State-of-the-Art Evidence for Clinical Outcomes and Therapeutic Implications of Janus Kinase Inhibitors in Moderate-to-Severe Ulcerative Colitis: A Narrative Review
Abstract
:1. Introduction
2. Literature Search Strategy
3. Clinical Pharmacology of JAK Inhibitors: Pharmacokinetics and Pharmacodynamics
3.1. Absorption and Bioavailability
3.2. Metabolism and Elimination
3.3. Impact of Renal and Hepatic Impairment
3.4. Selectivity and Mechanism of Action
3.5. Clinical Considerations
4. Phase 3 Efficacy Data for JAK Inhibitors in UC
4.1. Upadacitinib
4.2. Filgotinib
4.3. Tofacitinib
4.4. Phase 3 Safety Data for All JAK Inhibitors
5. Real-World Effectiveness and Safety of JAK Inhibitors in UC
6. Comparative Insights from Meta-Analyses for Advanced Therapies in UC
6.1. Induction and Maintenance Efficacy
6.2. Onset of Action
6.3. Comparative Safety Across JAK Inhibitors and Biologics
6.4. Insights from Meta-Analyses and Clinical Implications
7. Limitations
8. Emerging JAK Inhibitors and Small Molecule Therapeutics in the IBD Pipeline
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UC | Ulcerative colitis |
JAK | Janus kinase |
TYK2 | Tyrosine kinase 2 |
STAT | Signal transducer and activator of transcription |
PK | Pharmacokinetics |
PD | Pharmacodynamics |
RWD | Real-world data |
RCT | Randomized controlled trial |
EMA | European Medicines Agency |
FDA | U.S. Food and Drug Administration |
AE | Adverse event |
SAE | Serious adverse event |
VTE | Venous thromboembolism |
MACE | Major adverse cardiovascular event |
NMSC | Non-melanoma skin cancer |
IBD | Inflammatory bowel disease |
Tmax | Time to maximum concentration |
Cmax | Maximum concentration |
AUC | Area under the curve |
QD | Once daily |
BID | Twice daily |
SUCRA | Surface under the cumulative ranking curve |
FACIT-F | Functional Assessment of Chronic Illness Therapy—Fatigue |
ASUC | Acute Severe Ulcerative Colitis |
IBDQ | Inflammatory Bowel Disease Questionnaire |
ITT | Intent-to-treat |
QD | Once daily |
BID | Twice daily |
JH1 | Tyrosine kinase domain |
JH2 | Pseudokinase domain |
IC₅₀ | Half-maximum inhibitory concentration |
ESRD | End-stage renal disease |
References
- Pippis, E.J.; Yacyshyn, B.R. Clinical and Mechanistic Characteristics of Current JAK Inhibitors in IBD. Inflamm. Bowel Dis. 2021, 27, 1674–1683. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, M.; Fabisiak, A.; Murawska, N.; Wesołowska, E.; Wierzbicka, P.; Wlazłowski, M.; Wójcikowska, M.; Zatorski, H.; Zwolińska, M.; Fichna, J. Current Overview of Extrinsic and Intrinsic Factors in Etiology and Progression of Inflammatory Bowel Diseases. Pharmacol. Rep. 2014, 66, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef]
- Singh, S.; Loftus, E.V., Jr.; Limketkai, B.N.; Scott, F.I.; Ananthakrishnan, A.N.; AGA Clinical Guidelines Committee. AGA Living Clinical Practice Guideline on Pharmacological Management of Moderate-to-Severe Ulcerative Colitis. Gastroenterology 2024, 167, 1307–1343. [Google Scholar] [CrossRef]
- Park, J.J. Mechanism-Based Drug Therapy of Inflammatory Bowel Disease with Special Reference to Rheumatic Disease. J. Rheum. Dis. 2020, 27, 128–135. [Google Scholar] [CrossRef]
- de Mattos, B.R.R.; Garcia, M.P.G.; Nogueira, J.B.; Paiatto, L.N.; Albuquerque, C.G.; Souza, C.L.; Fernandes, L.G.R.; Tamashiro, W.M.S.C.; Simioni, P.U. Inflammatory Bowel Disease: An Overview of Immune Mechanisms and Biological Treatments. Mediators Inflamm. 2015, 2015, 493012. [Google Scholar] [CrossRef] [PubMed]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology Consensus Guidelines on the Management of Inflammatory Bowel Disease in Adults. Gut 2019, 68 (Suppl. 3), s1–s106. [Google Scholar] [CrossRef]
- Bonovas, S.; Pantavou, K.; Evripidou, D.; Bastiampillai, A.J.; Nikolopoulos, G.K.; Peyrin-Biroulet, L.; Danese, S. Safety of Biological Therapies in Ulcerative Colitis: An Umbrella Review of Meta-Analyses. Best Pract. Res. Clin. Gastroenterol. 2018, 32–33, 43–47. [Google Scholar] [CrossRef]
- Magro, F.; Gionchetti, P.; Eliakim, R.; Ardizzone, S.; Armuzzi, A.; Barreiro-de Acosta, M.; Burisch, J.; Gecse, K.B.; Hart, A.L.; Hindryckx, P.; et al. Third European Evidence-Based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-Intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-Anal Pouch Disorders. J. Crohns Colitis 2017, 11, 649–670. [Google Scholar] [CrossRef]
- Sands, B.E.; Sandborn, W.J.; Panaccione, R.; O’Brien, C.D.; Zhang, H.; Johanns, J.; Adedokun, O.J.; Li, K.; Peyrin-Biroulet, L.; Van Assche, G.; et al. Ustekinumab as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2019, 381, 1201–1214. [Google Scholar] [CrossRef]
- Feagan, B.G.; Sandborn, W.J.; Gasink, C.; Jacobstein, D.; Lang, Y.; Friedman, J.R.; Blank, M.A.; Johanns, J.; Gao, L.L.; Miao, Y.; et al. Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease. N. Engl. J. Med. 2016, 375, 1946–1960. [Google Scholar] [CrossRef] [PubMed]
- Feagan, B.G.; Rutgeerts, P.; Sands, B.E.; Hanauer, S.; Colombel, J.-F.; Sandborn, W.J.; Van Assche, G.; Axler, J.; Kim, H.-J.; Danese, S.; et al. Vedolizumab as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2013, 369, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Feagan, B.G.; Lasch, K.; Lissoos, T.; Cao, C.; Wojtowicz, A.M.; Khalid, J.M.; Colombel, J.-F. Rapid Response to Vedolizumab Therapy in Biologic-Naive Patients with Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2019, 17, 130–138.e7. [Google Scholar] [CrossRef]
- Magro, F.; Rodrigues, A.; Vieira, A.I.; Portela, F.; Cremers, I.; Cotter, J.; Correia, L.; Duarte, M.A.; Tavares, M.L.; Lago, P.; et al. Review of the Disease Course Among Adult Ulcerative Colitis Population-Based Longitudinal Cohorts. Inflamm. Bowel Dis. 2012, 18, 573–583. [Google Scholar] [CrossRef]
- Savelkoul, E.H.J.; Thomas, P.W.A.; Derikx, L.A.A.P.; den Broeder, N.; Römkens, T.E.H.; Hoentjen, F. Systematic Review and Meta-Analysis: Loss of Response and Need for Dose Escalation of Infliximab and Adalimumab in Ulcerative Colitis. Inflamm. Bowel Dis. 2023, 29, 1633–1647. [Google Scholar] [CrossRef]
- Duveau, N.; Nachury, M.; Gerard, R.; Branche, J.; Maunoury, V.; Boualit, M.; Wils, P.; Desreumaux, P.; Pariente, B. Adalimumab Dose Escalation Is Effective and Well Tolerated in Crohn’s Disease Patients with Secondary Loss of Response to Adalimumab. Dig. Liver Dis. 2017, 49, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.; Cummings, J.R.F. JAK1 Inhibition and Inflammatory Bowel Disease. Rheumatology 2021, 60 (Suppl. 2), ii45–ii51. [Google Scholar] [CrossRef]
- Neri, B.; Mancone, R.; Fiorillo, M.; Schiavone, S.C.; Migliozzi, S.; Biancone, L. Efficacy and Safety of Janus Kinase Inhibitors in Ulcerative Colitis. J. Clin. Med. 2024, 13, 7186. [Google Scholar] [CrossRef]
- Salas, A.; Hernandez-Rocha, C.; Duijvestein, M.; Faubion, W.; McGovern, D.; Vermeire, S.; Vetrano, S.; Vande Casteele, N. JAK–STAT Pathway Targeting for the Treatment of Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 323–337. [Google Scholar] [CrossRef]
- Boland, B.S.; Sandborn, W.J.; Chang, J.T. Update on Janus Kinase Antagonists in Inflammatory Bowel Disease. Gastroenterol. Clin. N. Am. 2014, 43, 603–617. [Google Scholar] [CrossRef]
- Clark, J.D.; Flanagan, M.E.; Telliez, J.-B. Discovery and Development of Janus Kinase (JAK) Inhibitors for Inflammatory Diseases. J. Med. Chem. 2014, 57, 5023–5038. [Google Scholar] [CrossRef] [PubMed]
- Lovato, P.; Brender, C.; Agnholt, J.; Kelsen, J.; Kaltoft, K.; Svejgaard, A.; Eriksen, K.W.; Woetmann, A.; Ødum, N. Constitutive STAT3 Activation in Intestinal T Cells from Patients with Crohn’s Disease. J. Biol. Chem. 2003, 278, 16777–16781. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.; Rosenstiel, P.; Hampe, J.; Nikolaus, S.; Groessner, B.; Schottelius, A.; Kühbacher, T.; Hämling, J.; Fölsch, U.R.; Seegert, D. Activation of Signal Transducer and Activator of Transcription (STAT) 1 in Human Chronic Inflammatory Bowel Disease. Gut 2002, 51, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Stark, G.R.; Kerr, I.M.; Williams, B.R.; Silverman, R.H.; Schreiber, R.D. How Cells Respond to Interferons. Annu. Rev. Biochem. 1998, 67, 227–264. [Google Scholar] [CrossRef]
- Seif, F.; Khoshmirsafa, M.; Aazami, H.; Mohsenzadegan, M.; Sedighi, G.; Bahar, M. The Role of JAK–STAT Signaling Pathway and Its Regulators in the Fate of T Helper Cells. Cell Commun. Signal. 2017, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- Villarino, A.V.; Kanno, Y.; Ferdinand, J.R.; O’Shea, J.J. Mechanisms of JAK/STAT Signaling in Immunity and Disease. J. Immunol. 2015, 194, 21–27. [Google Scholar] [CrossRef]
- Malemud, C.J. The Role of the JAK/STAT Signal Pathway in Rheumatoid Arthritis. Ther. Adv. Musculoskelet. Dis. 2018, 10, 117–127. [Google Scholar] [CrossRef]
- O’Shea, J.J.; Plenge, R. JAK and STAT Signaling Molecules in Immunoregulation and Immune-Mediated Disease. Immunity 2012, 36, 542–550. [Google Scholar] [CrossRef]
- Babon, J.J.; Lucet, I.S.; Murphy, J.M.; Nicola, N.A.; Varghese, L.N. The Molecular Regulation of Janus Kinase (JAK) Activation. Biochem. J. 2014, 462, 1–13. [Google Scholar] [CrossRef]
- Danese, S.; Vermeire, S.; Zhou, W.; Pangan, A.L.; Siffledeen, J.; Greenbloom, S.; Hébuterne, X.; D’Haens, G.; Nakase, H.; Panés, J.; et al. Upadacitinib as Induction and Maintenance Therapy for Moderately to Severely Active Ulcerative Colitis: Results from Three Phase 3, Multicentre, Double-Blind, Randomised Trials. Lancet 2022, 399, 2113–2128. [Google Scholar] [CrossRef]
- Feagan, B.G.; Danese, S.; Loftus, E.V., Jr.; Vermeire, S.; Schreiber, S.; Ritter, T.; Fogel, R.; Mehta, R.; Nijhawan, S.; Kempiński, R.; et al. Filgotinib as Induction and Maintenance Therapy for Ulcerative Colitis (SELECTION): A Phase 2b/3 Double-Blind, Randomised, Placebo-Controlled Trial. Lancet 2021, 397, 2372–2384. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Su, C.; Sands, B.E.; D’Haens, G.R.; Vermeire, S.; Schreiber, S.; Danese, S.; Feagan, B.G.; Reinisch, W.; Niezychowski, W.; et al. Tofacitinib as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2017, 376, 1723–1736. [Google Scholar] [CrossRef]
- Angelini, J.; Talotta, R.; Roncato, R.; Fornasier, G.; Barbiero, G.; Dal Cin, L.; Brancati, S.; Scaglione, F. JAK-Inhibitors for the Treatment of Rheumatoid Arthritis: A Focus on the Present and an Outlook on the Future. Biomolecules 2020, 10, 1002. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, D.M.; Kanno, Y.; Villarino, A.; Ward, M.; Gadina, M.; O’Shea, J.J. JAK Inhibition as a Therapeutic Strategy for Immune and Inflammatory Diseases. Nat. Rev. Drug Discov. 2017, 16, 843–862. [Google Scholar] [CrossRef] [PubMed]
- Kuhrt, D.; Wojchowski, D.M. Emerging EPO and EPO Receptor Regulators and Signal Transducers. Blood 2015, 125, 3536–3541. [Google Scholar] [CrossRef]
- Banerjee, S.; Biehl, A.; Gadina, M.; Hasni, S.; Schwartz, D.M. JAK–STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs 2017, 77, 521–546. [Google Scholar] [CrossRef]
- Neurath, M.F. Current and Emerging Therapeutic Targets for IBD. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 269–278. [Google Scholar] [CrossRef]
- RINVOQ (upadacitinib)—FDA Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/211675s015lbl.pdf (accessed on 1 April 2025).
- Haan, C.; Rolvering, C.; Raulf, F.; Kapp, M.; Drückes, P.; Thoma, G.; Behrmann, I.; Zerwes, H.-G. Jak1 Has a Dominant Role over Jak3 in Signal Transduction through γc-Containing Cytokine Receptors. Chem. Biol. 2011, 18, 314–323. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT Signaling Pathway: From Bench to Clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef]
- Strober, B.; Blauvelt, A.; Warren, R.B.; Papp, K.A.; Armstrong, A.W.; Gordon, K.B.; Morita, A.; Alexis, A.F.; Lebwohl, M.; Foley, P.; et al. Deucravacitinib in Moderate-to-Severe Plaque Psoriasis: Pooled Safety and Tolerability over 52 Weeks from Two Phase 3 Trials (POETYK PSO-1 and PSO-2). J. Eur. Acad. Dermatol. Venereol. 2024, 38, 1543–1554. [Google Scholar] [CrossRef]
- Chen, C.; Yin, Y.; Shi, G.; Zhou, Y.; Shao, S.; Wei, Y.; Wu, L.; Zhang, D.; Sun, L.; Zhang, T. A Highly Selective JAK3 Inhibitor Is Developed for Treating Rheumatoid Arthritis by Suppressing γc Cytokine-Related JAK–STAT Signal. Sci. Adv. 2022, 8, eabo4363. [Google Scholar] [CrossRef] [PubMed]
- XELJANZ (tofacitinib)—FDA Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/208246s000lbl.pdf (accessed on 1 April 2025).
- JYSELECA (filgotinib)—EMA Product Information. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/jyseleca (accessed on 1 April 2025).
- RINVOQ (upadacitinib)—EMA Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/rinvoq-epar-product-information_en.pdf (accessed on 1 April 2025).
- Xeljanz (tofacitinib)—EMA Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/xeljanz-epar-product-information_en.pdf (accessed on 1 April 2025).
- Janus Kinase Inhibitors (JAKi)—EMA Assessment Report. Available online: https://www.ema.europa.eu/en/documents/referral/janus-kinase-inhibitors-jaki-article-20-procedure-assessment-report_en.pdf (accessed on 1 April 2025).
- Burr, N.E.; Gracie, D.J.; Black, C.J.; Ford, A.C. Efficacy of Biological Therapies and Small Molecules in Moderate to Severe Ulcerative Colitis: Systematic Review and Network Meta-Analysis. Gut 2021, 71, gutjnl-2021-326390. [Google Scholar] [CrossRef]
- Panaccione, R.; Collins, E.B.; Melmed, G.Y.; Vermeire, S.; Danese, S.; Higgins, P.D.R.; Kwon, C.S.; Zhou, W.; Ilo, D.; Sharma, D.; et al. Efficacy and Safety of Advanced Therapies for Moderately to Severely Active Ulcerative Colitis at Induction and Maintenance: An Indirect Treatment Comparison Using Bayesian Network Meta-Analysis. Crohn’s Colitis 360 2023, 5, otad009. [Google Scholar] [CrossRef]
- Ahuja, D.; Murad, M.H.; Ma, C.; Jairath, V.; Singh, S. Comparative Speed of Early Symptomatic Remission with Advanced Therapies for Moderate-to-Severe Ulcerative Colitis: A Systematic Review and Network Meta-Analysis. Am. J. Gastroenterol. 2023, 118, 1618–1625. [Google Scholar] [CrossRef] [PubMed]
- Harnik, S.; Ungar, B.; Loebstein, R.; Ben-Horin, S. A Gastroenterologist’s Guide to Drug Interactions of Small Molecules for Inflammatory Bowel Disease. UEG J. 2024, 12, 12559. [Google Scholar] [CrossRef] [PubMed]
- Choy, E.H. Clinical Significance of Janus Kinase Inhibitor Selectivity. Rheumatology 2019, 58, 953–962. [Google Scholar] [CrossRef]
- Mohamed, M.F.; Camp, H.S.; Jiang, P.; Padley, R.J.; Asatryan, A.; Othman, A.A. Pharmacokinetics of Upadacitinib with the Clinical Regimens of the Extended-Release Formulation Utilized in Rheumatoid Arthritis Phase 3 Trials. Clin. Pharmacol. Drug Dev. 2019, 8, 208–216. [Google Scholar] [CrossRef]
- Mohamed, M.-E.F.; Klünder, B.; Othman, A.A. Clinical Pharmacokinetics of Upadacitinib: Review of Data Relevant to the Rheumatoid Arthritis Indication. Clin. Pharmacokinet. 2020, 59, 531–544. [Google Scholar] [CrossRef]
- Namour, F.; Desrivot, J.; Van der Aa, A.; Harrison, P.; Tasset, C.; van’t Klooster, G. Clinical Confirmation That the Selective JAK1 Inhibitor Filgotinib (GLPG0634) Has a Low Liability for Drug–Drug Interactions. Drug Metab. Lett. 2016, 10, 38–48. [Google Scholar] [CrossRef]
- Kim, E.S.; Keam, S.J. Correction to: Filgotinib in Rheumatoid Arthritis: A Profile of Its Use. Clin. Drug Investig. 2022, 42, 101. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kavanaugh, A.; Wicklund, J.; McInnes, I.B. Filgotinib, a Novel JAK1-Preferential Inhibitor for the Treatment of Rheumatoid Arthritis: An Overview from Clinical Trials. Mod. Rheumatol. 2022, 32, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, P.L.C.; Vande Casteele, N. Clinical Pharmacology of Janus Kinase Inhibitors in Inflammatory Bowel Disease. J. Crohns Colitis 2020, 14 (Suppl. 2), S725–S736. [Google Scholar] [CrossRef]
- Dowty, M.E.; Lin, J.; Ryder, T.F.; Wang, W.; Walker, G.S.; Vaz, A.; Chan, G.L.; Krishnaswami, S.; Prakash, C. The Pharmacokinetics, Metabolism, and Clearance Mechanisms of Tofacitinib, a Janus Kinase Inhibitor, in Humans. Drug Metab. Dispos. 2014, 42, 759–773. [Google Scholar] [CrossRef] [PubMed]
- López-Sanromán, A.; Esplugues, J.V.; Domènech, E. Pharmacology and Safety of Tofacitinib in Ulcerative Colitis. Gastroenterol. Hepatol. 2021, 44, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Koops, H.; Strand, V.; Nduaka, C.; DeMasi, R.; Wallenstein, G.; Kwok, K.; Wang, L. Analysis of Haematological Changes in Tofacitinib-Treated Patients With Rheumatoid Arthritis Across Phase 3 and Long-Term Extension Studies. Rheumatology 2017, 56, 46–57. [Google Scholar] [CrossRef]
- Van Rompaey, L.; Galien, R.; van der Aar, E.M.; Clement-Lacroix, P.; Nelles, L.; Smets, B.; Lepescheux, L.; Christophe, T.; Conrath, K.; Vandeghinste, N.; et al. Preclinical Characterization of GLPG0634, a Selective Inhibitor of JAK1, for the Treatment of Inflammatory Diseases. J. Immunol. 2013, 191, 3568–3577. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Gokarn, Y.; Mitragotri, S. Non-Invasive Delivery Strategies for Biologics. Nat. Rev. Drug Discov. 2019, 18, 19–40. [Google Scholar] [CrossRef]
- Namour, F.; Anderson, K.; Nelson, C.; Tasset, C. Filgotinib: A Clinical Pharmacology Review. Clin. Pharmacokinet. 2022, 61, 819–832. [Google Scholar] [CrossRef]
- Taylor, P.C.; Choy, E.; Baraliakos, X.; Szekanecz, Z.; Xavier, R.M.; Isaacs, J.D.; Strengholt, S.; Parmentier, J.M.; Lippe, R.; Tanaka, Y. Differential Properties of Janus Kinase Inhibitors in the Treatment of Immune-Mediated Inflammatory Diseases. RMD Open 2022, 8, e002230. [Google Scholar] [CrossRef]
- Meng, A.; Anderson, K.; Nelson, C.; Ni, L.; Chuang, S.-M.; Bellanti, F.; Chang, P.; Comisar, C.; Kearney, B.P.; Bartok, B.; et al. Exposure–Response Relationships for the Efficacy and Safety of Filgotinib and Its Metabolite GS-829845 in Subjects with Rheumatoid Arthritis Based on Phase 2 and Phase 3 Studies. Br. J. Clin. Pharmacol. 2022, 88, 4560–4573. [Google Scholar] [CrossRef] [PubMed]
- Traves, P.G.; Murray, B.; Campigotto, F.; Galien, R.; Meng, A.; Di Paolo, J.A. JAK Selectivity and the Implications for Clinical Inhibition of Pharmacodynamic Cytokine Signalling by Filgotinib, Upadacitinib, Tofacitinib and Baricitinib. Ann. Rheum. Dis. 2021, 80, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Reddig, A.; Zurek, A.; Arndt, U.; Nist, A.; Sonnewald, U.; Willers, R.; Roth, J.; Melcher, I.; Ernst, J. Impact of Different JAK Inhibitors and Methotrexate on Lymphocyte Proliferation and DNA Damage. J. Clin. Med. 2021, 10, 1431. [Google Scholar] [CrossRef] [PubMed]
- Kubo, S.; Nishina, N.; Amano, K.; Hirata, S. JAK Inhibitors for Rheumatoid Arthritis. Expert Opin. Pharmacother. 2023, 32, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.; Zhang, J.; Napel, M.; Boppana, L.K.T.; Anas, H.; Jadhav, N.; Dunnigan, K.; Okolo, P.I. Systematic Review with Meta-Analysis: Efficacy and Safety of Upadacitinib in Managing Moderate-to-Severe Crohn’s Disease and Ulcerative Colitis. Clin. Drug Investig. 2024, 44, 371–385. [Google Scholar] [CrossRef]
- Attauabi, M.; Dahl, E.K.; Burisch, J.; Gubatan, J.; Nielsen, O.H.; Seidelin, J.B. Comparative Onset of Effect of Biologics and Small Molecules in Moderate-to-Severe Ulcerative Colitis: A Systematic Review and Network Meta-Analysis. EClinicalMedicine 2023, 57, 101866. [Google Scholar] [CrossRef]
- Skjellerudsveen, B.M.; Skoie, I.M.; Dalen, I.; Grimstad, T.; Omdal, R. The Effect of Biological Treatment on Fatigue in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Drugs 2023, 83, 909–921. [Google Scholar] [CrossRef]
- Louis, E.; Bossuyt, P.; Colard, A.; Nakad, A.; Baert, D.; Mana, F.; Caenepeel, P.; Vanden Branden, S.; Vermeire, S.; D’Heygere, F.; et al. Change in Fatigue in Patients with Ulcerative Colitis or Crohn’s Disease Initiating Biologic Therapy. Dig. Liver Dis. 2024, 657, 707–715. [Google Scholar] [CrossRef]
- Vermeire, S.; Danese, S.; Zhou, W.; Ilo, D.; Klaff, J.; Levy, G.; Yao, X.; Chen, S.; Sanchez Gonzalez, Y.; Hébuterne, X.; et al. Efficacy and Safety of Upadacitinib Maintenance Therapy for Moderately to Severely Active Ulcerative Colitis in Patients Responding to 8-Week Induction Therapy (U-ACHIEVE Maintenance): Overall Results from the Randomised, Placebo-Controlled, Double-Blind, Phase 3 Maintenance Study. Lancet Gastroenterol. Hepatol. 2023, 8, 976–989. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Ghosh, S.; Panés, J.; Schreiber, S.; D’Haens, G.; Tanida, S.; Siffledeen, J.; Enejosa, J.; Zhou, W.; Othman, A.A.; et al. Efficacy of Upadacitinib in a Randomized Trial of Patients with Active Ulcerative Colitis. Gastroenterology 2020, 158, 2139–2149.e14. [Google Scholar] [CrossRef]
- Danese, S.; Vermeire, S.; Zhou, W.; Pangan, A.; Siffledeen, J.; Hébuterne, X.; Nakase, H.; Higgins, P.D.R.; Chen, M.H.; Sanchez-Gonzalez, Y.; et al. OP24 Efficacy and Safety of Upadacitinib Induction Therapy in Patients with Moderately to Severely Active Ulcerative Colitis: Results from the Phase 3 U-ACHIEVE Study. J. Crohns Colitis 2021, 15 (Suppl. 1), S022–S024. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Siegel, C.; Tanida, S.; Bossuyt, P.; Torres, E.; Dubinsky, M.; Baert, F.; Zhou, W.; Klaff, J.; Berg, S.; et al. P522 Upadacitinib Promotes Histologic and Endoscopic Mucosal Healing: Results from the Upadacitinib Ulcerative Colitis Phase 3 Program. J. Crohns Colitis 2022, 16 (Suppl. 1), i477–i478. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Ghosh, S.; Panés, J.; Vranic, I.; Su, C.; Rousell, S.; Niezychowski, W.; for the Study A3921063 Investigators. Tofacitinib, an Oral Janus Kinase Inhibitor, in Active Ulcerative Colitis. N. Engl. J. Med. 2012, 367, 616–624. [Google Scholar] [CrossRef]
- Friedberg, S.; Rinawi, F.; Ben Hur, D.; Choi, N.K.; Garcia, N.M.; Picker, E.A.; Rubin, D.T. Upadacitinib Is Effective and Safe in Both Ulcerative Colitis and Crohn’s Disease: Prospective Real-World Experience. Clin. Gastroenterol. Hepatol. 2023, 21, 1913–1923.e2. [Google Scholar] [CrossRef] [PubMed]
- Seidelin, J.B.; Thomsen, S.B.; Colombel, J.F.; Marin-Jimenez, I.; Dawod, F.; Lukanova, R.; Jones, W.; Morriset, P.; Siegel, C. Assessment of the Real-World Effectiveness of Upadacitinib in Patients with Moderate-Severe Ulcerative Colitis in a Global Real-World Setting. J. Crohns Colitis 2025, 19 (Suppl. 1), i1260–i1262. [Google Scholar] [CrossRef]
- Taxonera, C.; Olivares, D.; Rey, E.; Alba, C. Real-World Effectiveness and Safety of Tofacitinib in Patients with Ulcerative Colitis: Systematic Review with Meta-Analysis. Inflamm. Bowel Dis. 2022, 28, 32–40. [Google Scholar] [CrossRef]
- Shimizu, H.; Matsuoka, K.; Hisamatsu, T.; Aonuma, Y.; Hibiya, S.; Kawamoto, A.; Takenaka, K.; Fujii, T.; Okamoto, R. Long-Term Efficacy and Safety of Tofacitinib in Patients with Ulcerative Colitis: 3-Year Results from a Real-World Study. Intest. Res. 2024, 22, 369–377. [Google Scholar] [CrossRef]
- Kojima, K.; Imai, T.; Motoya, S.; Watanabe, K.; Kawai, M.; Yagi, S.; Kaku, K.; Ikenouchi, M.; Shinzaki, S. Real-World Efficacy and Safety of Tofacitinib Treatment in Asian Patients with Ulcerative Colitis. World J. Gastroenterol. 2024, 30, 1871–1886. [Google Scholar] [CrossRef]
- Resál, T.; Toth, G.; Verstockt, B.; Bacsur, P.; Keresztes, C.; Bálint, A.; Bor, R.; Fábián, A.; Molnár, T. Real-Life Efficacy of Tofacitinib in Various Situations in Ulcerative Colitis: A Retrospective Worldwide Multicenter Collaborative Study. Inflamm. Bowel Dis. 2024, 30, 768–779. [Google Scholar] [CrossRef]
- Avni-Biron, I.; Rosen, R.; Bar-Gil Shitrit, A.; Koslowsky, B.; Levartovsky, A.; Kopylov, U.; Weisshof, R.; Yanai, H. Short-Term Effectiveness and Safety of Tofacitinib in Ulcerative Colitis—Real-World Data from Tertiary Medical Centers in Israel. Dig. Liver Dis. 2022, 54, 151–153. [Google Scholar] [CrossRef]
- Gros, B.; Engel, T.; Kopylov, U.; Goodall, M.; Plevris, N.; Constantine-Cooke, N.; Elford, A.T.; O’Hare, C.; Lees, C.W. Real-World Cohort Study on the Effectiveness and Safety of Filgotinib Use in Ulcerative Colitis. J. Crohns Colitis 2025, 19, jjad187. [Google Scholar] [CrossRef]
- Akiyama, S.; Yamamoto, T.; Ikeya, T.; Yokoyama, K.; Yagi, S.; Shinzaki, S.; Tsuruta, K.; Yoshioka, S.; Fujii, T. Efficacy and Safety of Filgotinib for Ulcerative Colitis: A Real-World Multicenter Retrospective Study in Japan. Aliment. Pharmacol. Ther. 2024, 59, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Young, D.; Bhamra, R.; Sebastian, S.; Rahmany, S.; Taylor, D.; Davis, E.; Colwill, M.; Mehta, S.K.; Cummings, F. Real-World Assessment of Effectiveness and Safety of Filgotinib in 286 Patients with Ulcerative Colitis in 9 UK Centres. Drugs Context 2025, 14, 2024–11-1. [Google Scholar] [CrossRef] [PubMed]
- Nogami, A.; Watanabe, K.; Hisamatsu, T.; Asonuma, K.; Okabayashi, S.; Ikenouchi, M.; Matsuda, T.; Shinzaki, S.; Kobayashi, T. Real-World Comparative Effectiveness and Safety of Filgotinib and Upadacitinib for Ulcerative Colitis: A Multicentre Cohort Study. United Eur. Gastroenterol. J. 2024, 12, 1357–1366. [Google Scholar] [CrossRef]
- Lasa, J.S.; Olivera, P.A.; Danese, S.; Peyrin-Biroulet, L. Efficacy and Safety of Biologics and Small Molecule Drugs for Patients with Moderate-to-Severe Ulcerative Colitis: A Systematic Review and Network Meta-Analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Corrao, S. Crucial Safety Issues on Janus Kinase Inhibitors in Rheumatoid Arthritis Might Be Associated with the Lack of LDL-Cholesterol Management: A Reasoned Literature Analysis. Intern. Emerg. Med. 2023, 18, 2157–2161. [Google Scholar] [CrossRef]
- Wrobleski, S.T.; Moslin, R.; Lin, S.; Zhang, Y.; Spergel, S.; Kempson, J.; Tokarski, J.S.; Strnad, J.; Zupa-Fernandez, A.; Cheng, L.; et al. Highly Selective Inhibition of Tyrosine Kinase 2 (TYK2) for the Treatment of Autoimmune Diseases: Discovery of the Allosteric Inhibitor BMS-986165. J. Med. Chem. 2019, 62, 8973–8995. [Google Scholar] [CrossRef] [PubMed]
- Alavi, A.; Hamzavi, I.; Brown, K.; Santos, L.L.; Zhu, Z.; Liu, H.; Howell, M.D.; Kirby, J.S. Janus Kinase 1 Inhibitor INCB054707 for Patients with Moderate-to-Severe Hidradenitis Suppurativa: Results from Two Phase II Studies. Br. J. Dermatol. 2022, 186, 803–813. [Google Scholar] [CrossRef]
- Rusiñol, L.; Puig, L. TYK2 Targeting in Immune-Mediated Inflammatory Diseases. Int. J. Mol. Sci. 2023, 24, 3391. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Danese, S.; Leszczyszyn, J.; Romatowski, J.; Altintas, E.; Peeva, E.; Hassan-Zahraee, M.; Vincent, M.S.; Reddy, P.S.; Banfield, C.; et al. Oral Ritlecitinib and Brepocitinib for Moderate-to-Severe Ulcerative Colitis: Results from a Randomized, Phase 2b Study. Clin. Gastroenterol. Hepatol. 2023, 21, 2616–2628.e7. [Google Scholar] [CrossRef]
- Modi, N.B.; Cheng, X.; Mattheakis, L.; Hwang, C.-C.; Nawabi, R.; Liu, D.; Gupta, S. Single- and Multiple-Dose Pharmacokinetics and Pharmacodynamics of PN-943, a Gastrointestinal-Restricted Oral Peptide Antagonist of α4β7, in Healthy Volunteers. Clin. Pharmacol. Drug Dev. 2021, 10, 1263–1278. [Google Scholar] [CrossRef]
- Protagonist Therapeutics, Inc. Protagonist Therapeutics Announces Topline Data from Phase 2 IDEAL Study of PN-943 in Ulcerative Colitis. Press Release, 25 April 2022. Available online: https://www.prnewswire.com/news-releases/protagonist-therapeutics-announces-topline-data-from-phase-2-ideal-study-of-pn-943-in-ulcerative-colitis-301532339.html (accessed on 1 April 2025).
- Hanzel, J.; Hulshoff, M.S.; Grootjans, J.; D’Haens, G. Emerging Therapies for Ulcerative Colitis. Expert Rev. Clin. Immunol. 2022, 18, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Mestrovic, A.; Perkovic, N.; Bozic, D.; Kumric, M.; Vilovic, M.; Bozic, J. Precision Medicine in Inflammatory Bowel Disease: A Spotlight on Emerging Molecular Biomarkers. Biomedicines 2024, 12, 1520. [Google Scholar] [CrossRef] [PubMed]
PK/PD Characteristics | Upadacitinib | Filgotinib | Tofacitinib | |||
---|---|---|---|---|---|---|
Administration Route | Oral | Oral | Oral | |||
IC50 (nmol/L) * | JAK1: 0.76 JAK2: 19 JAK3: 224 TYK2: 118 | JAK1: 45 JAK2: 357 JAK3: 9097 TYK2: 397 | JAK1: 15 JAK2: 71 JAK3: 45 TYK2: 472 | |||
JAK Selectivity (Binding Domain) | JAK1 (JH1 domain) | JAK1 (JH1 domain) | JAK1, JAK2, JAK3 (JH1 domain) | |||
Time to Maximum Plasma Concentration (Tmax) | ~2–4 h (median) | ~2–3 h (median) | ~9–14 h (median) | |||
Half-Life | ~9–14 h | ~7 h (parent) ~19 h (active metabolite) | ~3 h | |||
Food Effects | Avoid grapefruit products (CYP3A4 inhibitors) | Not significantly affected by food | Avoid grapefruit products (CYP3A4 inhibitors) | |||
Bioavailability | ~79% | ~2.9% (parent) ~92% (active metabolite) | ~74% | |||
Active Metabolite | Not known | GS-829845 | Not known | |||
Urinary (Renal) Elimination | ~24% | ~87% (parent) ~54% (active metabolite) | ~30% | |||
Fecal Elimination | ~38% | ~15% (parent) ~8.9% (active metabolite) | ~0% | |||
Hepatic Metabolism | ~34% | Not known | ~70% | |||
Metabolic Enzymes | CYP3A4 (primary), CYP2D6 (minor) | CES2 (primary, intestinal), CES1 (minor, hepatic) | CYP3A4 (primary), CYP2C19 (minor) | |||
Prescribing Information Approved by | FDA | EMA | Only approved in EMA | FDA | EMA | |
Renal Impairment | Mild | No dose adjustment | No dose adjustment | No dose adjustment | No dose adjustment | No dose adjustment |
Moderate | No dose adjustment | No dose adjustment | 100 mg QD (15 to <60 mL/min) | From 10 mg BID to 5 mg BID From 5 mg BID to 5 mg QD | No dose adjustment | |
Severe | Induction: 30 mg QD Maintenance: 15 mg QD Not studied in ESRD (<15 mL/min) | Induction: 30 mg QD Maintenance: 15 mg QD Not studied in ESRD (<15 mL/min) | 100 mg QD (15 to <60 mL/min) Not studied in ESRD (<15 mL/min) | From 10 mg BID to 5 mg BID From 5 mg BID to 5 mg QD Maintain reduced dose post-dialysis | From 10 mg BID to 5 mg BID From 5 mg BID to 5 mg QD Maintain reduced dose post-dialysis | |
Liver Disease | Mild | Induction: 30 mg QD Maintenance: 15 mg QD | No dose adjustment | No dose adjustment | No dose adjustment | No dose adjustment |
Moderate | No dose adjustment | From 10 mg BID to 5 mg BID | From 5 mg BID to 5 mg QD | |||
Severe | Not recommended | Not recommended | Not recommended | Not recommended | Not recommended |
Drug | Trial (Year) | Population | Clinical Remission Rates at Week 8 to 10 2 | ||
---|---|---|---|---|---|
Placebo | Treatment (Dose) | Δ vs. Placebo | |||
Upadacitinib | U-ACHIEVE (2022) | Bio-naïve 48% Bio-exp 52% | 5% | 26% (45 mg QD) * | 21% |
U-ACCOMPLISH (2022) | Bio-naïve 51% Bio-exp 49% | 4% | 29% (45 mg QD) * | 25% | |
Filgotinib ¹ | SELECTION A (2021) | Bio-naïve 100% | 15.3% | 26.1% (200 mg QD) ** | 10.8% |
SELECTION B (2021) | Bio-exp 100% | 4.2% | 11.5% (200 mg QD) ** | 7.3% | |
Tofacitinib | OCTAVE 1 (2017) | TNFi-naïve: 47% TNFi- exp: 53% | 8.2% | 18.5% (10 mg BID) ** | 10.3% |
OCTAVE 2 (2017) | TNFi-naïve: 45% TNFi-exp: 55% | 3.6% | 16.6% (10 mg BID) * | 13.0% |
Drug | Trial (Year) | Clinical Remission Rates at Week 52 1 | ||
---|---|---|---|---|
Placebo | Low Dose 2 (Δ vs. Placebo) | High Dose 3 (Δ vs. Placebo) | ||
Upadacitinib | U-ACHIEVE (2022) | 12% | 42% (30%) * | 52% (40%) * |
Filgotinib | SELECTION (2021) | 13.5% | 23.8% (10.3%) ** | 37.2% (23.7%) * |
Tofacitinib | OCTAVE Sustain (2017) | 11.1% | 34.3% (23.2%) * | 40.6% (29.5%) * |
Event Type | Upadacitinib 45 mg QD (% of Patients) | Filgotinib 200 mg QD ¹ (% of Patients) | Tofacitinib 10mg BID (% of Patients) |
---|---|---|---|
Overall Safety | |||
Any Adverse Events | U-ACHIEVE: 56% U-ACCOMPLISH: 53% | 53.6% | OCTAVE 1: 56.5% OCTAVE 2: 54.1% |
Serious Adverse Events | U-ACHIEVE: 3% U-ACCOMPLISH: 3% | 4.3% | OCTAVE 1: 3.4% OCTAVE 2: 4.2% |
D/C Due to AEs | U-ACHIEVE: 2% U-ACCOMPLISH: 2% | 4.5% | OCTAVE 1: 3.8% OCTAVE 2: 4.0% |
Most Common AEs | |||
Nasopharyngitis | 4–5% | 5–7% | |
Worsening UC | 1–2% | 2–3% | |
Headache | 2–4% | 7–8% | |
Events of Interest | |||
Any Infection | 18.1% | OCTAVE 1: 23.3% OCTAVE 2: 18.2% | |
Serious Infection | 1–2% | 0.6% | OCTAVE 1: 1.3% OCTAVE 2: 0.2% |
Herpes Zoster | <1% | 0.2% | 0.5–0.6% |
VTE | 0 | 0 | 0 |
MACE | 0 | 0 | |
Anemia | U-ACHIEVE: 1:3% U-ACCOMPLISH: 4% |
Event Type | Upadacitinib QD (% of Patients) | Filgotinib 200 mg QD (% of Patients) | Tofacitinib BID (% of Patients) |
---|---|---|---|
Overall Safety | |||
Any Adverse Events | 15 mg: 78% 30 mg: 79% | 66.8% | 5 mg: 72.2% 10 mg: 79.6% |
Serious Adverse Events | 15 mg: 7% 30 mg: 6% | 4.5% | 5 mg: 5.1% 10 mg: 5.6% |
D/C Due to AEs | 15 mg: 4% 30 mg: 6% | 3.5% | 5 mg: 9.1% 10 mg: 9.7% |
Most Common AEs | |||
Nasopharyngitis | 15 mg: 12% 30 mg: 14% | 5 mg: 9.6% 10 mg: 13.8% | |
Worsening UC | 15 mg: 13% 30 mg: 7% | 5 mg: 18.2% 10 mg: 14.8% | |
Events of Interest | |||
Any Infection | 35.1% | 5 mg: 35.9% 10 mg: 39.8% | |
Serious Infection | 15 mg: 3% 30 mg: 3% | 1.0% | 5 mg: 1.0% 10 mg: 0.5% |
Herpes Zoster | 15 mg: 4% 30 mg: 4% | 0.5% | 5 mg: 1.5% 10 mg: 5.1% |
Malignancy 1 | 15 mg: <1% 30 mg: 1% | 0.5% | 5 mg: 0 2 10 mg: 0 2 |
NMSC | 15 mg: 0 30 mg: 1% | 0 | 5 mg: 0 10 mg: 3 cases |
VTE | 15 mg: 0 30 mg: 2 cases (1%) | 0 | 0 |
MACE | 15 mg: 0 30 mg: 0 | 5 mg: 1 case 10 mg: 1 case | |
Anemia | 15 mg: 5% 30 mg: 2% |
Study | Sample Size/Objectives | Treatment Phase | Primary Outcomes | Subgorup Analysis (Bio-naïve/Bio-exp) | Investigated Agents | Highest-Rank Efficacy Agent | Highest-Rank Safety Agent | Key Implications |
---|---|---|---|---|---|---|---|---|
Lasa, J.S. et al. [90] |
| Induction | Clinical remission, endoscopic improvement | No | Upadacitinib Filgotinib Tofacitinib Infliximab Adalimumab Golimumab Etrolizumab Ustekinumab Vedolizumab Ozanimod | Upadacitinib | All comparable (N/S) | Upadacitinib with significant superiority to all other interventions for the induction of clinical remission |
Burr, N.E. et al. [48] |
| Induction | Failure to achieve clinical remission, failure to achieve endoscopic improvement | Yes | Upadacitinib Filgotinib Tofacitinib Infliximab Adalimumab Golimumab Etrolizumab Ustekinumab Vedolizumab Ozanimod | Upadacitinib for clinical remission, Infliximab for endoscopic improvement | All comparable (N/S) | Upadacitinib 45 mg QD ranked highest for clinical remission, infliximab 10 mg/kg ranked first for endoscopic improvement |
Attauabi, M. et al. [71] |
| Induction | Induction of clinical response and clinical remission in week 2 | No | Upadacitinib Filgotinib Tofacitinib Infliximab Adalimumab Golimumab Ustekinumab Vedolizumab Ozanimod | Upadacitinib | Not available | Upadacitinib ranked highest for induction of clinical response and clinical remission in week 2: superior to all agents but tofacitinib |
Panaccione, R. et al. [49] |
| Induction and maintenance | Clinical response, clinical remission, endoscopic improvement | Yes | Upadacitinib Filgotinib Tofacitinib Infliximab Adalimumab Golimumab Ustekinumab Vedolizumab Ozanimod | Upadacitinib | All comparable (N/S) | Across all outcomes and regardless of prior biologic exposure, highest efficacy rates with upadacitinib |
Ahuja, D. et al. [50] |
| Induction | Early symptomatic remission in week 2 | Yes | Upadacitinib Filgotinib Infliximab Adalimumab Golimumab Ustekinumab Vedolizumab Ozanimod | Upadacitinib | Comparable safety profile (N/S) | Upadacitinib most effective in achieving symptomatic remission in week 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Lee, S.; Kim, H.J.; Park, T.; Kwack, W.G.; Yang, S.; Chung, E.K. State-of-the-Art Evidence for Clinical Outcomes and Therapeutic Implications of Janus Kinase Inhibitors in Moderate-to-Severe Ulcerative Colitis: A Narrative Review. Pharmaceuticals 2025, 18, 740. https://doi.org/10.3390/ph18050740
Choi Y, Lee S, Kim HJ, Park T, Kwack WG, Yang S, Chung EK. State-of-the-Art Evidence for Clinical Outcomes and Therapeutic Implications of Janus Kinase Inhibitors in Moderate-to-Severe Ulcerative Colitis: A Narrative Review. Pharmaceuticals. 2025; 18(5):740. https://doi.org/10.3390/ph18050740
Chicago/Turabian StyleChoi, Yunseok, Suhyun Lee, Hyeon Ji Kim, Taemin Park, Won Gun Kwack, Seungwon Yang, and Eun Kyoung Chung. 2025. "State-of-the-Art Evidence for Clinical Outcomes and Therapeutic Implications of Janus Kinase Inhibitors in Moderate-to-Severe Ulcerative Colitis: A Narrative Review" Pharmaceuticals 18, no. 5: 740. https://doi.org/10.3390/ph18050740
APA StyleChoi, Y., Lee, S., Kim, H. J., Park, T., Kwack, W. G., Yang, S., & Chung, E. K. (2025). State-of-the-Art Evidence for Clinical Outcomes and Therapeutic Implications of Janus Kinase Inhibitors in Moderate-to-Severe Ulcerative Colitis: A Narrative Review. Pharmaceuticals, 18(5), 740. https://doi.org/10.3390/ph18050740