022, 172, 106158. [Google Scholar] [CrossRef]
- Wang, J.; Kong, X.; Hu, L.; Hu, Y. Dry Powder Inhalers: A Patent Review. J. Drug Deliv. Sci. Technol. 2022, 74, 103540. [Google Scholar] [CrossRef]
- Shetty, N.; Cipolla, D.; Park, H.; Zhou, Q.T. Physical Stability of Dry Powder Inhaler Formulations. Expert Opin. Drug Deliv. 2020, 17, 77–96. [Google Scholar] [CrossRef]
- Chaurasiya, B.; Zhao, Y.Y. Dry Powder for Pulmonary Delivery: A Comprehensive Review. Pharmaceutics 2021, 13, 31. [Google Scholar] [CrossRef]
- Pilcer, G.; Amighi, K. Formulation Strategy and Use of Excipients in Pulmonary Drug Delivery. Int. J. Pharm. 2010, 392, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Banat, H.; Csóka, I.; Kun-Szabó, F.; Fodor, G.H.; Somogyi, P.; Peták, F.; Party, P.; Sztojkov-Ivanov, A.; Ducza, E.; Berkecz, R.; et al. Mannitol-Leucine Synergy in Nanocrystal Agglomerates for Enhanced Systemic Delivery of Inhaled Ketoprofen: Pharmacokinetics and Safety in Ovalbumin-Sensitized Rats. Int. J. Pharm. 2025, 676, 125610. [Google Scholar] [CrossRef] [PubMed]
- Party, P.; Soliman, L.; Nagy, A.; Farkas, Á.; Ambrus, R. Optimization, In Vitro, and In Silico Characterization of Theophylline Inhalable Powder Using Raffinose-Amino Acid Combination as Fine Co-Spray-Dried Carriers. Pharmaceutics 2025, 17, 466. [Google Scholar] [CrossRef] [PubMed]
- Wanning, S.; Süverkrüp, R.; Lamprecht, A. Impact of Excipient Choice on the Aerodynamic Performance of Inhalable Spray-Freeze-Dried Powders. Int. J. Pharm. 2020, 586, 119564. [Google Scholar] [CrossRef]
- Banat, H.; Nagy, A.; Farkas, Á.; Ambrus, R.; Csóka, I. Comprehensive Aerodynamic and Physicochemical Stability Evaluations of Nanocrystal-Based Dry Powder Inhalers: The Role of Mannitol and Leucine in Enhancing Performance. Pharmaceutics 2025, 17, 436. [Google Scholar] [CrossRef]
- Party, P.; Klement, M.L.; Révész, P.S.; Ambrus, R. Preparation and Characterization of Ibuprofen Containing Nano-Embedded-Microparticles for Pulmonary Delivery. Pharmaceutics 2023, 15, 545. [Google Scholar] [CrossRef]
- Alhajj, N.; O’Reilly, N.J.; Cathcart, H. Leucine as an Excipient in Spray Dried Powder for Inhalation. Drug Discov. Today 2021, 26, 2384–2396. [Google Scholar] [CrossRef]
- Li, L.; Sun, S.; Parumasivam, T.; Denman, J.A.; Gengenbach, T.; Tang, P.; Mao, S.; Chan, H.K. L-Leucine as an Excipient against Moisture on in Vitro Aerosolization Performances of Highly Hygroscopic Spray-Dried Powders. Eur. J. Pharm. Biopharm. 2016, 102, 132–141. [Google Scholar] [CrossRef]
- Zillen, D.; Beugeling, M.; Hinrichs, W.L.J.; Frijlink, H.W.; Grasmeijer, F. Natural and Bioinspired Excipients for Dry Powder Inhalation Formulations. Curr. Opin. Colloid Interface Sci. 2021, 56, 101497. [Google Scholar] [CrossRef]
- Meloxicam. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Meloxicam (accessed on 28 March 2025).
- Meloxicam—Drugbank. Available online: https://go.drugbank.com/drugs/DB00814 (accessed on 28 March 2025).
- Suzuki, R.; Yamamoto, M.; Saka, H.; Taniguchi, H.; Shindoh, J.; Tanikawa, Y.; Nomura, F.; Gonda, H.; Imaizumi, K.; Hasegawa, Y.; et al. A Phase II Study of Carboplatin and Paclitacel with Meloxicam. Lung Cancer 2009, 63, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Arafa, H.M.M.; Abdel-Wahab, M.H.; El-Shafeey, M.F.; Badary, O.A.; Hamada, F.M.A. Anti-Fibrotic Effect of Meloxicam in a Murine Lung Fibrosis Model. Eur. J. Pharmacol. 2007, 564, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.; Porter, S.; Rozenberg, D.; O’Connor, E.; Lee, T.; Balter, M.; Wentlandt, K. Chronic Obstructive Pulmonary Disease: A Palliative Medicine Review of the Disease, Its Therapies, and Drug Interactions. J. Pain Symptom Manag. 2020, 60, 135–150. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.L.; Cruz, F.F.; Rocco, P.R.M.; Morales, M.M. New Perspectives in Nanotherapeutics for Chronic Respiratory Diseases. Biophys. Rev. 2017, 9, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Yokouchi, H.; Kanazawa, K.; Ishida, T.; Oizumi, S.; Shinagawa, N.; Sukoh, N.; Harada, M.; Ogura, S.; Munakata, M.; Dosaka-Akita, H.; et al. Cyclooxygenase-2 Inhibitors for Non-Small-Cell Lung Cancer: A Phase II Trial and Literature Review. Mol. Clin. Oncol. 2014, 2, 744–750. [Google Scholar] [CrossRef]
- Ong, S.W.X.; Tan, W.Y.T.; Chan, Y.H.; Fong, S.W.; Renia, L.; Ng, L.F.P.; Leo, Y.S.; Lye, D.C.; Young, B.E. Safety and Potential Efficacy of Cyclooxygenase-2 Inhibitors in Coronavirus Disease 2019. Clin. Transl. Immunol. 2020, 9, e1159. [Google Scholar] [CrossRef] [PubMed]
- Mezei, T.; Mesterházy, N.; Bakó, T.; Porcs-Makkay, M.; Simig, G.; Volk, B. Manufacture of High-Purity Meloxicam via Its Novel Potassium Salt Monohydrate. Org. Process Res. Dev. 2009, 13, 567–572. [Google Scholar] [CrossRef]
- Party, P.; Ambrus, R. Investigation of Physico-Chemical Stability and Aerodynamic Properties of Novel “Nano-in-Micro” Structured Dry Powder Inhaler System. Micromachines 2023, 14, 1348. [Google Scholar] [CrossRef]
- Party, P.; Kókai, D.; Burián, K.; Nagy, A.; Hopp, B.; Ambrus, R. Development of Extra-Fine Particles Containing Nanosized Meloxicam for Deep Pulmonary Delivery: In Vitro Aerodynamic and Cell Line Measurements. Eur. J. Pharm. Sci. 2022, 176, 106247. [Google Scholar] [CrossRef] [PubMed]
- Party, P.; Bartos, C.; Farkas, Á.; Szabó-révész, P.; Ambrus, R. Formulation and In Vitro and In Silico Characterization of “Nano-in-Micro” Dry Powder Inhalers Containing Meloxicam. Pharmaceutics 2021, 13, 211. [Google Scholar] [CrossRef]
- Chvatal, A.; Ambrus, R.; Party, P.; Katona, G.; Jójárt-Laczkovich, O.; Szabó-Révész, P.; Fattal, E.; Tsapis, N. Formulation and Comparison of Spray Dried Non-Porous and Large Porous Particles Containing Meloxicam for Pulmonary Drug Delivery. Int. J. Pharm. 2019, 559, 68–75. [Google Scholar] [CrossRef]
- Chvatal, A.; Farkas, Á.; Balásházy, I.; Szabó-Révész, P.; Ambrus, R. Aerodynamic Properties and in Silico Deposition of Meloxicam Potassium Incorporated in a Carrier-Free DPI Pulmonary System. Int. J. Pharm. 2017, 520, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Benke, E.; Farkas, Á.; Szabó-Révész, P.; Ambrus, R. Development of an Innovative, Carrier-based Dry Powder Inhalation Formulation Containing Spray-dried Meloxicam Potassium to Improve the in Vitro and in Silico Aerodynamic Properties. Pharmaceutics 2020, 12, 535. [Google Scholar] [CrossRef]
- Party, P.; Piszman, Z.I.; Farkas, Á.; Ambrus, R. Comprehensive In Vitro and In Silico Aerodynamic Analysis of High-Dose Ibuprofen- and Mannitol-Containing Dry Powder Inhalers for the Treatment of Cystic Fibrosis. Pharmaceutics 2024, 16, 1465. [Google Scholar] [CrossRef] [PubMed]
- Jabbal, S.; Poli, G.; Lipworth, B. Does Size Really Matter?: Relationship of Particle Size to Lung Deposition and Exhaled Fraction. J. Allergy Clin. Immunol. 2017, 139, 2013–2014.e1. [Google Scholar] [CrossRef]
- Bartos, C.; Motzwickler-Németh, A.; Kovács, D.; Burián, K.; Ambrus, R. Study on the Scale-Up Possibility of a Combined Wet Grinding Technique Intended for Oral Administration of Meloxicam Nanosuspension. Pharmaceutics 2024, 16, 1512. [Google Scholar] [CrossRef]
- Chapman, K.R.; Fogarty, C.M.; Peckitt, C.; Lassen, C. Delivery Characteristics and Patients’ Handling of Two Single-Dose Dry-Powder Inhalers Used in COPD. Int. J. COPD 2011, 6, 353–363. [Google Scholar]
- Williams, R.O.; Carvalho, T.C.; Peters, J.I. Influence of Particle Size on Regional Lung Deposition—What Evidence Is There? Int. J. Pharm. 2011, 406, 1–10. [Google Scholar] [CrossRef]
- 2.9.34. Bulk Density of Powders. In European Pharmacopoeia 11.5; European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France, 2024; pp. 5830–5833.
- 5.17.1. Recommendations on Dissolution Testing. In European Pharmacopoeia 11.0; European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France, 2024; pp. 837–839.
- Radivojev, S.; Zellnitz, S.; Paudel, A.; Fröhlich, E. Searching for Physiologically Relevant in Vitro Dissolution Techniques for Orally Inhaled Drugs. Int. J. Pharm. 2019, 556, 45–56. [Google Scholar] [CrossRef]
- Fröhlich, E.; Mercuri, A.; Wu, S.; Salar-Behzadi, S. Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled Compounds. Front. Pharmacol. 2016, 7, 181. [Google Scholar] [CrossRef]
- 2.9.18. Preparation for Inhalation: Aerodynamic Assessment of Fine Particles. In European Pharmacopoeia 11.0; European Directorate for the Quality of Medicines & HealthCare: Strasbourg, France, 2024; pp. 369–382.
- Levet, V.; Rosière, R.; Merlos, R.; Fusaro, L.; Berger, G.; Amighi, K.; Wauthoz, N. Development of Controlled-Release Cisplatin Dry Powders for Inhalation against Lung Cancers. Int. J. Pharm. 2016, 515, 209–220. [Google Scholar] [CrossRef]
Sample | D[0.1] (μm) | D[0.5] (μm) | D[0.9] (μm) | Span | SSA (m2/g) |
---|---|---|---|---|---|
MX_MAN_LEU0_SPD | 1.90 ± 0.35 | 4.53 ± 0.10 | 16.29 ± 3.47 | 3.18 ± 0.70 | 1.87 ± 0.33 |
MX_MAN_LEU0.5_SPD | 1.43 ± 0.10 | 3.03 ± 0.10 | 5.85 ± 0.58 | 1.46 ± 0.18 | 2.37 ± 0.08 |
MX_MAN_LEU1_SPD | 1.54 ± 0.10 | 3.36 ± 0.07 | 6.77 ± 0.45 | 1.55 ± 0.14 | 2.16 ± 0.07 |
MXP_MAN_LEU0_SPD | 4.63 ± 2.10 | 18.92 ± 14.31 | 54.31 ± 14.86 | 3.26 ± 1.27 | 0.79 ± 0.29 |
MXP_MAN_LEU0.5_SPD | 4.05 ± 0.52 | 17.04 ± 0.61 | 86.78 ± 17.51 | 4.88 ± 1.23 | 0.73 ± 0.10 |
MXP_MAN_LEU1_SPD | 1.68 ± 0.10 | 3.90 ± 0.80 | 18.85 ± 12.42 | 4.09 ± 2.46 | 1.86 ± 0.33 |
Sample | Bulk Density (g/cm3) | Tapped Density (g/cm3) | Hausner Ratio | Carr Index |
---|---|---|---|---|
MX_MAN_LEU0_SPD | 0.23 ± 0.03 | 0.36 ± 0.01 | 1.61 ± 0.25 | 36.90 ± 9.22 |
MX_MAN_LEU0.5_SPD | 0.26 ± 0.03 | 0.38 ± 0.03 | 1.48 ± 0.19 | 31.64 ± 8.16 |
MX_MAN_LEU1_SPD | 0.21 ± 0.02 | 0.34 ± 0.06 | 1.63 ± 0.22 | 37.91 ± 7.92 |
MXP_MAN_LEU0_SPD | 0.12 ± 0.00 | 0.19 ± 0.01 | 1.61 ± 0.10 | 37.78 ± 3.85 |
MXP_MAN_LEU0.5_SPD | 0.20 ± 0.04 | 0.32 ± 0.05 | 1.56 ± 0.05 | 35.73 ± 2.15 |
MXP_MAN_LEU1_SPD | 0.16 ± 0.00 | 0.27 ± 0.01 | 1.64 ± 0.07 | 39.20 ± 2.41 |
Sample | MMAD (μm) | FPF (%) | EF (%) |
---|---|---|---|
MX_MAN_LEU0.5_SPD | 4.42 ± 0.07 | 52.10 ± 0.71 | 91.86 ± 0.50 |
MX_MAN_LEU1_SPD | 4.68 ± 0.19 | 31.73 ± 1.78 | 88.92 ± 5.10 |
MXP_MAN_LEU0.5_SPD | 6.28 ± 0.51 | 26.87 ± 2.03 | 87.84 ± 2.03 |
MXP_MAN_LEU1_SPD | - | 7.92 ± 3.07 | 95.68 ± 0.25 |
Sample | D[0.5] (μm) | Span | SSA (m2/g) |
---|---|---|---|
MX_MAN_LEU0.5_SPD | 4.58 ± 0.15 | 2.52 ± 0.16 | 4.23 ± 0.14 |
MX_MAN_LEU1_SPD | 5.72 ± 0.05 | 2.40 ± 0.16 | 3.10 ± 0.10 |
MXP_MAN_LEU0.5_SPD | 39.62 ± 1.73 | 3.92 ± 0.62 | 0.48 ± 0.03 |
MXP_MAN_LEU1_SPD | 8.30 ± 0.56 | 4.04 ± 0.44 | 2.13 ± 0.15 |
Sample | MX (g) | MXP (g) | POL (g) | MAN (g) | LEU (g) | API Content (%) |
---|---|---|---|---|---|---|
MX_MAN_LEU0_PM | 1.00 | - | 0.09 | 2.00 | 0.00 | 32.36 |
MX_MAN_LEU0.5_PM | 1.00 | - | 0.09 | 2.00 | 0.50 | 27.86 |
MX_MAN_LEU1_PM | 1.00 | - | 0.09 | 2.00 | 1.00 | 24.45 |
MX_MAN_LEU0_SPD | 1.00 | - | 0.09 | 2.00 | 0.00 | 30.50 ± 0.59 |
MX_MAN_LEU0.5_SPD | 1.00 | - | 0.09 | 2.00 | 0.50 | 25.60 ± 0.77 |
MX_MAN_LEU1_SPD | 1.00 | - | 0.09 | 2.00 | 1.00 | 22.77 ± 0.29 |
MXP_MAN_LEU0_PM | - | 1.00 | 0.09 | 2.00 | 0.00 | 32.36 |
MXP_MAN_LEU0.5_PM | - | 1.00 | 0.09 | 2.00 | 0.50 | 27.86 |
MXP_MAN_LEU1_PM | - | 1.00 | 0.09 | 2.00 | 1.00 | 24.45 |
MXP_MAN_LEU0_SPD | - | 1.00 | 0.09 | 2.00 | 0.00 | 29.43 ± 1.15 |
MXP_MAN_LEU0.5_SPD | - | 1.00 | 0.09 | 2.00 | 0.50 | 24.07 ± 1.06 |
MXP_MAN_LEU1_SPD | - | 1.00 | 0.09 | 2.00 | 1.00 | 21.52 ± 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Party, P.; Piszman, Z.I.; Ambrus, R. Development of Mannitol-Based Microparticles for Dry Powder Inhalers: Enhancing Pulmonary Delivery of NSAIDs. Pharmaceuticals 2025, 18, 923. https://doi.org/10.3390/ph18060923
Party P, Piszman ZI, Ambrus R. Development of Mannitol-Based Microparticles for Dry Powder Inhalers: Enhancing Pulmonary Delivery of NSAIDs. Pharmaceuticals. 2025; 18(6):923. https://doi.org/10.3390/ph18060923
Chicago/Turabian StyleParty, Petra, Zsófia Ilona Piszman, and Rita Ambrus. 2025. "Development of Mannitol-Based Microparticles for Dry Powder Inhalers: Enhancing Pulmonary Delivery of NSAIDs" Pharmaceuticals 18, no. 6: 923. https://doi.org/10.3390/ph18060923
APA StyleParty, P., Piszman, Z. I., & Ambrus, R. (2025). Development of Mannitol-Based Microparticles for Dry Powder Inhalers: Enhancing Pulmonary Delivery of NSAIDs. Pharmaceuticals, 18(6), 923. https://doi.org/10.3390/ph18060923