Identification of Inhibitors with Potential Anti-Prostate Cancer Activity: A Chemoinformatics Approach
Abstract
:1. Introduction
2. Results
2.1. Rapid Overlay of Chemical Structures (ROCS) and Electrostatic Similarity (EON)
2.2. Predictions of Pharmacokinetic Properties
2.3. Predictions of Toxicological Properties
2.4. Molecular Docking
2.5. Synthetic Accessibility Prediction
2.6. Predictions of Molecular Properties
2.7. Biological Activity Prediction
2.8. Predictions of Lipophilicity and Water Solubility
2.9. Molecular Dynamics Simulation
2.10. MM/GBSA Binding Free Energy
2.11. Protein–Inhibitor Binding Affinity
3. Materials and Methods
3.1. Reference Compound Selection
3.2. Application of Rapid Overlay of Chemical Structures (ROCS) and Electrostatic Similarity (EON)
3.3. In Silico Study of Pharmacokinetic and Toxicological Properties
3.4. Molecular Docking Simulation
3.5. Synthetic Accessibility
3.6. In Silico Prediction of Molecular Properties
3.7. In Silico Determination of Biological Activity
3.8. Prediction of Lipophilicity and Water Solubility
3.9. Molecular Dynamics Study
3.10. Free Energy Calculations Using the MM/GBSA Approach and Protein–Inhibitor Binding Affinity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miki, K.; Kido, M.; Tashiro, K.; Aoki, M.; Kimura, S.; Urabe, F.; Egawa, S.; Sasaki, H.; Kimura, T. Prognostic Value of PSA Bounce in Prostate Cancer Following Definitive Radiation Therapy: A Systematic Review and Meta-Analysis. Prostate Cancer Prostatic Dis. 2021, 24, 976–985. [Google Scholar] [CrossRef]
- Loeb, S.; Bray, F.; Halabi, S.; Compérat, E.; Gillessen, S.; Feng, F.; Xie, L.-P.; Tilki, D.; Murphy, D.; Nguyen, P.L.; et al. The Lancet Commission on prostate cancer: Planning for the surge in cases. Lancet 2024, 403, 1683–1722. [Google Scholar] [CrossRef]
- Camacho, J.; Buie, J.D.; Sharma, P.; Choi, E.; de Riese, W.T. Evolution of Androgen Deprivation Therapy (ADT) and Its New Emerging Modalities in Prostate Cancer: An Update for Practicing Urologists, Clinicians and Medical Providers. Res. Rep. Urol. 2022, 14, 87–108. [Google Scholar] [CrossRef]
- Pang, K.; Qin, J.-X.; Shi, Z.-D.; Wu, Z.-X.; Hao, L.; Dong, Y.; Wang, W.; Chen, Z.-S.; Han, C.-H. Tumor cell plasticity in targeted therapy-induced resistance: Mechanisms and new strategies. Signal Transduct. Target. Ther. 2023, 8, 113. [Google Scholar] [CrossRef]
- Horne, D.; Singhal, S.S.; Kulkarni, P.; Garg, P.; Malhotra, J.; Salgia, R. Emerging Therapeutic Strategies to Overcome Drug Resistance in Cancer Cells. Cancers 2024, 16, 2478. [Google Scholar] [CrossRef] [PubMed]
- Velasco, G.; Zarrabi, A.; Sainz, R.M.; Ambrosini, G.; Alcon-Rodriguez, S.; Gonzalez-Menendez, P.; Cordani, M.; Dando, I. Transcending frontiers in prostate cancer: The role of oncometabolites on epigenetic regulation, CSCs, and tumor microenvironment to identify new therapeutic strategies. Cell Commun. Signal. 2024, 22, 36. [Google Scholar] [CrossRef]
- Hanafi, M.M.M.; Prieto, J.M. Advances in Molecular Regulation of Prostate Cancer Cells by Top Natural Products of Malaysia. Curr. Issues Mol. Biol. 2023, 45, 1536–1567. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Ming, A.; Fang, Z.; Chen, W. PROTACs targeting androgen receptor signaling: Potential therapeutic agents for castration-resistant prostate cancer. Pharmacol. Res. 2024, 205, 107234. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, Q.; Matsuoka, K.; Cole, R.N. Androgen receptor inhibitors in treating prostate cancer. Asian J. Androl. 2024, 27, 144–155. [Google Scholar] [CrossRef]
- Huggins, C.; Hodges, C.V. Studies on prostatic cancer: II. the effects of castration on advanced carcinoma of the prostate gland. Arch. Surg. 1941, 43, 209–223. [Google Scholar] [CrossRef]
- Grossmann, M.; Zajac, J.D.; Cheung, A.S. Androgens and Prostate Cancer; Pathogenesis and Deprivation Therapy. Best. Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J. The Role of Antiandrogen Monotherapy in the Treatment of Prostate Cancer. BJU Int. 2003, 91, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Grönberg, H. Prostate Cancer Epidemiology. Lancet 2003, 361, 859–864. [Google Scholar] [CrossRef]
- Shafi, A.A.; Yen, A.E.; Weigel, N.L. Androgen Receptors in Hormone-Dependent and Castration-Resistant Prostate Cancer. Pharmacol. Ther. 2013, 140, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Olmos, D.; Caffo, O.; De Giorgi, U.; Castro, E.; Cattrini, C.; Mennitto, A.; Gennari, A. Apalutamide, Darolutamide and Enzalutamide for Nonmetastatic Castration-Resistant Prostate Cancer (nmCRPC): A Critical Review. Cancers 2022, 14, 1792. [Google Scholar] [CrossRef]
- Ito, Y.; Sadar, M.D. Enzalutamide and Blocking Androgen Receptor in Advanced Prostate Cancer: Lessons Learnt from the History of Drug Development of Antiandrogens. Res. Rep. Urol. 2018, 10, 23–32. [Google Scholar] [CrossRef]
- De Voogt, H.J. The Position of Cyproterone Acetate (CPA), a Steroidal Anti-Androgen, in the Treatment of Prostate Cancer. Prostate 1992, 21, 91–95. [Google Scholar] [CrossRef]
- Atahan, Ö.; Metin, A.; Kayigil, Ö. Cyproterone Acetate Monotherapy in Advanced Prostatic Carcinoma. Int. Urol. Nephrol. 1997, 29, 213–220. [Google Scholar] [CrossRef]
- Panyakhamlerd, K.; Suwan, A.; Wainipitapong, S.; Tuntiviriyapun, P.; Burinkul, S. Anti-Androgenic Effects Comparison Between Cyproterone Acetate and Spironolactone in Transgender Women: A Randomized Controlled Trial. J. Sex. Med. 2021, 18, 1299–1307. [Google Scholar] [CrossRef]
- Bohl, C.E.; Wu, Z.; Bell, C.E.; Miller, D.D.; Dalton, J.T. Crystal Structure of the T877A Human Androgen Receptor Ligand-binding Domain Complexed to Cyproterone Acetate Provides Insight for Ligand-induced Conformational Changes and Structure-based Drug Design. J. Biol. Chem. 2007, 282, 13648–13655. [Google Scholar] [CrossRef]
- Maia, E.H.B.; Taranto, A.G.; da Silva, M.P.; de Oliveira, T.A.; da Silva, A.M. Virtual Screening Algorithms in Drug Discovery: A Review Focused on Machine and Deep Learning Methods. Drugs Drug Candidates 2023, 2, 311–334. [Google Scholar] [CrossRef]
- Sokouti, B. A review on In Silico Virtual Screening Methods in COVID-19 Using Anticancer Drugs and Other Natural/Chemical Inhibitors. Explor. Target. Anti-Tumor Ther. 2023, 4, 994–1026. [Google Scholar] [CrossRef]
- Yu, J.; Guo, Z.; Guo, R. Virtual Screening and Binding Analysis of Potential CD58 Inhibitors in Colorectal Cancer (CRC). Molecules 2023, 28, 6819. [Google Scholar] [CrossRef]
- Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A Free Tool to Discover Chemistry for Biology. J. Chem. Inf. Model. 2012, 52, 1757–1768. [Google Scholar] [CrossRef]
- Lo, Y.-C.; Rensi, S.E.; Torng, W.; Altman, R.B. Machine Learning in Chemoinformatics and Drug Discovery. Drug Discov. Today 2018, 23, 1538–1546. [Google Scholar] [CrossRef]
- Giuliatti, S.; Silva, C.H.T.P.; Kimani, N.M.; Cruz, J.V.; Alves, L.B.; Silva, R.C.; Ferreira, E.F.B.; de Souza, J.S.N.; Espejo-Román, J.M.; Santos, C.B.R. Identification of Novel Potential Cyclooxygenase-2 Inhibitors Using Ligand- and Structure-Based Virtual Screening Approaches. J. Biomol. Struct. Dyn. 2021, 40, 5386–5408. [Google Scholar] [CrossRef]
- Rocha, J.R.; Montanari, C.A.; Sartori, G.R.; Martins, J.B.L.; Gargano, R.; Ribeiro, J.F.R.; Borges, N.M. Similarity Search Combined with Docking and Molecular Dynamics for Novel hAChE Inhibitor Scaffolds. J. Mol. Model. 2018, 24, 41. [Google Scholar] [CrossRef]
- Akritopoulou-Zanze, I.; Muchmore, S.W.; Souers, A.J. The Use of Three-Dimensional Shape and Electrostatic Similarity Searching in the Identification of a Melanin-Concentrating Hormone Receptor 1 Antagonist. Chem. Biol. Drug Des. 2006, 67, 174–176. [Google Scholar] [CrossRef]
- QSAR, ADMET and Predictive Toxicology with Biovia Discovery Studio Datasheet Predicting Development Risks; DS No. 3057-1014; Dassault Systèmes Corporate: Waltham, MA, USA; BIOVIA Corporate Americas: San Diego, CA, USA; BIOVIA Corporate Europe: Cambridge, UK, 2016.
- Smieško, M.; Don, C.G. In Silico Pharmacogenetics CYP2D6 Study Focused on the Pharmacovigilance of Herbal Antidepressants. Front. Pharmacol. 2020, 11, 683. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Zhang, Y.; Wang, Z.; Zheng, L.; Jin, L.; Qian, J.; Jin, W. CYP3A4 and CYP3A5: The crucial roles in clinical drug metabolism and the significant implications of genetic polymorphisms. PeerJ 2024, 12, e18636. [Google Scholar] [CrossRef]
- Hukkanen, J.; Turpeinen, M.; Pelkonen, O.; Hakkola, J. Inhibition and induction of CYP enzymes in humans: An update. Arch. Toxicol. 2020, 94, 3671–3722. [Google Scholar] [CrossRef]
- Iwasaki, S.; Hirabayashi, H.; Chisaki, I.; Kosugi, Y.; Amano, N.; Nakagawa, S.; Miyamoto, M. Characterization of Plasma Protein Binding in Two Mouse Models of Humanized Liver, PXB Mouse and Humanized TK-NOG Mouse. Xenobiotica 2020, 51, 51–60. [Google Scholar] [CrossRef]
- Pagliarusco, S.; Pellegatti, M.; Solazzo, L.; Colato, D. Plasma Protein Binding and Blood-Free Concentrations: Which Studies Are Needed to Develop a Drug? Expert. Opin. Drug Metab. Toxicol. 2011, 7, 1009–1020. [Google Scholar] [CrossRef]
- Ahmed, H.; Bergmann, F.; Zeitlinger, M. Protein Binding in Translational Antimicrobial Development-Focus on Interspecies Differences. Antibiotics 2022, 11, 923. [Google Scholar] [CrossRef]
- Eckert, A.O.; Schrey, A.K.; Preissner, R.; Banerjee, P. ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef]
- Guedes, I.A.; Santos, K.B.; Karl, A.L.M.; Dardenne, L.E. Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein–Peptide Data Set. J. Chem. Inf. Model. 2020, 60, 667–683. [Google Scholar] [CrossRef]
- Caballero, J.; Ramírez, D. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules 2018, 23, 1038. [Google Scholar] [CrossRef]
- Al-Sehemi, A.G.; Ullah, S.; Iqbal, A.; Muhammad, S.; Maqbool, M.F.; Khan, M.T. A Threefold Approach Including Quantum Chemical, Molecular Docking and Molecular Dynamic Studies to Explore the Natural Compounds from Centaurea jacea as the Potential Inhibitors for COVID-19. Braz. J. Biol. 2023, 83, e247604. [Google Scholar] [CrossRef]
- Tong, Y.; Doamekpor, S.K.; Peng, P.; Xu, R.; Ma, L.; Tong, L. A Partially Open Conformation of an Androgen Receptor Ligand-Binding Domain with Drug-Resistance Mutations. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2023, 79, 95–104. [Google Scholar] [CrossRef]
- Silva, L.B.; Ferreira, E.F.B.; Maryam; Espejo-Román, J.M.; Costa, G.V.; Cruz, J.V.; Kimani, N.M.; Costa, J.S.; Bittencourt, J.A.H.M.; Cruz, J.N.; et al. Galantamine Based Novel Acetylcholinesterase Enzyme Inhibitors: A Molecular Modeling Design Approach. Molecules 2023, 28, 1035. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Förster, C.; Dandekar, T.; Shityakov, S.; Neuhaus, W. Analysing Molecular Polar Surface Descriptors to Predict Blood-Brain Barrier Permeation. Int. J. Comput. Biol. Drug Des. 2013, 6, 146–156. [Google Scholar] [CrossRef]
- Al-Dhabaan, F.; Alharbi, M.; Alharbi, N.K.; Mohammed, A.E.; Alghamdi, S.S.; Alshehri, F.; Suliman, R.S. Limoniastrum monopetalum–Mediated Nanoparticles and Biomedicines: In Silico Study and Molecular Prediction of Biomolecules. Molecules 2022, 27, 8014. [Google Scholar] [CrossRef]
- Asfaw, T.B.; Tadesse, M.G.; Tessema, F.B.; Bachheti, R.K.; Gonfa, Y.H. Antioxidant Activity of Flavonoids and Phenolic Acids from Dodonaea angustifolia Flower: HPLC Profile and PASS Prediction. J. Chem. 2023, 2023, 8315711. [Google Scholar] [CrossRef]
- Chaves, M.H.; Borges, R.S.; Ramos, R.S.; Araujo, I.F.; Santos, C.B.R.; de Souza, J.S.N. Identification of Potential Antiviral Inhibitors from Hydroxychloroquine and 1,2,4,5-Tetraoxanes Analogues and Investigation of the Mechanism of Action in SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 1781. [Google Scholar] [CrossRef]
- Lindsley, C.W. Lipophilicity. In Encyclopedia of Psychopharmacology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Crippen, G.M.; Wildman, S.A. Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868–873. [Google Scholar] [CrossRef]
- Moriguchi, I.; Nakagome, I.; Hirono, S.; Hirano, H. Comparison of Reliability of log P Values for Drugs Calculated by Several Methods. Chem. Pharm. Bull. 1994, 42, 976–978. [Google Scholar] [CrossRef]
- Begley, D.J.; Jeffrey, P.; Hidalgo, I.J.; Read, K.; Porter, R.A.; Coggon, S.; Obradovic, T.; Summerfield, S.G.; Lewis, A.V. Central Nervous System Drug Disposition: The Relationship between in Situ Brain Permeability and Brain Free Fraction. J. Pharmacol. Exp. Ther. 2007, 322, 205–213. [Google Scholar] [CrossRef]
- Ryu, S.; Nam, S.-H.; Baek, J.-S.; Lee, H.Y. Antifungal Activity of Angelica gigas with Enhanced Water Solubility of Decursin and Decursinol Angelate by Hot-Melt Extrusion Technology against Candida albicans. Int. J. Transl. Med. 2022, 2, 515–521. [Google Scholar] [CrossRef]
- Taylor, R.; Gardiner, E.J.; Cosgrove, D.A.; Cole, J.C.; Gillet, V.J.; Korb, O. Development and Validation of an Improved Algorithm for Overlaying Flexible Molecules. J. Comput. Mol. Des. 2012, 26, 451–472. [Google Scholar] [CrossRef]
- Ferreira, E.F.B.; Leão, R.P.; Macêdo, W.J.C.; Araújo, P.H.F.; Lima, L.R.; Bastos, R.S.; Dos Santos, E.L.V.S.; Santos, C.B.R.; Espejo-Román, J.M.; Ramos, R.d.S.; et al. Identification of Potential New Aedes aegypti Juvenile Hormone Inhibitors from N-Acyl Piperidine Derivatives: A Bioinformatics Approach. Int. J. Mol. Sci. 2022, 23, 9927. [Google Scholar] [CrossRef]
- Cruz, J.N.; Santos, C.B.R.; Campos, J.M.; Andrade, B.S.; Costa, S.L.; Leite, F.H.A.; Botura, M.B.; de Almeida, R.B.M.; Bomfim, M.R.D.; Amparo, J.A.O.; et al. Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies. Pharmaceuticals 2023, 16, 95. [Google Scholar] [CrossRef]
- Mesquita, K.D.S.M.; Feitosa, B.d.S.; Cruz, J.N.; de Oliveira, M.S.; Cascaes, M.M.; Ferreira, O.O.; Andrade, E.H.d.A.; Franco, C.d.J.P. Chemical Composition and Preliminary Toxicity Evaluation of the Essential Oil from Peperomia circinnata Link var. circinnata. (Piperaceae) in Artemia salina Leach. Molecules 2021, 26, 7359. [Google Scholar] [CrossRef]
- Brasil, D.S.; Costa, J.S.; Poiani, J.G.; Silva, R.C.; Ramos, R.S.; Silva, C.H.; Santos, C.B. Ligand- and Structure-Based Virtual Screening from 16-((Diisobutylamino)methyl)-6α-hydroxyivouacapane-7β,17β-lactone a Compound with Potential Anti-prostate Cancer Activity. J. Serbian Chem. Soc. 2019, 84, 153–174. [Google Scholar] [CrossRef]
- Chuah, L.-H.; Ahemad, N.; Htar, T.T.; Khan, S.U.; Naidu, R. Sequential Ligand- and Structure-Based Virtual Screening Approach for the Identification of Potential G Protein-Coupled Estrogen Receptor-1 (GPER-1) Modulators. RSC Adv. 2019, 9, 2525–2538. [Google Scholar] [CrossRef]
- Ramos, R.d.S.; Costa, J.d.S.; Silva, R.C.; da Costa, G.V.; Rodrigues, A.B.L.; Rabelo, É.d.M.; Souto, R.N.P.; Taft, C.A.; Silva, C.H.T.d.P.d.; Rosa, J.M.C.; et al. Identification of Potential Inhibitors from Pyriproxyfen with Insecticidal Activity by Virtual Screening. Pharmaceuticals 2019, 12, 20. [Google Scholar] [CrossRef]
- Alamri, M.A.; Altharawi, A.; Alabbas, A.B.; Alossaimi, M.A.; Alqahtani, S.M. Structure-Based Virtual Screening and Molecular Dynamics of Phytochemicals Derived from Saudi Medicinal Plants to Identify Potential COVID-19 Therapeutics. Arab. J. Chem. 2020, 13, 7224–7234. [Google Scholar] [CrossRef]
- Barbosa, H.J.C.; Custódio, F.L.; Medeiros, V.; Krempser, E.; Guedes, I.A.; Costa, L.S.C.; Karl, A.L.M.; Rocha, G.K.; Teixeira, I.M.; Galheigo, M.M.; et al. Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Sci. Rep. 2021, 11, 5543. [Google Scholar] [CrossRef]
- Silva, L.B.; Lima, L.R.; Cruz, J.N.; Santos, C.B.R.; Campos, J.M.; Ramos, R.S.; Oliveira, L.P.S.; Lima, L.S.; Cardoso, F.M.N.; Silva, A.V.; et al. Hierarchical Virtual Screening of Potential New Antibiotics from Polyoxygenated Dibenzofurans against Staphylococcus aureus Strains. Pharmaceuticals 2023, 16, 1430. [Google Scholar] [CrossRef]
- Coelho-Ferreira, M.R.; Siqueira, J.E.d.S.; Bastos, M.L.C.; Silva-Silva, J.V.; Cruz, J.N.; Ramos, G.d.C.; Percário, S.; Marinho, P.S.B.; Marinho, A.M.D.R.; Bahia, M.d.O.; et al. Alkaloid from Geissospermum sericeum Benth. & Hook.f. ex Miers (Apocynaceae) Induce Apoptosis by Caspase Pathway in Human Gastric Cancer Cells. Pharmaceuticals 2023, 16, 765. [Google Scholar] [CrossRef]
- Zubair, M.; Khurshid, M.; Ashraf, A.; Aslam, B.; Siddique, M.H.; Dawoud, T.M.; Hayat, S.; Muzammil, S.; Hashem, A.; Avila-Quezada, G.D.; et al. Comparative Analysis of Phyto-Fabricated Chitosan, Copper Oxide, and Chitosan-Based CuO Nanoparticles: Antibacterial Potential Against Acinetobacter baumannii Isolates and Anticancer Activity Against HepG2 Cell Lines. Front. Microbiol. 2023, 14, 1188743. [Google Scholar] [CrossRef]
- Kochev, N.; Jeliazkova, N.; Tsakovska, I. CHAPTER 3: Chemoinformatics Representation of Chemical Structures—A Milestone for Successful Big Data Modelling in Predictive Toxicology. Issues Toxicol. 2020, 2020, 69–107. [Google Scholar]
- Carlsson, L.; Ceulemans, H.; Chen, H.; Chupakhin, V.; Georgiev, I.; Ashby, T.J.; Golib-Dzib, J.-F.; Jeliazkova, N.; Engkvist, O.; Wegner, J.; et al. ExCAPE-DB: An integrated large scale dataset facilitating Big Data analysis in chemogenomics. J. Cheminform. 2017, 9, 17. [Google Scholar] [CrossRef]
- Kim, M.; Liu, S.; Rajagopalan, V.; Chinta, S.; Xiong, Y. Screening and Evaluation of Natural Product Derivative Library for Anticancer Activity in Human Prostate Cancer Cells. FASEB J. 2021, 35. [Google Scholar] [CrossRef]
- Mondal, R.; Halder, U.C.; Al Hoque, A.; Sepay, N.; Muddassir, M.; Sepay, N. In Silico Fight Against Novel Coronavirus by Finding Chromone Derivatives as Inhibitor of Coronavirus Main Proteases Enzyme. Struct. Chem. 2020, 31, 1831–1840. [Google Scholar] [CrossRef]
- Bayly, C.I.; Cornell, W.D.; Cieplak, P.; Kollman, P.A. Application of RESP Charges to Calculate Conformational Energies, Hydrogen Bond Energies, and Free Energies of Solvation. J. Am. Chem. Soc. 1993, 115, 9620–9631. [Google Scholar] [CrossRef]
- Dolinsky, T.J.; Nielsen, J.E.; McCammon, J.A.; Baker, N.A. PDB2PQR: An Automated Pipeline for the Setup of Poisson-Boltzmann Electrostatics Calculations. Nucleic Acids Res. 2004, 32, W665–W667. [Google Scholar] [CrossRef]
- Case, D.A.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Wang, J. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. Ff14sb: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log(N) Method for Ewald sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Izaguirre, J.A.; Catarello, D.P.; Wozniak, J.M.; Skeel, R.D. Langevin Stabilization of Molecular Dynamics. J. Chem. Phys. 2001, 114, 2090–2098. [Google Scholar] [CrossRef]
- Guan, Y.; Shen, M.; Tian, S.; Pan, P.; Hou, T.; Xu, L.; Li, Y.; Sun, H. Assessing the Performance of MM/PBSA and MM/GBSA Methods. 5. Improved Docking Performance Using High Solute Dielectric Constant MM/GBSA and MM/PBSA Rescoring. Phys. Chem. Chem. Phys. 2014, 16, 22035–22045. [Google Scholar] [CrossRef]
- Costa, R.A.; Cruz, J.N.; Nascimento, F.C.A.; Silva, S.G.; Silva, S.O.; Martelli, M.C.; Carvalho, S.M.L.; Santos, C.B.R.; Neto, A.M.J.C.; Brasil, D.S.B. Studies of NMR, Molecular Docking, and Molecular Dynamics Simulation of New Promising Inhibitors of Cruzaine from the Parasite Trypanosoma Cruzi. Med. Chem. Res. 2019, 28, 246–259. [Google Scholar] [CrossRef]
Molecules | ADME | |||||
---|---|---|---|---|---|---|
CYP2D6 [a] | CYP3A4 [b] | Solubility [c] | HIA [d] | PPB [e] | BBB [f] | |
CPA | false | false | 2 | 0 | false | 2 |
PRINCETON_01 | false | false | 3 | 0 | false | 3 |
PRINCETON_02 | false | false | 2 | 0 | false | 3 |
PRINCETON_03 | false | false | 3 | 0 | false | 3 |
PRINCETON_04 | false | false | 3 | 0 | false | 3 |
PRINCETON_05 | false | false | 3 | 0 | false | 3 |
ZINC04097308 | false | false | 3 | 0 | false | 3 |
ZINC03830600 | false | false | 3 | 0 | false | 3 |
ZINC03977981 | false | false | 3 | 0 | false | 3 |
ZINC04212851 | false | false | 3 | 0 | false | 3 |
ZINC13540519 | false | false | 3 | 0 | false | 3 |
ZINC36388590 | false | true | 2 | 0 | false | 2 |
ZINC03875357 | false | false | 3 | 0 | false | 3 |
ZINC03876158 | false | false | 3 | 0 | false | 3 |
ZINC04097304 | false | false | 3 | 0 | false | 3 |
ZINC04212854 | false | false | 3 | 0 | false | 3 |
ZINC34176695 | false | true | 2 | 0 | false | 2 |
ZINC03833821 | false | false | 3 | 0 | false | 3 |
ZINC03830602 | false | false | 3 | 0 | false | 3 |
ZINC34176694 | false | true | 2 | 0 | false | 2 |
ZINC04340274 | false | false | 3 | 0 | false | 3 |
ZINC03831269 | false | false | 3 | 0 | false | 3 |
ZINC03831270 | false | false | 3 | 0 | false | 3 |
ZINC03876136 | false | false | 3 | 0 | false | 3 |
ZINC03830599 | false | false | 3 | 0 | false | 3 |
Molecules | ∆G (kcal mol−1) | Amino Acids That Interact by Hydrogen Bonding | Amino Acids That Form Hydrophobic Interactions |
---|---|---|---|
CPA (Reference) | −10.827 | Asn705, Arg752 | Ala877, Gln711, Gly708, Ile899, Leu701, Leu704, Leu707, Leu873, Leu880, Met742, Met745, Met749, Met780, Met787, Met895, Phe697, Phe764, Phe876, Phe891, Ser778, Trp741, Val746. |
ZINC34176694 | −10.850 | Arg752 | Ala877, Arg779, Asn705, Gln711, Gly708, Ile899, Leu701, Leu704, Leu707, Leu873, Leu880, Met742, Met745, Met749, Met780, Phe697, Phe764, Phe876, Ser778, Trp741, Val746. |
ZINC03876158 | −10.369 | Met780 | Ala877, Arg752, Asn705, Gln711, Gly708, Ile899, Leu701, Leu704, Leu707, Leu873, Leu880, Met742, Met745, Met749, Met787, Met895, Phe764, Phe876, Phe891, Trp741, Val746. |
ZINC04097308 | −10.260 | Ala877, Arg752, Asn705 | Gln711, Gly708, Ile899, Leu701, Leu704, Leu707, Leu873, Leu880, Leu881, Met742, Met745, Met749, Met780, Met787, Met895, Phe697, Phe764, Phe876, Phe891, Ser778, Trp741, Val746. |
ZINC03977981 | −10.237 | Asn705 | Ala877, Arg752, Gln711, Gly708, Ile899, Leu701, Leu704, Leu707, Leu873, Leu880, Leu881, Met742, Met745, Met749, Met780, Met787, Met895, Phe697, Phe764, Phe876, Phe891, Ser778, Trp741, Val746. |
Molecules | AMBIT-SA [a] | SwissADME [b] |
---|---|---|
SA SCORE * | ||
CPA (Reference) | 23.712 | 5.54 |
ZINC34176694 | 23.097 | 5.82 |
ZINC03876158 | 31.245 | 5.40 |
ZINC04097308 | 20.114 | 5.91 |
ZINC03977981 | 22.738 | 6.02 |
Molecules | Molinspirations Calculations | |||||||
---|---|---|---|---|---|---|---|---|
Vol [a] | TPSA [b] | NROTB [c] | HBA [d] | HBD [e] | LogP [f] | MW [g] | Lipinski’s Violations | |
Rule | - | - | - | ≤10 | ≤5 | ≤5 | ≤500 | ≤1 |
CPA (Reference) | 376.63 | 60.45 | 3 | 4 | 0 | 4.44 | 416.94 | 0 |
ZINC34176694 | 421.86 | 80.67 | 5 | 5 | 1 | 3.69 | 484.97 | 0 |
ZINC03876158 | 349.81 | 74.60 | 1 | 4 | 2 | 2.39 | 376.47 | 0 |
ZINC04097308 | 396.78 | 93.07 | 2 | 6 | 2 | 2.61 | 436.52 | 0 |
ZINC03977981 | 395.20 | 93.07 | 2 | 6 | 2 | 2.57 | 452.49 | 0 |
Molecules | Biological Activity | Pa [a] | Pi [b] |
---|---|---|---|
CPA (Reference) | Androgen antagonist | 0.900 | 0.002 |
Prostate disorders treatment | 0.736 | 0.006 | |
Antineoplastic | 0.742 | 0.019 | |
Prostatic (benign) hyperplasia treatment | 0.624 | 0.004 | |
AR expression inhibitor | 0.485 | 0.029 | |
Prostate cancer treatment | 0.402 | 0.021 | |
ZINC34176694 | Androgen antagonist | 0.710 | 0.003 |
Antineoplastic (non-Hodgkin’s lymphoma) | 0.655 | 0.008 | |
Prostate disorders treatment | 0.327 | 0.062 | |
ZINC03876158 | Androgen antagonist | 0.993 | 0.002 |
Antineoplastic (non-Hodgkin’s lymphoma) | 0.647 | 0.008 | |
AR expression inhibitor | 0.599 | 0.013 | |
Prostate disorders treatment | 0.523 | 0.019 | |
ZINC04097308 | Prostate disorders treatment | 0.485 | 0.023 |
Androgen agonist | 0.450 | 0.004 | |
Antineoplastic | 0.484 | 0.077 | |
Antimetastatic | 0.440 | 0.035 | |
Antineoplastic (non-Hodgkin’s lymphoma) | 0.427 | 0.084 | |
Prostatic (benign) hyperplasia treatment | 0.365 | 0.013 | |
Anticarcinogenic | 0.362 | 0.038 | |
ZINC03977981 | Antineoplastic (non-Hodgkin’s lymphoma) | 0.648 | 0.008 |
Antineoplastic (multiple myeloma) | 0.391 | 0.026 | |
Antimetastatic | 0.363 | 0.058 | |
Androgen antagonist | 0.150 | 0.014 | |
Prostate disorders treatment | 0.238 | 0.118 | |
Prostatic (benign) hyperplasia treatment | 0.113 | 0.061 |
Molecules | iLOGP | XLOGP | WLOGP | MLOGP | SILICOS-IT | Consensus LogP |
---|---|---|---|---|---|---|
CPA (Reference) | 3.41 | 3.64 | 4.61 | 3.71 | 4.51 | 3.98 |
ZINC34176694 | 2.63 | 3.75 | 4.89 | 3.28 | 4.63 | 3.84 |
ZINC03876158 | 1.48 | 2.00 | 3.34 | 2.45 | 3.19 | 2.49 |
ZINC04097308 | 3.15 | 1.38 | 2.92 | 1.73 | 3.03 | 2.44 |
ZINC03977981 | 2.69 | 2.48 | 3.21 | 1.74 | 3.03 | 2.63 |
Molecules | ΔEvdW | ΔEele | ΔGGB | ΔGnonpol | ΔGMMGBSA |
---|---|---|---|---|---|
CPA | −57.89 | −10.74 | 21.57 | −7.01 | −54.08 |
ZINC34176694 | −61.75 | −21.79 | 35.03 | −7.91 | −56.42 |
ZINC03876158 | −53.85 | −27.30 | 35.64 | −6.80 | −52.31 |
ZINC04097308 | −58.39 | −16.43 | 30.60 | −7.61 | −51.83 |
ZINC03977981 | −57.24 | −30.28 | 41.54 | −7.52 | −53.51 |
Molecules * | ESOL | Ali | SILICOS-TI | Consensus LogS |
---|---|---|---|---|
CPA (Reference) | −4.52 (ms) | −4.60 (ms) | −4.78 (ms) | −4.63 (ms) |
ZINC34176694 | −4.88 (ms) | −5.14 (ms) | −5.00 (ms) | −5.01 (ms) |
ZINC03876158 | −3.37 (s) | −3.19 (s) | −3.37 (s) | −3.31 (s) |
ZINC04097308 | −3.28 (s) | −2.94 (s) | −3.48 (s) | −3.23 (s) |
ZINC03977981 | −4.08 (ms) | −4.08 (ms) | −3.49 (s) | −3.88 (s) |
Receptor | Ligand | Coordinates of Grid Center | Grid Box Size |
---|---|---|---|
Androgen Receptor (Homo sapiens) (PDB ID: 2OZ7) | 6-chloro-1β,2βα-dihydro-17-hydroxy-3′H-cyclopropa[1,2] pregna-1,4,6-triene-3,20-dione acetate | X = 26.9229 Y = 1.3605 Z = 2.9661 | 20x 20y 20z |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, N.S.; Lima, L.R.; Cruz, J.N.; Santos, I.V.F.; Silva, R.C.; Maciel, A.A.; Barros, E.S.; Andrade, M.L.D.S.; Ramos, R.S.; Kimani, N.M.; et al. Identification of Inhibitors with Potential Anti-Prostate Cancer Activity: A Chemoinformatics Approach. Pharmaceuticals 2025, 18, 888. https://doi.org/10.3390/ph18060888
Costa NS, Lima LR, Cruz JN, Santos IVF, Silva RC, Maciel AA, Barros ES, Andrade MLDS, Ramos RS, Kimani NM, et al. Identification of Inhibitors with Potential Anti-Prostate Cancer Activity: A Chemoinformatics Approach. Pharmaceuticals. 2025; 18(6):888. https://doi.org/10.3390/ph18060888
Chicago/Turabian StyleCosta, Norberto S., Lúcio R. Lima, Jorddy N. Cruz, Igor V. F. Santos, Rai C. Silva, Alexandre A. Maciel, Elcimar S. Barros, Maracy L. D. S. Andrade, Ryan S. Ramos, Njogu M. Kimani, and et al. 2025. "Identification of Inhibitors with Potential Anti-Prostate Cancer Activity: A Chemoinformatics Approach" Pharmaceuticals 18, no. 6: 888. https://doi.org/10.3390/ph18060888
APA StyleCosta, N. S., Lima, L. R., Cruz, J. N., Santos, I. V. F., Silva, R. C., Maciel, A. A., Barros, E. S., Andrade, M. L. D. S., Ramos, R. S., Kimani, N. M., Aragón-Muriel, A., Álvarez-Caballero, J. M., Campos, J. M., & Santos, C. B. R. (2025). Identification of Inhibitors with Potential Anti-Prostate Cancer Activity: A Chemoinformatics Approach. Pharmaceuticals, 18(6), 888. https://doi.org/10.3390/ph18060888