Exploring Plasma Proteome Thermal Stability in Peripheral Arterial Disease: Biophysical Findings Under Cilostazol Therapy
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Blood Sample Preparation and Handling
4.2. DSC Measurements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DSC | Differential scanning calorimetry |
IC | Intermittent claudication |
PAD | Peripheral artery disease |
References
- Rose, G.A. The diagnosis of ischaemic heart pain and intermittent claudication in field surveys. Bull. World Health Organ. 1962, 27, 645–658. [Google Scholar] [PubMed]
- Fowkes, F.G.; Housley, E.; Cawood, E.H.; Macintyre, C.C.; Ruckley, C.V.; Prescott, R.J. Edinburgh Artery Study: Prevalence of asymptomatic and symptomatic peripheral arterial disease in the general population. Int. J. Epidemiol. 1991, 20, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Nordanstig, J.; Behrendt, C.A.; Baumgartner, I.; Belch, J.; Bäck, M.; Fitridge, R.; Hinchliffe, R.; Lejay, A.; Mills, J.L.; Rother, U.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2024 Clinical Practice Guidelines on the Management of Asymptomatic Lower Limb Peripheral Arterial Disease and Intermittent Claudication. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2024, 67, 9–96. [Google Scholar] [CrossRef]
- Gornik, H.L.; Aronow, H.D.; Goodney, P.P.; Arya, S.; Brewster, L.P.; Byrd, L.; Chandra, V.; Drachman, D.E.; Eaves, J.M.; Ehrman, J.K.; et al. 2024 ACC/AHA/AACVPR/APMA/ABC/SCAI/SVM/SVN/SVS/SIR/VESS Guideline for the Management of Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2024, 83, 2497–2604. [Google Scholar] [CrossRef] [PubMed]
- Pillarisetti, S. Potential Drug Combinations to Reduce Cardiovascular Disease Burden in Diabetes. Trends Pharmacol. Sci. 2016, 37, 207–219. [Google Scholar] [CrossRef]
- Lee, H.I.; Byeon, J.Y.; Kim, Y.H.; Lee, C.M.; Choi, C.I.; Jang, C.G.; Bae, J.W.; Lee, Y.J.; Lee, S.Y. Effects of CYP2C19 and CYP3A5 genetic polymorphisms on the pharmacokinetics of cilostazol and its active metabolites. Eur. J. Clin. Pharmacol. 2018, 74, 1417–1426. [Google Scholar] [CrossRef]
- Available online: https://www.ema.europa.eu/en/medicines/human/referrals/cilostazol-containing-medicines (accessed on 24 April 2025).
- Available online: https://www.rxreasoner.com/monographs/cilostazol/pharmacology (accessed on 25 May 2025).
- Michnik, A.; Drzazga, Z. Thermal denaturation of mixtures of human serum proteins. J. Therm. Anal. Calorim. 2010, 101, 513–518. [Google Scholar] [CrossRef]
- Garbett, N.C.; Mekmaysy, C.S.; Helm, C.W.; Jenson, A.B.; Chaires, J.B. Differential scanning calorimetry of blood plasma for clinical diagnosis and monitoring. Exp. Mol. Pathol. 2009, 86, 186–191. [Google Scholar] [CrossRef]
- Garbett, N.C.; Miller, J.J.; Jenson, A.B.; Chaires, J.B. Calorimetry outside the box: A new window into the plasma proteome. Biophys. J. 2008, 94, 1377–1383. [Google Scholar] [CrossRef]
- Todinova, S.; Krumova, S.; Gartcheva, L.; Robeerst, C.; Taneva, S.G. Microcalorimetry of blood serum proteome: A modified interaction network in the multiple myeloma case. Anal. Chem. 2011, 83, 7992–7998. [Google Scholar] [CrossRef]
- Nemsadze, G.; Lezhava, T.; Gorgoshidze, M.; Kiladze, M.; Gogelia, N.; Khachidzr, D.; Lomidze, E.; Monaselidze, J. Blood plasma main proteins stability of patients with ductal carcinoma in post-surgery period. Int. J. Clin. Exp. Med. 2016, 9, 1338–1345. [Google Scholar]
- Ferencz, A.; Lőrinczy, D. DSC measurements of blood plasma on patients with chronic pancreatitis and operable and inoperable pancreatic adenocarcinoma. J. Therm. Anal. Calorim. 2017, 127, 1187–1192. [Google Scholar] [CrossRef]
- Ferencz, A.; Szatmári, D.; Lőrinczy, D. Thermodynamic Sensitivity of Blood Plasma Components in Patients Afflicted with Skin, Breast and Pancreatic Forms of Cancer. Cancers 2022, 14, 6147. [Google Scholar] [CrossRef]
- Michnik, A.; Kiełboń, A.; Duch, K.; Sadowska-Krępa, E.; Pokora, I. Comparison of human blood serum DSC profiles in aqueous and PBS buffer solutions. J. Therm. Anal. Calorim. 2021, 147, 6739–6743. [Google Scholar] [CrossRef]
- Garbett, N.C.; Miller, J.J.; Jenson, A.B.; Chaires, J.B. Calorimetric analysis of the plasma proteome. Semin. Nephrol. 2007, 27, 621–626. [Google Scholar] [CrossRef]
- Peng, L.; Li, X.; Li, J.; Liu, S.; Liang, G. The drug risks of cilostazol: A pharmacovigilance study of FDA Adverse Event Reporting System database. PLoS ONE 2024, 19, e0314957. [Google Scholar] [CrossRef] [PubMed]
- Dawson, D.L.; Zheng, Q.; Worthy, S.A.; Charles, B.; Bradley, D.V., Jr. Failure of pentoxifylline or cilostazol to improve blood and plasma viscosity, fibrinogen, and erythrocyte deformability in claudication. Angiology 2002, 53, 509–520. [Google Scholar] [CrossRef]
- Nencini, F.; Bettiol, A.; Argento, F.R.; Borghi, S.; Giurranna, E.; Emmi, G.; Prisco, D.; Taddei, N.; Fiorillo, C.; Becatti, M. Post-translational modifications of fibrinogen: Implications for clotting, fibrin structure and degradation. Mol. Biomed. 2024, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Demir, T.; Sahin, M.; Ilal Mert, F.T.; Sarac, F. Effects of Cilostazol on the Myocardium in an Obese Wistar Rat Model of Ischemia-Reperfusion Injury. Curr. Vasc. Pharmacol. 2023, 21, 268–273. [Google Scholar] [CrossRef]
- Waki, D.; Onishi, A.; Morinobu, A. Large vessel vasculopathy in a patient with systemic lupus erythematosus: A case report. J. Med. Case Rep. 2019, 13, 189. [Google Scholar] [CrossRef]
- Farruggia, B.; Picó, G.A. Thermodynamic features of the chemical and thermal denaturations of human serum albumin. Int. J. Biol. Macromol. 1999, 26, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Kibel, A.; Belovari, T.; Drenjančević-Perić, I. The role of transferrin in atherosclerosis. Med. Hypotheses 2008, 70, 793–797. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, Z.; Fang, M.; Han, Y.; Wang, G.; Wang, S.; Xue, M.; Li, Y.; Zhang, L.; Wu, J.; et al. Transferrin plays a central role in coagulation balance by interacting with clotting factors. Cell Res. 2020, 30, 119–132. [Google Scholar] [CrossRef]
- Farkas, P.; Könczöl, F.; Lőrinczy, D. Cyclophosphamide-induced changes in plasma and red blood cells detected by differential scanning calorimetry (DSC) in guinea pigs. J. Therm. Anal. Calorim. 2017, 127, 1239–1243. [Google Scholar] [CrossRef]
- Faroongsarng, D.; Sunpaweravong, S.; Raksawong, A. Thermally Induced Denaturing Energetics of Human Blood Plasma Albumin by Differential Scanning Calorimetry (DSC) as an Indicator for Breast Cancer Diagnosis in Female Patients. AAPS PharmSciTech 2019, 20, 146. [Google Scholar] [CrossRef] [PubMed]
- Monaselidze, J.; Kalandadze, Y.; Topuridze, I.; Gadabadze, M. Thermodynamic properties of serum and plasma of patients sick with cancer. High Temp. High Press. (Print) 1997, 29, 677–681. [Google Scholar] [CrossRef]
- Ferencz, A.; Moezzi, M.; Lőrinczy, D. Investigation the efficacy of antipsoriatic drugs by blood plasma thermoanalysis. J. Therm. Anal. Calorim. 2024, 149, 11485–11491. [Google Scholar] [CrossRef]
Samples | T1 (°C) Fibrinogen | T2 (°C) Albumin | T3 (°C) Albumin, Globulins | T4 (°C) Globulins | T5 (°C) Globulins | T6 (°C) Transferrin | ΔHTcal (Jg−1) |
---|---|---|---|---|---|---|---|
Healthy | 56.0 | 63.0 | 68.0 | 72.0 | 76.0 | 82.5 | 1.29 ± 0.06 |
Area % | 4.2 | 52.8 | 17.9 | 9.5 | 12.2 | 3.4 | |
Week 0 | 52.0 | 61.0 | 64.1 | 68.0 | 72.0 | 80.0 | 1.41 ± 0.11 |
Area % | 4.6 | 13.5 | 40.0 | 13.2 | 20.7 | 9.4 | |
Week 2 | 50.0 | 61.2 | 63.6 | 68.7 | 75.3 | 92.3 | 1.41 ± 0.05 |
Area % | 6.0 | 14.0 | 37.0 | 16.0 | 14.6 | 4.6 | |
Week 4 | 52.2 | 60.5 | 63.9 | 69.5 | 78.0 | 90.7 | 1.53 ± 0.24 |
Area % | 9.0 | 16.0 | 36.3 | 22.5 | 19.0 | 5.7 | |
Week 8 | 52.0 | 60.0 | 63.7 | 68.6 | 76.9 | 91.2 | 1.48 ± 0.18 |
Area % | 7.5 | 14.0 | 39.0 | 26.5 | 18.5 | 5.2 | |
Week 12 | 52.0 | 59.1 | 64.0 | 70.8 | 80.0 | 92.0 | 1.46 ± 0.08 |
Area % | 2.8 | 5.7 | 43.0 | 28.6 | 14.3 | 5.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, D.; Benkő, L.; Lőrinczy, D. Exploring Plasma Proteome Thermal Stability in Peripheral Arterial Disease: Biophysical Findings Under Cilostazol Therapy. Pharmaceuticals 2025, 18, 886. https://doi.org/10.3390/ph18060886
Szabó D, Benkő L, Lőrinczy D. Exploring Plasma Proteome Thermal Stability in Peripheral Arterial Disease: Biophysical Findings Under Cilostazol Therapy. Pharmaceuticals. 2025; 18(6):886. https://doi.org/10.3390/ph18060886
Chicago/Turabian StyleSzabó, Dorottya, László Benkő, and Dénes Lőrinczy. 2025. "Exploring Plasma Proteome Thermal Stability in Peripheral Arterial Disease: Biophysical Findings Under Cilostazol Therapy" Pharmaceuticals 18, no. 6: 886. https://doi.org/10.3390/ph18060886
APA StyleSzabó, D., Benkő, L., & Lőrinczy, D. (2025). Exploring Plasma Proteome Thermal Stability in Peripheral Arterial Disease: Biophysical Findings Under Cilostazol Therapy. Pharmaceuticals, 18(6), 886. https://doi.org/10.3390/ph18060886