New Agents in the Treatment of Psychiatric Disorders: What Innovations and in What Areas of Psychopathology?
Abstract
:1. Introduction
2. Methods
- -
- Randomized controlled trials (RCTs),
- -
- Open-label trials,
- -
- Post hoc subgroup analyses,
- -
- Clinical trials,
- -
- Retrospective analyses,
- -
- Observational studies,
- -
- Exploratory analyses,
- -
- Narrative reviews,
- -
- Systematic reviews,
- -
- Meta-analyses.
3. Results
4. Discussion
4.1. Schizophrenia
4.1.1. Lumateperone
4.1.2. Risperidone Long-Acting Injectable
4.1.3. Transdermal Asenapine
4.1.4. Olanzapine/Samidorphan
4.1.5. KarXT
4.2. Bipolar Disorders
4.2.1. Lumateperone
4.2.2. Olanzapine/Samidorphan
4.2.3. Ketamine and Esketamine
4.2.4. NRX-101 (D-Cycloserine Plus Lurasidone)
4.2.5. Celecoxib
4.2.6. Infliximab
4.3. Major Depressive Disorder
4.3.1. Ketamine and Esketamine
4.3.2. Dextromethorphan/Bupropion
4.3.3. Brexanolone
4.3.4. Zuranolone
4.3.5. Psilocybin
4.4. Anxiety Disorders
4.4.1. Lysergic Acid Diethylamide
4.4.2. 3,4-Methylenedioxymethamphetamine
4.4.3. D-Cycloserine
4.4.4. Ketamine
4.4.5. Cannabinoids
4.5. Obsessive-Compulsive Disorder
4.5.1. Pregabalin
4.5.2. Memantine
4.5.3. Tolcapone
4.5.4. Ondansetron
4.5.5. N-Acetylcysteine
4.5.6. Methylphenidate
4.5.7. Other Psychedelics
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Carrier, F.; Banayan, D.; Boley, R.; Karnik, N. Ethical challenges in developing drugs for psychiatric disorders. Prog. Neurobiol. 2017, 152, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; Thase, M.E.; Pillinger, T. Treatment resistance in psychiatry: State of the art and new directions. Mol. Psychiatry 2022, 27, 58–72. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, P.L.; Thomas, C.P.; Hodgkin, D.; Levit, K.R.; Mark, T.L. The diminished pipeline for medications to treat mental health and substance use disorders. Psychiatr. Serv. 2014, 65, 1433–1438. [Google Scholar] [CrossRef]
- Giliberto, S.; Shishodia, R.; Nastruz, M.; Brar, C.; Bulathsinhala, S.; Terry, J.; Pemminati, S.; Shenoys, S. A Comprehensive Review of Novel FDA-Approved Psychiatric Medications (2018–2022). Cureus 2024, 16, e56561. [Google Scholar] [CrossRef]
- Lieberman, J.A.; Davis, R.E.; Correll, C.U.; Goff, D.C.; Kane, J.M.; Tamminga, C.A.; Mates, S.; Vanover, K. ITI-007 for the Treatment of Schizophrenia: A 4-Week Randomized, Double-Blind, Controlled Trial. Biol. Psychiatry 2016, 79, 952–961. [Google Scholar] [CrossRef]
- Correll, C.U.; Davis, R.E.; Weingart, M.; Saillard, J.; O’Gorman, C.; Kane, J.M.; Lieberman, J.; Tamminga, C.; Mates, S.; Vanover, K. Efficacy and Safety of Lumateperone for Treatment of Schizophrenia: A Randomized Clinical Trial. JAMA Psychiatry 2020, 77, 349–358. [Google Scholar] [CrossRef]
- Correll, C.U.; Vanover, K.E.; Davis, R.E.; Chen, R.; Satlin, A.; Mates, S. Safety and tolerability of lumateperone 42 mg: An open-label antipsychotic switch study in outpatients with stable schizophrenia. Schizophr. Res. 2021, 228, 198–205. [Google Scholar] [CrossRef]
- Kane, J.M.; Durgam, S.; Satlin, A.; Vanover, K.E.; Chen, R.; Davis, R.; Mates, S. Safety and tolerability of lumateperone for the treatment of schizophrenia: A pooled analysis of late-phase placebo- and active-controlled clinical trials. Int. Clin. Psychopharmacol. 2021, 36, 244–250. [Google Scholar] [CrossRef]
- Andorn, A.; Graham, J.; Csernansky, J.; Newcomer, J.W.; Shinde, S.; Muma, G.; Heidbreder, C.; Fava, M. Monthly Extended-Release Risperidone (RBP-7000) in the Treatment of Schizophrenia: Results From the Phase 3 Program. J. Clin. Psychopharmacol. 2019, 39, 428–433. [Google Scholar] [CrossRef]
- Dhanda, R.; Varghese, D.; Nadipelli, V.R.; Fava, M.; Joshi, N.; Solem, C.T.; Graham, J.; Learned, S.; Heidbreder, C. Patient-reported outcomes in schizophrenia patients treated with once-monthly extended-release risperidone in a long-term clinical study. Patient Prefer. Adherence 2019, 13, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Kane, J.M.; Harary, E.; Eshet, R.; Tohami, O.; Weiser, M.; Leucht, S.; Merelender-Wagner, A.; Sharon, N.; Davis, G., 3rd; Suett, M.; et al. Efficacy and safety of TV-46000, a long-acting, subcutaneous, injectable formulation of risperidone, for schizophrenia: A randomised clinical trial in the USA and Bulgaria. Lancet Psychiatry 2023, 10, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Kane, J.M.; Eshet, R.; Harary, E.; Tohami, O.; Elgart, A.; Knebel, H.; Sharon, N.; Suett, M.; Franzeburg, K.; Davis, G., 3rd; et al. A Long-Term Safety and Tolerability Study of TV-46000 for Subcutaneous Use in Patients with Schizophrenia: A Phase 3, Randomized, Double-Blinded Clinical Trial. CNS Drugs 2024, 38, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Filts, Y.; Litman, R.E.; Martínez, J.; Anta, L.; Naber, D.; Correll, C.U. Long-term efficacy and safety of once-monthly Risperidone ISM® in the treatment of schizophrenia: Results from a 12-month open-label extension study. Schizophr. Res. 2022, 239, 83–91. [Google Scholar] [CrossRef]
- Citrome, L.; Walling, D.P.; Zeni, C.M.; Starling, B.R.; Terahara, T.; Kuriki, M.; Park, A.; Komaroff, M. Efficacy and Safety of HP-3070, an Asenapine Transdermal System, in Patients with Schizophrenia: A Phase 3, Randomized, Placebo-Controlled Study. J. Clin. Psychiatry 2020, 82, 1417. [Google Scholar] [CrossRef]
- Silverman, B.L.; Martin, W.; Memisoglu, A.; DiPetrillo, L.; Correll, C.U.; Kane, J.M. A randomized, double-blind, placebo-controlled proof of concept study to evaluate samidorphan in the prevention of olanzapine-induced weight gain in healthy volunteers. Schizophr. Res. 2018, 195, 245–251. [Google Scholar] [CrossRef]
- Martin, W.F.; Correll, C.U.; Weiden, P.J.; Jiang, Y.; Pathak, S.; DiPetrillo, L.; Silverman, B.; Ehrich, E. Mitigation of Olanzapine-Induced Weight Gain with Samidorphan, an Opioid Antagonist: A Randomized Double-Blind Phase 2 Study in Patients with Schizophrenia. Am. J. Psychiatry 2019, 176, 457–467. [Google Scholar] [CrossRef]
- Sun, L.; McDonnell, D.; Liu, J.; von Moltke, L. Bioequivalence of Olanzapine Given in Combination with Samidorphan as a Bilayer Tablet (ALKS 3831) Compared with Olanzapine-Alone Tablets: Results From a Randomized, Crossover Relative Bioavailability Study. Clin. Pharmacol. Drug Dev. 2019, 8, 459–466. [Google Scholar] [CrossRef]
- Sun, L.; Yagoda, S.; Du, Y.; von Moltke, L. Effect of hepatic and renal impairment on the pharmacokinetics of olanzapine and samidorphan given in combination as a bilayer tablet. Drug Des. Devel. Ther. 2019, 13, 2941–2955. [Google Scholar] [CrossRef]
- Potkin, S.G.; Kunovac, J.; Silverman, B.L.; Simmons, A.; Jiang, Y.; DiPetrillo, L.; McDonnell, D. Efficacy and Safety of a Combination of Olanzapine and Samidorphan in Adult Patients with an Acute Exacerbation of Schizophrenia: Outcomes From the Randomized, Phase 3 ENLIGHTEN-1 Study. J. Clin. Psychiatry 2020, 81, 5960. [Google Scholar] [CrossRef]
- Correll, C.U.; Newcomer, J.W.; Silverman, B.; DiPetrillo, L.; Graham, C.; Jiang, Y.; Simmons, A.; Hopkinson, C.; McDonnell, D.; Kahn, R.S. Effects of Olanzapine Combined with Samidorphan on Weight Gain in Schizophrenia: A 24-Week Phase 3 Study. Am. J. Psychiatry 2020, 177, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Yagoda, S.; Graham, C.; Simmons, A.; Arevalo, C.; Jiang, Y.; McDonnell, D. Long-term safety and durability of effect with a combination of olanzapine and samidorphan in patients with schizophrenia: Results from a 1-year open-label extension study. CNS Spectr. 2021, 26, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yagoda, S.; Xue, H.; Brown, R.; Nangia, N.; McDonnell, D.; Rege, B.; Moltke, L.; Darpo, B. Combination of olanzapine and samidorphan has no clinically relevant effects on ECG parameters, including the QTc interval: Results from a phase 1 QT/QTc study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 100, 109881. [Google Scholar] [CrossRef] [PubMed]
- Kahn, R.S.; Silverman, B.L.; DiPetrillo, L.; Graham, C.; Jiang, Y.; Yin, J.; Simmons, A.; Bhupathi, V.; Yu, B.; Yagoda, S.; et al. A phase 3, multicenter study to assess the 1-year safety and tolerability of a combination of olanzapine and samidorphan in patients with schizophrenia: Results from the ENLIGHTEN-2 long-term extension. Schizophr. Res. 2021, 232, 45–53. [Google Scholar] [CrossRef]
- Brannan, S.K.; Sawchak, S.; Miller, A.C.; Lieberman, J.A.; Paul, S.M.; Breier, A. Muscarinic Cholinergic Receptor Agonist and Peripheral Antagonist for Schizophrenia. N. Engl. J. Med. 2021, 384, 717–726. [Google Scholar] [CrossRef]
- Correll, C.U.; Angelov, A.S.; Miller, A.C.; Weiden, P.J.; Brannan, S.K. Safety and tolerability of KarXT (xanomeline-trospium) in a phase 2, randomized, double-blind, placebo-controlled study in patients with schizophrenia. Schizophrenia 2022, 8, 109. [Google Scholar] [CrossRef]
- Kaul, I.; Sawchak, S.; Walling, D.P.; Tamminga, C.A.; Breier, A.; Zhu, H.; Miller, A.; Paul, S.; Brannan, S. Efficacy and Safety of Xanomeline-Trospium Chloride in Schizophrenia: A Randomized Clinical Trial. JAMA Psychiatry 2024, 81, 749–756. [Google Scholar] [CrossRef]
- Calabrese, J.R.; Durgam, S.; Satlin, A.; Vanover, K.E.; Davis, R.E.; Chen, R.; Kozauer, S.; Mates, S.; Sachs, G. Efficacy and Safety of Lumateperone for Major Depressive Episodes Associated with Bipolar I or Bipolar II Disorder: A Phase 3 Randomized Placebo-Controlled Trial. Am. J. Psychiatry 2021, 178, 1098–1106. [Google Scholar] [CrossRef]
- Suppes, T.; Durgam, S.; Kozauer, S.G.; Chen, R.; Lakkis, H.D.; Davis, R.E.; Satlin, A.; Vanover, K.; Mates, S.; McIntyre, R.; et al. Adjunctive lumateperone (ITI-007) in the treatment of bipolar depression: Results from a randomized placebo-controlled clinical trial. Bipolar Disord. 2023, 25, 478–488. [Google Scholar] [CrossRef]
- Kahn, R.S.; Kane, J.M.; Correll, C.U.; Arevalo, C.; Simmons, A.; Graham, C.; Yagoda, S.; Hu, B.; McDonell, D. Olanzapine/Samidorphan in Young Adults with Schizophrenia, Schizophreniform Disorder, or Bipolar I Disorder Who Are Early in Their Illness: Results of the Randomized, Controlled ENLIGHTEN-Early Study. J. Clin. Psychiatry 2023, 84, 22m14674. [Google Scholar] [CrossRef]
- Zaki, N.; Chen, L.N.; Lane, R.; Doherty, T.; Drevets, W.C.; Morrison, R.L.; Sanacora, G.; Wilkinson, S.; Popova, V.; Fu, D. Long-term safety and maintenance of response with esketamine nasal spray in participants with treatment-resistant depression: Interim results of the SUSTAIN-3 study. Neuropsychopharmacology 2023, 48, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Tabuteau, H.; Jones, A.; Anderson, A.; Jacobson, M.; Iosifescu, D.V. Effect of AXS-05 (Dextromethorphan-Bupropion) in Major Depressive Disorder: A Randomized Double-Blind Controlled Trial. Am. J. Psychiatry 2022, 179, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Iosifescu, D.V.; Jones, A.; O’Gorman, C.; Streicher, C.; Feliz, S.; Fava, M.; Tabuteau, H. Efficacy and Safety of AXS-05 (Dextromethorphan-Bupropion) in Patients with Major Depressive Disorder: A Phase 3 Randomized Clinical Trial (GEMINI). J. Clin. Psychiatry 2022, 83, 41226. [Google Scholar] [CrossRef] [PubMed]
- Kanes, S.; Colquhoun, H.; Gunduz-Bruce, H.; Raines, S.; Arnold, R.; Schacterle, A.; Doherty, J.; Epperson, N.; Deligiannidis, K.; Riesenberng, R.; et al. Brexanolone (SAGE-547 injection) in post-partum depression: A randomised controlled trial. Lancet 2017, 390, 480–489. [Google Scholar] [CrossRef]
- Meltzer-Brody, S.; Colquhoun, H.; Riesenberg, R.; Epperson, C.N.; Deligiannidis, K.M.; Rubinow, D.R.; Li, H.; Sankoh, A.; Clemson, C.; Schacterle, E.; et al. Brexanolone injection in post-partum depression: Two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet 2018, 392, 1058–1070. [Google Scholar] [CrossRef]
- Deligiannidis, K.M.; Meltzer-Brody, S.; Gunduz-Bruce, H.; Doherty, J.; Jonas, J.; Li, S.; Sankoh, A.; Silber, C.; Campbell, A.; Werneburg, B.; et al. Effect of Zuranolone vs Placebo in Postpartum Depression: A Randomized Clinical Trial. JAMA Psychiatry 2021, 78, 951–959. [Google Scholar] [CrossRef]
- Deligiannidis, K.M.; Meltzer-Brody, S.; Maximos, B.; Peeper, E.Q.; Freeman, M.; Lasser, R.; Bullock, E.; Koteka, M.; Li, S.; Forrestal, F.; et al. Zuranolone for the Treatment of Postpartum Depression. Am. J. Psychiatry 2023, 180, 668–675. [Google Scholar] [CrossRef]
- Buckley, P.F. Substance abuse in schizophrenia: A review. J. Clin. Psychiatry 1998, 59 (Suppl. S3), 26–30. [Google Scholar]
- Biagi, E.; Capuzzi, E.; Colmegna, F.; Mascarini, A.; Brambilla, G.; Ornaghi, A.; Santambrogio, J.; Clerici, M. Long-Acting Injectable Antipsychotics in Schizophrenia: Literature Review and Practical Perspective, with a Focus on Aripiprazole Once-Monthly. Adv. Ther. 2017, 34, 1036–1048. [Google Scholar] [CrossRef]
- Kane, J.M. Treatment strategies to prevent relapse and encourage remission. J. Clin. Psychiatry 2007, 68 (Suppl. S14), 27–30. [Google Scholar]
- Alvarez-Jimenez, M.; Priede, A.; Hetrick, S.E.; Bendall, S.; Killackey, E.; Parker, A.G.; McGorry, P.; Gleenson, J. Risk factors for relapse following treatment for first episode psychosis: A systematic review and meta-analysis of longitudinal studies. Schizophr. Res. 2012, 139, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Orzelska-Górka, J.; Mikulska, J.; Wiszniewska, A.; Biała, G. New Atypical Antipsychotics in the Treatment of Schizophrenia and Depression. Int. J. Mol. Sci. 2022, 23, 10624. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.; Arnone, D.; Cappai, A.; Howes, O. Alterations in the serotonin system in schizophrenia: A systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci. Biobehav. Rev. 2014, 45, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Stępnicki, P.; Kondej, M.; Kaczor, A.A. Current Concepts and Treatments of Schizophrenia. Molecules 2018, 23, 2087. [Google Scholar] [CrossRef]
- Pilon, D.; Tandon, N.; Lafeuille, M.H.; Kamstra, R.; Emond, B.; Lefebvre, P.; Joshi, K. Treatment Patterns, Health Care Resource Utilization, and Spending in Medicaid Beneficiaries Initiating Second-generation Long-acting Injectable Agents Versus Oral Atypical Antipsychotics. Clin. Ther. 2017, 39, 1972–1985.e2. [Google Scholar] [CrossRef]
- Subotnik, K.L.; Casaus, L.R.; Ventura, J.; Luo, J.S.; Hellemann, G.S.; Gretchen-Doorly, D.; Marder, S.; Nuechterlein, K. Long-Acting Injectable Risperidone for Relapse Prevention and Control of Breakthrough Symptoms After a Recent First Episode of Schizophrenia. A Randomized Clinical Trial. JAMA Psychiatry 2015, 72, 822–829. [Google Scholar] [CrossRef]
- Greene, C.; Kealy, J.; Humphries, M.M.; Gong, Y.; Hou, J.; Hudson, N.; Cassidy, L.; Martiniano, R.; Shashi, V.; Hooper, S.; et al. Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Mol. Psychiatry 2018, 23, 2156–2166. [Google Scholar] [CrossRef]
- Olagunju, A.T.; Clark, S.R.; Baune, B.T. Long-acting atypical antipsychotics in schizophrenia: A systematic review and meta-analyses of effects on functional outcome. Aust. N. Z. J. Psychiatry 2019, 53, 509–527. [Google Scholar] [CrossRef]
- Kishimoto, T.; Hagi, K.; Kurokawa, S.; Kane, J.M.; Correll, C.U. Long-acting injectable versus oral antipsychotics for the maintenance treatment of schizophrenia: A systematic review and comparative meta-analysis of randomised, cohort, and pre-post studies. Lancet Psychiatry 2021, 8, 387–404. [Google Scholar] [CrossRef]
- Citrome, L. Agitation in schizophrenia: Origins and evidence-based treatment. Curr. Opin. Psychiatry 2021, 34, 216–221. [Google Scholar] [CrossRef]
- Koblan, K.S.; Kent, J.; Hopkins, S.C.; Krystal, J.H.; Cheng, H.; Goldman, R.; Loebel, A. A Non-D2-Receptor-Binding Drug for the Treatment of Schizophrenia. N. Engl. J. Med. 2020, 382, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.; Saoud, J.; Staner, C.; Noel, N.; Werner, S.; Luthringer, E.; Walling, D.; Weiser, M.; Harvey, F.; Strauss, G.; et al. Efficacy and Safety of Roluperidone for the Treatment of Negative Symptoms of Schizophrenia. Schizophr. Bull. 2022, 48, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Pahwa, M.; Sleem, A.; Elsayed, O.H.; Good, M.E.; El-Mallakh, R.S. New Antipsychotic Medications in the Last Decade. Curr. Psychiatry Rep. 2021, 23, 87. [Google Scholar] [CrossRef] [PubMed]
- Ceskova, E. Pharmacological strategies for the management of comorbid depression and schizophrenia. Expert Opin. Pharmacother. 2020, 21, 459–465. [Google Scholar] [CrossRef]
- Nasser, A.F.; Henderson, D.C.; Fava, M.; Fudala, P.J.; Twumasi-Ankrah, P.; Kouassi, A.; Heildbreder, C. Efficacy, Safety, and Tolerability of RBP-7000 Once-Monthly Risperidone for the Treatment of Acute Schizophrenia: An 8-Week, Randomized, Double-Blind, Placebo-Controlled, Multicenter Phase 3 Study. J. Clin. Psychopharmacol. 2016, 36, 130–140. [Google Scholar] [CrossRef]
- Isitt, J.J.; Nadipelli, V.R.; Kouassi, A.; Fava, M.; Heidbreder, C. Health-related quality of life in acute schizophrenia patients treated with RBP-7000 once monthly risperidone: An 8-week, randomized, double-blind, placebo-controlled, multicenter phase 3 study. Schizophr. Res. 2016, 174, 126–131. [Google Scholar] [CrossRef]
- Citrome, L.; Suett, M.; Franzenburg, K.R.; Eshet, R.; Elgart, A.; Davis, R.D.L.; Haray, E.; Tohami, O.; Mychaskiw, M.; Kane, J. TV-46000, A Long-Acting Subcutaneous Antipsychotic Agent, Demonstrated Improved Patient-Centered Outcomes in Patients with Schizophrenia. Neuropsychiatr. Dis. Treat. 2024, 20, 1901–1917. [Google Scholar] [CrossRef]
- Correll, C.U.; Litman, R.E.; Filts, Y.; Llaudó, J.; Naber, D.; Torres, F.; Martinez, J. Efficacy and safety of once-monthly Risperidone ISM® in schizophrenic patients with an acute exacerbation. npj Schizophr. 2020, 6, 37. [Google Scholar] [CrossRef]
- Carrithers, B.; El-Mallakh, R.S. Transdermal Asenapine in Schizophrenia: A Systematic Review. Patient Prefer. Adherence 2020, 14, 1541–1551. [Google Scholar] [CrossRef]
- Reyad, A.A.; Mishriky, R. Asenapine: Pharmacological Aspects and Role in Psychiatric Disorders. Psychiatr. Danub. 2019, 31, 157–161. [Google Scholar] [CrossRef]
- Citrome, L. Asenapine review, part II: Clinical efficacy, safety and tolerability. Expert Opin. Drug Saf. 2014, 13, 803–830. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Castelli, M.; Komaroff, M.; Starling, B.; Terahara, T.; Citrome, L. Pharmacokinetic Profile of the Asenapine Transdermal System (HP-3070). J. Clin. Psychopharmacol. 2021, 41, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Srisurapanont, M.; Suttajit, S.; Likhitsathian, S.; Maneeton, B.; Maneeton, N. A meta-analysis comparing short-term weight and cardiometabolic changes between olanzapine/samidorphan and olanzapine. Sci. Rep. 2021, 11, 7583. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.; Saoud, J.; Staner, C.; Noel, N.; Luthringer, E.; Werner, S.; Reilly, J.; Schaffhauser, J.; Rabinowitz, J.; Weiser, M.; et al. Efficacy and Safety of MIN-101: A 12-Week Randomized, Double-Blind, Placebo-Controlled Trial of a New Drug in Development for the Treatment of Negative Symptoms in Schizophrenia. Am. J. Psychiatry 2017, 174, 1195–1202. [Google Scholar] [CrossRef]
- Anand, R.; Turolla, A.; Chinellato, G.; Roy, A.; Hartman, R.D. Therapeutic Effect of Evenamide, a Glutamate Inhibitor, in Patients with Treatment-Resistant Schizophrenia (TRS): Final, 1-Year Results From a Phase 2, Open-Label, Rater-Blinded, Randomized, International Clinical Trial. Int. J. Neuropsychopharmacol. 2024, 28, pyae061. [Google Scholar] [CrossRef]
- Jeppesen, R.; Christensen, R.H.B.; Pedersen, E.M.J.; Nordentoft, M.; Hjorthøj, C.; Köhler-Forsberg, O.; Benros, M. Efficacy and safety of anti-inflammatory agents in treatment of psychotic disorders—A comprehensive systematic review and meta-analysis. Brain Behav. Immun. 2020, 90, 364–380. [Google Scholar] [CrossRef]
- Pereira, A.C.; Oliveira, J.; Silva, S.; Madeira, N.; Pereira, C.M.F.; Cruz, M.T. Inflammation in Bipolar Disorder (BD): Identification of new therapeutic targets. Pharmacol. Res. 2021, 163, 105325. [Google Scholar] [CrossRef]
- Wilkowska, A.; Cubała, W.J. Short-term ketamine use in bipolar depression: A review of the evidence for short-term treatment management. Front. Psychiatry 2023, 14, 1322752. [Google Scholar] [CrossRef]
- Wu, H.N.; Zhu, S.Y.; Zhang, L.N.; Shen, B.H.; Xu, L.L. Association between 5-HTR1A gene C-1019G polymorphism and antidepressant response in patients with major depressive disorder: A meta-analysis. World J. Psychiatry 2024, 14, 1573–1582. [Google Scholar] [CrossRef]
- Keramatian, K.; Chakrabarty, T.; DuBow, A.; Saraf, G.; Yatham, L.N. New Pharmacologic Approaches to the Treatment of Bipolar Depression. Drugs 2023, 83, 843–863. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Subramaniapillai, M.; Lee, Y.; Pan, Z.; Carmona, N.E.; Shekotikhina, M.; Rosenblat, J.; Brietzke, E.; Soczynska, J.; Cosgrove, V.; et al. Efficacy of Adjunctive Infliximab vs Placebo in the Treatment of Adults with Bipolar I/II Depression: A Randomized Clinical Trial. JAMA Psychiatry 2019, 76, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Nikkheslat, N. Targeting inflammation in depression: Ketamine as an anti-inflammatory antidepressant in psychiatric emergency. Brain Behav. Immun. Health 2021, 18, 100383. [Google Scholar] [CrossRef] [PubMed]
- Kadriu, B.; Musazzi, L.; Henter, I.D.; Graves, M.; Popoli, M.; Zarate, C.A. Glutamatergic Neurotransmission: Pathway to Developing Novel Rapid-Acting Antidepressant Treatments. Int. J. Neuropsychopharmacol. 2019, 22, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Wilkowska, A.; Włodarczyk, A.; Gałuszko-Węgielnik, M.; Wiglusz, M.S.; Cubała, W.J. Intravenous Ketamine Infusions in Treatment-Resistant Bipolar Depression: An Open-Label Naturalistic Observational Study. Neuropsychiatr. Dis. Treat. 2021, 17, 2637–2646. [Google Scholar] [CrossRef]
- Rybakowski, J.K.; Permoda-Osip, A.; Bartkowska-Sniatkowska, A. Ketamine augmentation rapidly improves depression scores in inpatients with treatment-resistant bipolar depression. Int. J. Psychiatry Clin. Pract. 2017, 21, 99–103. [Google Scholar] [CrossRef]
- Zheng, W.; Zhou, Y.L.; Wang, C.Y.; Lan, X.F.; Zhang, B.; Yang, M.Z.; Nie, S.; Ning, Y. Neurocognitive effects of six ketamine infusions and the association with antidepressant effects in treatment-resistant bipolar depression: A preliminary study. PeerJ 2020, 8, e10208. [Google Scholar] [CrossRef]
- Zhuo, C.; Ji, F.; Tian, H.; Wang, L.; Jia, F.; Jiang, D.; Chen, C.; Zho, C.; Lin, X.; Zhu, J. Transient effects of multi-infusion ketamine augmentation on treatment-resistant depressive symptoms in patients with treatment-resistant bipolar depression—An open-label three-week pilot study. Brain Behav. 2020, 10, e01674. [Google Scholar] [CrossRef]
- Fancy, F.; Haikazian, S.; Johnson, D.E.; Chen-Li, D.C.J.; Levinta, A.; Husain, M.I.; Mansur, R.; Rosenblat, J. Ketamine for bipolar depression: An updated systematic review. Ther. Adv. Psychopharmacol. 2023, 13, 20451253231202723. [Google Scholar] [CrossRef]
- Martinotti, G.; Dell’Osso, B.; Di Lorenzo, G.; Maina, G.; Bertolino, A.; Clerici, M.; Barlati, S.; Rosso, G.; Di Nicola, M.; Mercantini, M.; et al. Treating bipolar depression with esketamine: Safety and effectiveness data from a naturalistic multicentric study on esketamine in bipolar versus unipolar treatment-resistant depression. Bipolar Disord. 2023, 25, 233–244. [Google Scholar] [CrossRef]
- Wajs, E.; Aluisio, L.; Holder, R.; Daly, E.J.; Lane, R.; Lim, P.; Georg, J.; Morrison, R.; Sanacora, G.; Young, A.; et al. Esketamine Nasal Spray Plus Oral Antidepressant in Patients with Treatment-Resistant Depression: Assessment of Long-Term Safety in a Phase 3, Open-Label Study (SUSTAIN-2). J. Clin. Psychiatry 2020, 81, 10773. [Google Scholar] [CrossRef]
- Santucci, M.C.; Ansari, M.; Nikayin, S.; Radhakrishnan, R.; Rhee, T.G.; Wilkinson, S.T. Efficacy and Safety of Ketamine/Esketamine in Bipolar Depression in a Clinical Setting. J. Clin. Psychiatry 2024, 85, 57118. [Google Scholar] [CrossRef] [PubMed]
- Nierenberg, A.; Lavin, P.; Javitt, D.C.; Shelton, R.; Sapko, M.T.; Mathew, S.; Besthof, R.; Javitt, J. NRX-101 (D-cycloserine plus lurasidone) vs. lurasidone for the maintenance of initial stabilization after ketamine in patients with severe bipolar depression with acute suicidal ideation and behavior: A randomized prospective phase 2 trial. Int. J. Bipolar Disord. 2023, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Edberg, D.; Hoppensteadt, D.; Walborn, A.; Fareed, J.; Sinacore, J.; Halaris, A. Plasma C-reactive protein levels in bipolar depression during cyclooxygenase-2 inhibitor combination treatment. J. Psychiatr. Res. 2018, 102, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Husain, M.I.; Chaudhry, I.B.; Khoso, A.B.; Husain, M.O.; Hodsoll, J.; Ansari, M.A.; Naqvi, H.; Minhas, F.; Carvalho, A.; Meyer, J.; et al. Minocycline and celecoxib as adjunctive treatments for bipolar depression: A multicentre, factorial design randomised controlled trial. Lancet Psychiatry 2020, 7, 515–527. [Google Scholar] [CrossRef]
- Zanos, P.; Moaddel, R.; Morris, P.J.; Riggs, L.M.; Highland, J.N.; Georgiou, P.; Pereira, E.; Albuquerque, E.; Thomas, C.; Zarate, C., Jr.; et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol. Rev. 2018, 70, 621–660. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Jain, R. Glutamatergic Modulators for Major Depression from Theory to Clinical Use. CNS Drugs 2024, 38, 869–890. [Google Scholar] [CrossRef]
- Sajid, S.; Mann, J.J.; Grunebaum, M.F. Clinical trials since 2020 of rapid anti-suicidal ideation effects of ketamine and its enantiomers: A systematic review. Transl. Psychiatry 2025, 15, 44. [Google Scholar] [CrossRef]
- Ahmed, G.K.; Elserogy, Y.M.; Elfadl, G.M.A.; Abdelsalam, K.G.; Ali, M.A. Antidepressant and anti-suicidal effects of ketamine in treatment-resistant depression associated with psychiatric and personality comorbidities: A double-blind randomized trial. J. Affect. Disord. 2023, 325, 127–134. [Google Scholar] [CrossRef]
- Abbar, M.; Demattei, C.; El-Hage, W.; Llorca, P.M.; Samalin, L.; Demaricourt, P.; Gaillard, R.; Courtet, P.; Vaiva, G.; Gorwood, P.; et al. Ketamine for the acute treatment of severe suicidal ideation: Double blind, randomised placebo controlled trial. BMJ 2022, 376, e067194. [Google Scholar] [CrossRef]
- Zhou, S.; Li, P.; Lyu, X.; Lai, X.; Liu, Z.; Zhou, J.; Liu, F.; Tao, Y.; Zhang, M.; Yu, H.; et al. Efficacy and dose-response relationships of antidepressants in the acute treatment of major depressive disorders: A systematic review and network meta-analysis. Chin. Med. J. 2024, 137, 18–29. [Google Scholar] [CrossRef]
- Su, T.P.; Li, C.T.; Lin, W.C.; Wu, H.J.; Tsai, S.J.; Bai, Y.M.; Mao, W.; Tu, P.; Chen, L.; Li, W.; et al. A Randomized, Double-Blind, Midazolam-Controlled Trial of Low-Dose Ketamine Infusion in Patients with Treatment-Resistant Depression and Prominent Suicidal Ideation. Int. J. Neuropsychopharmacol. 2023, 26, 331–339. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, B.; Bunn, H.; Santalucia, M.; Wilmouth, C.; Muzyk, A.; Smith, C.M. Dextromethorphan-bupropion (Auvelity) for the Treatment of Major Depressive Disorder. Clin. Psychopharmacol. Neurosci. 2023, 21, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, O.; Pajai, S. A Comprehensive Review on Postpartum Depression. Cureus 2022, 14, e32745. [Google Scholar] [CrossRef] [PubMed]
- Cornett, E.M.; Rando, L.; Labbé, A.M.; Perkins, W.; Kaye, A.M.; Kaye, A.D.; Viswanath, O.; Urits, I. Brexanolone to Treat Postpartum Depression in Adult Women. Psychopharmacol. Bull. 2021, 51, 115–130. [Google Scholar]
- Wald, J.; Henningsson, A.; Hanze, E.; Hoffmann, E.; Li, H.; Colquhoun, H.; Deligiannidis, K. Allopregnanolone Concentrations in Breast Milk and Plasma from Healthy Volunteers Receiving Brexanolone Injection, with Population Pharmacokinetic Modeling of Potential Relative Infant Dose. Clin. Pharmacokinet. 2022, 61, 1307–1319. [Google Scholar] [CrossRef]
- Ahmad, A.; Awan, A.R.; Nadeem, N.; Javed, A.S.; Farooqi, M.; Daniyal, M.; Mumtaz, H. Zuranolone for treatment of major depressive disorder: A systematic review and meta-analysis. Front. Neurosci. 2024, 18, 1361692. [Google Scholar] [CrossRef]
- Hitt, E.M. Zuranolone: A Narrative Review of a New Oral Treatment for Postpartum Depression. Clin. Ther. 2024, 46, 433–438. [Google Scholar] [CrossRef]
- Melani, A.; Bonaso, M.; Biso, L.; Zucchini, B.; Conversano, C.; Scarselli, M. Uncovering Psychedelics: From Neural Circuits to Therapeutic Applications. Pharmaceuticals 2025, 18, 130. [Google Scholar] [CrossRef]
- Ling, S.; Ceban, F.; Lui, L.M.W.; Lee, Y.; Teopiz, K.M.; Rodrigues, N.B.; Libsitz, O.; Gill, H.; Subramaniapillai, M.; Mansur, R.; et al. Molecular Mechanisms of Psilocybin and Implications for the Treatment of Depression. CNS Drugs 2022, 36, 17–30. [Google Scholar] [CrossRef]
- Goodwin, G.M.; Aaronson, S.T.; Alvarez, O.; Arden, P.C.; Baker, A.; Bennett, J.C.; Bird, C.; Blom, R.; Brennan, C.; Brusch, D.; et al. Single-Dose Psilocybin for a Treatment-Resistant Episode of Major Depression. N. Engl. J. Med. 2022, 387, 1637–1648. [Google Scholar] [CrossRef]
- Goodwin, G.M.; Croal, M.; Feifel, D.; Kelly, J.R.; Marwood, L.; Mistry, S.; O’Keane, V.; Peck, S.; Simmons, H.; Sisa, C.; et al. Psilocybin for treatment resistant depression in patients taking a concomitant SSRI medication. Neuropsychopharmacology 2023, 48, 1492–1499. [Google Scholar] [PubMed]
- Caldiroli, A.; Colzani, L.; Capuzzi, E.; Quitadamo, C.; La Tegola, D.; Surace, T.; Russo, S.; Capetti, M.; Leo, S.; Tringari, A.; et al. Clinical Markers of Panic and Generalized Anxiety Disorder: Overlapping Symptoms, Different Course and Outcome. J. Pers. Med. 2023, 13, 491. [Google Scholar] [CrossRef]
- Garakani, A.; Murrough, J.W.; Freire, R.C.; Thom, R.P.; Larkin, K.; Buono, F.D.; Iosifescu, D. Pharmacotherapy of Anxiety Disorders: Current and Emerging Treatment Options. Front. Psychiatry 2020, 11, 595584. [Google Scholar]
- Griebel, G.; Holmes, A. 50 years of hurdles and hope in anxiolytic drug discovery. Nat. Rev. Drug Discov. 2013, 12, 667–687. [Google Scholar] [CrossRef] [PubMed]
- Holze, F.; Gasser, P.; Müller, F.; Dolder, P.C.; Liechti, M.E. Lysergic Acid Diethylamide-Assisted Therapy in Patients with Anxiety with and without a Life-Threatening Illness: A Randomized, Double-Blind, Placebo-Controlled Phase II Study. Biol. Psychiatry 2023, 93, 215–223. [Google Scholar] [CrossRef]
- Holze, F.; Gasser, P.; Müller, F.; Strebel, M.; Liechti, M.E. LSD-assisted therapy in patients with anxiety: Open-label prospective 12-month follow-up. Br. J. Psychiatry 2024, 225, 362–370. [Google Scholar]
- van der Kolk, B.A.; Wang, J.B.; Yehuda, R.; Bedrosian, L.; Coker, A.R.; Harrison, C.; Mithoefer, M.; Yazar-Klosinki, B.; Emerson, A.; Doblin, R. Effects of MDMA-assisted therapy for PTSD on self-experience. PLoS ONE 2024, 19, e0295926. [Google Scholar] [CrossRef]
- Mitchell, J.M.; Bogenschutz, M.; Lilienstein, A.; Harrison, C.; Kleiman, S.; Parker-Guilbert, K.; Ot’alora, M.; Garas, W.; Paleos, C.; Gorman, I.; et al. MDMA-Assisted Therapy for Severe PTSD: A Randomized, Double-Blind, Placebo-Controlled Phase 3 Study. Focus 2023, 21, 315–328. [Google Scholar] [CrossRef]
- Davis, M.; Ressler, K.; Rothbaum, B.O.; Richardson, R. Effects of D-cycloserine on extinction: Translation from preclinical to clinical work. Biol. Psychiatry 2006, 60, 369–375. [Google Scholar]
- Ori, R.; Amos, T.; Bergman, H.; Soares-Weiser, K.; Ipser, J.C.; Stein, D.J. Augmentation of cognitive and behavioural therapies (CBT) with d-cycloserine for anxiety and related disorders. Cochrane Database Syst. Rev. 2015, 2015, CD007803. [Google Scholar] [CrossRef]
- Mataix-Cols, D.; Fernández de la Cruz, L.; Monzani, B.; Rosenfield, D.; Andersson, E.; Pérez-Vigil, A.; Frumento, P.; Kleine, R.; Difede, J.; Dullop, B.; et al. D-Cycloserine Augmentation of Exposure-Based Cognitive Behavior Therapy for Anxiety, Obsessive-Compulsive, and Posttraumatic Stress Disorders: A Systematic Review and Meta-analysis of Individual Participant Data. JAMA Psychiatry 2017, 74, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Roque, A.D.; Rosenfield, D.; Smits, J.A.J.; Simon, N.; Otto, M.W.; Marques, L.; Pollack, M.; Hofmann, S.; Mauret, A. Does d-cycloserine facilitate the effects of homework compliance on social anxiety symptom reduction? J. Anxiety Disord. 2018, 53, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Reinecke, A.; Nickless, A.; Browning, M.; Harmer, C.J. Neurocognitive processes in d-cycloserine augmented single-session exposure therapy for anxiety: A randomized placebo-controlled trial. Behav. Res. Ther. 2020, 129, 103607. [Google Scholar] [CrossRef] [PubMed]
- Leyfer, O.; Carpenter, A.; Pincus, D. N-methyl-D-aspartate Partial Agonist Enhanced Intensive Cognitive-Behavioral Therapy of Panic Disorder in Adolescents. Child Psychiatry Hum. Dev. 2019, 50, 268–277. [Google Scholar] [CrossRef]
- Pyrkosch, L.; Lautenbacher, L.M.; Mumm, J.; Plag, J.; Fehm, L.; Fydrich, T.; Strohle, A. The potential effect of d-cycloserine on the development of anxiety during exposure sessions in patients with agoraphobia. J. Psychiatr. Res. 2025, 181, 151–159. [Google Scholar] [CrossRef]
- Pyrkosch, L.; Mumm, J.; Alt, I.; Fehm, L.; Fydrich, T.; Plag, J.; Strohle, A. Learn to forget: Does post-exposure administration of d-cycloserine enhance fear extinction in agoraphobia? J. Psychiatr. Res. 2018, 105, 153–163. [Google Scholar] [CrossRef]
- Irwin, S.A.; Iglewicz, A.; Nelesen, R.A.; Lo, J.Y.; Carr, C.H.; Romero, S.D.; Lloyd, L. Daily oral ketamine for the treatment of depression and anxiety in patients receiving hospice care: A 28-day open-label proof-of-concept trial. J. Palliat. Med. 2013, 16, 958–965. [Google Scholar] [CrossRef]
- Glue, P.; Medlicott, N.J.; Harland, S.; Neehoff, S.; Anderson-Fahey, B.; Le Nedelec, M.; Grey, A.; McNaughton, N. Ketamine’s dose-related effects on anxiety symptoms in patients with treatment refractory anxiety disorders. J. Psychopharmacol. 2017, 31, 1302–1305. [Google Scholar] [CrossRef]
- Glue, P.; Neehoff, S.M.; Medlicott, N.J.; Gray, A.; Kibby, G.; McNaughton, N. Safety and efficacy of maintenance ketamine treatment in patients with treatment-refractory generalised anxiety and social anxiety disorders. J. Psychopharmacol. 2018, 32, 663–667. [Google Scholar] [CrossRef]
- Taylor, J.H.; Landeros-Weisenberger, A.; Coughlin, C.; Mulqueen, J.; Johnson, J.A.; Gabriel, D.; Reed, M.; Jakubovski, E.; Bloch, M. Ketamine for Social Anxiety Disorder: A Randomized, Placebo-Controlled Crossover Trial. Neuropsychopharmacology 2018, 43, 325–333. [Google Scholar] [CrossRef]
- Glue, P.; Neehoff, S.; Sabadel, A.; Broughton, L.; Le Nedelec, M.; Shadli, S.; McNaughton, N.; Medlicott, N. Effects of ketamine in patients with treatment-refractory generalized anxiety and social anxiety disorders: Exploratory double-blind psychoactive-controlled replication study. J. Psychopharmacol. 2020, 34, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Feder, A.; Costi, S.; Rutter, S.B.; Collins, A.B.; Govindarajulu, U.; Jha, M.K.; Horn, S.; Kautz, M.; Corniquel, M.; Collins, K.; et al. A Randomized Controlled Trial of Repeated Ketamine Administration for Chronic Posttraumatic Stress Disorder. Focus 2023, 21, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, C.G.; Roache, J.D.; Gueorguieva, R.; Averill, L.A.; Young-McCaughan, S.; Shiroma, P.R.; Purohit, P.; Brundige, A.; Murff, W.; Ahn, K.; et al. Correction to: Dose-related effects of ketamine for antidepressant-resistant symptoms of posttraumatic stress disorder in veterans and active duty military: A double-blind, randomized, placebo-controlled multi-center clinical trial. Neuropsychopharmacology 2022, 47, 1583–1584. [Google Scholar] [CrossRef] [PubMed]
- Blessing, E.M.; Steenkamp, M.M.; Manzanares, J.; Marmar, C.R. Cannabidiol as a Potential Treatment for Anxiety Disorders. Neurotherapeutics 2015, 12, 825–836. [Google Scholar] [CrossRef]
- Gundugurti, P.R.; Banda, N.; Yadlapalli, S.S.R.; Narala, A.; Thatikonda, R.; Kocherlakota, C.; Kothapalli, K. Evaluation of the efficacy, safety, and pharmacokinetics of nanodispersible cannabidiol oral solution (150 mg/mL) versus placebo in mild to moderate anxiety subjects: A double blind multicenter randomized clinical trial. Asian J. Psychiatr. 2024, 97, 104073. [Google Scholar] [CrossRef]
- Masataka, N. Anxiolytic Effects of Repeated Cannabidiol Treatment in Teenagers with Social Anxiety Disorders. Front. Psychol. 2019, 10, 2466. [Google Scholar] [CrossRef]
- Kwee, C.M.; Baas, J.M.; van der Flier, F.E.; Groenink, L.; Duits, P.; Eikelenboom, M.; Van Der Veen, D.; Moerbeek, M.; Batelaan, N.; Jlm Van Balkom, A.; et al. Cannabidiol enhancement of exposure therapy in treatment refractory patients with social anxiety disorder and panic disorder with agoraphobia: A randomised controlled trial. Eur. Neuropsychopharmacol. 2022, 59, 58–67. [Google Scholar] [CrossRef]
- Bolsoni, L.M.; Crippa, J.A.S.; Hallak, J.E.C.; Guimarães, F.S.; Zuardi, A.W. The anxiolytic effect of cannabidiol depends on the nature of the trauma when patients with post-traumatic stress disorder recall their trigger event. Braz. J. Psychiatry 2022, 44, 298–307. [Google Scholar] [CrossRef]
- Berger, M.; Li, E.; Rice, S.; Davey, C.G.; Ratheesh, A.; Adams, S.; Jackson, H.; Hetrick, S.; Parker, A.; Spelman, T.; et al. Cannabidiol for Treatment-Resistant Anxiety Disorders in Young People: An Open-Label Trial. J. Clin. Psychiatry 2022, 83, 42111. [Google Scholar] [CrossRef]
- Freitas-Ferrari, M.C.; Hallak, J.E.C.; Trzesniak, C.; Filho, A.S.; Machado-de-Sousa, J.P.; Chagas, M.H.N.; Nardi, A.; Crippa, J.A. Neuroimaging in social anxiety disorder: A systematic review of the literature. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 565–580. [Google Scholar] [CrossRef]
- Turna, J.; Patterson, B.; Van Ameringen, M. Is cannabis treatment for anxiety, mood, and related disorders ready for prime time? Depress. Anxiety 2017, 34, 1006–1017. [Google Scholar] [CrossRef] [PubMed]
- Boisseau, C.L.; Schwartzman, C.M.; Lawton, J.; Mancebo, M.C. App-guided exposure and response prevention for obsessive compulsive disorder: An open pilot trial. Cogn. Behav. Ther. 2017, 46, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Hollander, E.; Doernberg, E.; Shavitt, R.; Waterman, R.J.; Soreni, N.; Veltman, D.J.; Sahakian, B.; Fineberg, N. The cost and impact of compulsivity: A research perspective. Eur. Neuropsychopharmacol. 2016, 26, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, E.J.; Power, H.; Fawcett, J.M. Women Are at Greater Risk of OCD Than Men: A Meta-Analytic Review of OCD Prevalence Worldwide. J. Clin. Psychiatry 2020, 81, 19r13085. [Google Scholar] [CrossRef]
- Skapinakis, P.; Caldwell, D.M.; Hollingworth, W.; Bryden, P.; Fineberg, N.A.; Salkovskis, P.; Welton, N.; Baxter, H.; Kessler, D.; Churchil, R.; et al. Pharmacological and Psychotherapeutic Interventions for Management of Obsessive-Compulsive Disorder in Adults: A Systematic Review and Network Meta-Analysis. Focus 2021, 19, 457–467. [Google Scholar] [CrossRef]
- Pittenger, C. Pharmacotherapeutic Strategies and New Targets in OCD. Curr. Top. Behav. Neurosci. 2021, 49, 331–384. [Google Scholar]
- Issari, Y.; Jakubovski, E.; Bartley, C.A.; Pittenger, C.; Bloch, M.H. Early onset of response with selective serotonin reuptake inhibitors in obsessive-compulsive disorder: A meta-analysis. J. Clin. Psychiatry 2016, 77, e605–e611. [Google Scholar] [CrossRef]
- Soomro, G.M.; Altman, D.; Rajagopal, S.; Oakley-Browne, M. Selective serotonin re-uptake inhibitors (SSRIs) versus placebo for obsessive compulsive disorder (OCD). Cochrane Database Syst. Rev. 2008, 2008, CD001765. [Google Scholar] [CrossRef]
- Fernandez, T.V.; Leckman, J.F.; Pittenger, C. Genetic susceptibility in obsessive-compulsive disorder. Handb. Clin. Neurol. 2018, 148, 767–781. [Google Scholar]
- Cappi, C.; Oliphant, M.E.; Péter, Z.; Zai, G.; Conceição do Rosário, M.; Sullivan, C.A.W.; Gupta, A.; Hoffman, E.; Virdee, M.; Olfson, E.; et al. De Novo Damaging DNA Coding Mutations Are Associated with Obsessive-Compulsive Disorder and Overlap with Tourette’s Disorder and Autism. Biol. Psychiatry 2020, 87, 1035–1044. [Google Scholar] [CrossRef]
- Stewart, S.E.; Mayerfeld, C.; Arnold, P.D.; Crane, J.R.; O’Dushlaine, C.; Fagerness, J.A.; Yu, D.; Scharf, J.M.; Chan, E.; Kassam, F.; et al. Meta-analysis of association between obsessive-compulsive disorder and the 3′ region of neuronal glutamate transporter gene SLC1A1. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2013, 162, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Mattheisen, M.; Samuels, J.F.; Wang, Y.; Greenberg, B.D.; Fyer, A.J.; McCracken, J.T.; Geller, D.A.; Murphy, D.L.; Knowles, J.A.; Grados, M.A.; et al. Genome-wide association study in obsessive-compulsive disorder: Results from the OCGAS. Mol. Psychiatry 2015, 20, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, B.O.; Ebesutani, C.; Kim, J.; Riemann, B.C.; Jacobi, D.M. Disgust proneness predicts obsessive-compulsive disorder symptom severity in a clinical sample of youth: Distinctions from negative affect. J. Affect. Disord. 2017, 213, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Micó, J.A.; Prieto, R. Elucidating the mechanism of action of pregabalin: α(2)δ as a therapeutic target in anxiety. CNS Drugs 2012, 26, 637–648. [Google Scholar] [CrossRef]
- Mowla, A.; Ghaedsharaf, M. Pregabalin augmentation for resistant obsessive-compulsive disorder: A double-blind placebo-controlled clinical trial. CNS Spectr. 2020, 25, 552–556. [Google Scholar] [CrossRef]
- Modarresi, A.; Sayyah, M.; Razooghi, S.; Eslami, K.; Javadi, M.; Kouti, L. Memantine Augmentation Improves Symptoms in Serotonin Reuptake Inhibitor-Refractory Obsessive-Compulsive Disorder: A Randomized Controlled Trial. Pharmacopsychiatry 2018, 51, 263–269. [Google Scholar] [CrossRef]
- Askari, S.; Mokhtari, S.; Shariat, S.V.; Shariati, B.; Yarahmadi, M.; Shalbafan, M. Memantine augmentation of sertraline in the treatment of symptoms and executive function among patients with obsessive-compulsive disorder: A double-blind placebo-controlled, randomized clinical trial. BMC Psychiatry 2022, 22, 34. [Google Scholar] [CrossRef]
- Modarresi, A.; Chaibakhsh, S.; Koulaeinejad, N.; Koupaei, S.R. A systematic review and meta-analysis: Memantine augmentation in moderate to severe obsessive-compulsive disorder. Psychiatry Res. 2019, 282, 112602. [Google Scholar] [CrossRef]
- Sahraian, A.; Jahromi, L.R.; Ghanizadeh, A.; Mowla, A. Memantine as an Adjuvant Treatment for Obsessive Compulsive Symptoms in Manic Phase of Bipolar Disorder: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J. Clin. Psychopharmacol. 2017, 37, 246–249. [Google Scholar] [CrossRef]
- Andrade, C. Augmentation with Memantine in Obsessive-Compulsive Disorder. J. Clin. Psychiatry 2019, 80, 1703. [Google Scholar] [CrossRef]
- Jatana, N.; Apoorva, N.; Malik, S.; Sharma, A.; Latha, N. Inhibitors of catechol-O-methyltransferase in the treatment of neurological disorders. Cent. Nerv. Syst. Agents Med. Chem. 2013, 13, 166–194. [Google Scholar] [CrossRef] [PubMed]
- Deleu, D.; Northway, M.G.; Hanssens, Y. Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin. Pharmacokinet. 2002, 41, 261–309. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.E.; Hook, R.; Valle, S.; Chesivoir, E.; Chamberlain, S.R. Tolcapone in obsessive-compulsive disorder: A randomized double-blind placebo-controlled crossover trial. Int. Clin. Psychopharmacol. 2021, 36, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Pallanti, S.; Bernardi, S.; Antonini, S.; Singh, N.; Hollander, E. Ondansetron augmentation in treatment-resistant obsessive-compulsive disorder: A preliminary, single-blind, prospective study. CNS Drugs 2009, 23, 1047–1055. [Google Scholar] [CrossRef]
- Stern, E.R.; Shahab, R.; Grimaldi, S.J.; Leibu, E.; Murrough, J.W.; Fleysher, L.; Parides, M.; Coffey, B.; Burdick, K.; Goodman, W. High-dose ondansetron reduces activation of interoceptive and sensorimotor brain regions. Neuropsychopharmacology 2019, 44, 390–398. [Google Scholar] [CrossRef]
- Sharafkhah, M.; Aghakarim Alamdar, M.; Massoudifar, A.; Abdolrazaghnejad, A.; Ebrahimi-Monfared, M.; Saber, R.; Mohammadbeigi, A. Comparing the efficacy of ondansetron and granisetron augmentation in treatment-resistant obsessive-compulsive disorder: A randomized double-blind placebo-controlled study. Int. Clin. Psychopharmacol. 2019, 34, 222–233. [Google Scholar] [CrossRef]
- van Roessel, P.J.; Grassi, G.; Aboujaoude, E.N.; Menchón, J.M.; Van Ameringen, M.; Rodríguez, C.I. Treatment-resistant OCD: Pharmacotherapies in adults. Compr. Psychiatry 2023, 120, 152352. [Google Scholar] [CrossRef]
- Lafleur, D.L.; Pittenger, C.; Kelmendi, B.; Gardner, T.; Wasylink, S.; Malison, R.T.; Sanacora, G.; Krystal, J.; Coric, V. N-acetylcysteine augmentation in serotonin reuptake inhibitor refractory obsessive-compulsive disorder. Psychopharmacology 2006, 184, 254–256. [Google Scholar] [CrossRef]
- Sarris, J.; Oliver, G.; Camfield, D.A.; Dean, O.M.; Dowling, N.; Smith, D.J.; Murphy, J.; Menon, R.; Berk, M.; Blair-West, S.; et al. N-Acetyl Cysteine (NAC) in the Treatment of Obsessive-Compulsive Disorder: A 16-Week, Double-Blind, Randomised, Placebo-Controlled Study. CNS Drugs 2015, 29, 801–809. [Google Scholar] [CrossRef]
- Paydary, K.; Akamaloo, A.; Ahmadipour, A.; Pishgar, F.; Emamzadehfard, S.; Akhondzadeh, S. N-acetylcysteine augmentation therapy for moderate-to-severe obsessive-compulsive disorder: Randomized, double-blind, placebo-controlled trial. J. Clin. Pharm. Ther. 2016, 41, 214–219. [Google Scholar] [CrossRef]
- Costa, D.L.C.; Diniz, J.B.; Requena, G.; Joaquim, M.A.; Pittenger, C.; Bloch, M.H.; Miguel, E.; Shavitt, R. Randomized, Double-Blind, Placebo-Controlled Trial of N-Acetylcysteine Augmentation for Treatment-Resistant Obsessive-Compulsive Disorder. J. Clin. Psychiatry 2017, 78, e766–e773. [Google Scholar] [PubMed]
- Sarris, J.; Byrne, G.; Castle, D.; Bousman, C.; Oliver, G.; Cribb, L.; Blair-West, S.; Brakoulias, V.; Camfield, D.; Ee, C.; et al. N-acetyl cysteine (NAC) augmentation in the treatment of obsessive-compulsive disorder: A phase III, 20-week, double-blind, randomized, placebo-controlled trial. Prog. Neuropsychopharmacol. Biol. Psychiatry 2022, 117, 110550. [Google Scholar]
- Li, F.; Welling, M.C.; Johnson, J.A.; Coughlin, C.; Mulqueen, J.; Jakubovski, E.; Coury, S.; Landeros-Weisenberger, A.; Bloch, M. N-Acetylcysteine for Pediatric Obsessive-Compulsive Disorder: A Small Pilot Study. J. Child Adolesc. Psychopharmacol. 2020, 30, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Abramovitch, A.; Dar, R.; Hermesh, H.; Schweiger, A. Comparative neuropsychology of adult obsessive-compulsive disorder and attention deficit/hyperactivity disorder: Implications for a novel executive overload model of OCD. J. Neuropsychol. 2012, 6, 161–191. [Google Scholar]
- Naftalovich, H.; Tauber, N.; Kalanthroff, E. But first, coffee: The roles of arousal and inhibition in the resistance of compulsive cleansing in individuals with high contamination fears. J. Anxiety Disord. 2020, 76, 102316. [Google Scholar]
- Zheng, H.; Jia, F.; Han, H.; Wang, S.; Guo, G.; Quan, D.; Li, G.; Huang, H. Combined fluvoxamine and extended-release methylphenidate improved treatment response compared to fluvoxamine alone in patients with treatment-refractory obsessive-compulsive disorder: A randomized double-blind, placebo-controlled study. Eur. Neuropsychopharmacol. 2019, 29, 397–404. [Google Scholar] [CrossRef]
- Kayser, R.R.; Haney, M.; Raskin, M.; Arout, C.; Simpson, H.B. Acute effects of cannabinoids on symptoms of obsessive-compulsive disorder: A human laboratory study. Depress. Anxiety 2020, 37, 801–811. [Google Scholar] [CrossRef]
- Milosev, L.M.; Psathakis, N.; Szejko, N.; Jakubovski, E.; Müller-Vahl, K.R. Treatment of Gilles de la Tourette Syndrome with Cannabis-Based Medicine: Results from a Retrospective Analysis and Online Survey. Cannabis Cannabinoid Res. 2019, 4, 265–274. [Google Scholar] [CrossRef]
- Buot, A.; Pallares, C.; Oganesyan, A.; Dauré, C.; Bonnelle, V.; Burguière, E.; Alves Dos Santos, J.F.; N’Diaye, K.; Ljuslin, M.; Smit, P.; et al. Improvement in OCD symptoms associated with serotoninergic psychedelics: A retrospective online survey. Sci. Rep. 2023, 13, 13378. [Google Scholar] [CrossRef]
- Mauzay, D.; LaFrance, E.M.; Cuttler, C. Acute Effects of Cannabis on Symptoms of Obsessive-Compulsive Disorder. J. Affect Disord. 2021, 279, 158–163. [Google Scholar] [CrossRef]
- Ehrmann, K.; Allen, J.B.J.; Moreno, F.A. Psilocybin for the Treatment of Obsessive-Compulsive Disorders. Curr. Top. Behav. Neurosci. 2022, 56, 247–259. [Google Scholar] [PubMed]
- Kelmendi, B.; Kichuk, S.A.; DePalmer, G.; Maloney, G.; Ching, T.H.W.; Belser, A.; Pittenger, C. Single-dose psilocybin for treatment-resistant obsessive-compulsive disorder: A case report. Heliyon 2022, 8, e12135. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.; Jelen, L.; Rucker, J. Expectancy in placebo-controlled trials of psychedelics: If so, so what? Psychopharmacology 2022, 239, 3047–3055. [Google Scholar] [PubMed]
Drug | Approval Date | Diagnosis | Study Design | Dosage | Cohort | Treatment Duration | Results | Adverse Effects |
---|---|---|---|---|---|---|---|---|
Lumateperone [6] | 2019 | Schizophrenia, bipolar depression | Randomized double-blind placebo-controlled trial | 60 mg/day, 120 mg/day lumateperone; or 4 mg/day risperidone | 334 | 4 weeks | Improvement in PANSS score and depressive symptoms (in patients with negative symptoms at baseline) | Dry mouth, worsening symptoms of schizophrenia |
Lumateperone [7] | 2019 | Schizophrenia, bipolar depression | Randomized double-blind placebo-controlled trial | 28 mg/day or 42 mg/day | 450 | 4 weeks | Improvement in PANSS, PANSS positive subscale, CGI-S, CGI-I | Sedation, fatigue, constipation, orthostatic hypotension, convulsion |
Lumateperone [8] | 2019 | Schizophrenia, bipolar depression | Open-label study | 42 mg/day | 301 | 6 weeks | No significant change in PANSS score between baseline and the end of the study | Somnolence, headache, dry mouth |
Lumateperone [9] | 2019 | Schizophrenia, bipolar depression | Pooled post hoc analysis (tolerability study) | Dosage of [6,7,8] | 1073 | 4 weeks 4 weeks 6 weeks | Adverse events with lumateperone were equal to placebo and less than risperidone | Somnolence/sedation, dry mouth |
RBP-7000 (risperidone subcutaneous) [10] | 2018 | Schizophrenia | Phase III open-label study | 90 mg or 120 mg | 500 | 52 weeks | No significant change in PANSS score and CGI score between baseline and the end of the study | 73.4% reported at least one adverse event. Akathisia, tremor, extrapyramidal disorder, muscle spasms |
RBP-7000 (risperidone subcutaneous) [11] | 2018 | Schizophrenia | Phase III single-arm open-label study | 120 mg | 482 | 52 weeks | Health-related quality of life and the subjective well-being under neuroleptic treatment remained stable. Increase in treatment satisfaction and preference of treatment at the end of the study | Not available |
TV46000 (risperidone subcutaneous) [12] | 2023 | Schizophrenia | Clinical trial | 50–125 mg q1m or 100–250 mg q2m | 543 | 90 total relapse events occurred | Improvement in social functioning and quality of life | Injection site nodules, ↑ weight, extrapyramidal symptoms |
TV46000 (risperidone subcutaneous) [13] | 2023 | Schizophrenia | Randomized double-blind controlled trial | 50–125 mg q1m or 100–250 mg q2m | 331 | 56 weeks | Improvement in quality of life | Worsening symptoms of schizophrenia, injection site pain, injection site nodule |
Risperidone LAI (IM, administered every 28 days) [7] | 2022 | Schizophrenia | Randomized, placebo-controlled trial | 75 or 100 mg | 437 | 12 weeks | Improvement in PANSS, CGI-S, CGI-I | Hyperprolactinemia, akathisia, headache |
Risperidone LAI (IM, administered every 28 days) [14] | 2022 | Schizophrenia | Open-label extension of PRISMA 3 study | 75 or 100 mg | 205 | 52 weeks | Improvement in PANSS total score, PANSS positive and negative subscale score, CGI-S, CGI-I | Headache, hyperprolactinemia, asthenia, ↑ weight, insomnia, akathisia |
Transdermal asenapine [15] | 2019 | Schizophrenia | Phase III, randomized, placebo-controlled trial | 7.6 mg/24 h, 3.8 mg/24 h | 607 | 6 weeks | Improvement in PANSS. The systemic safety profile is like that of sublingual asenapine. | Erythema in the application site, headache, extrapyramidal disorder, insomnia, ↑ weight, anxiety, constipation, agitation, worsening symptoms of schizophrenia |
OLZ/SAM [16] | 2021 | Schizophrenia, BD | Randomized, double-blind, placebo-controlled proof of concept study | 10 mg/day OLZ, 10 mg/day OLZ + 5 mg/day SAM, 5 mg/day SAM | 106 | 3 weeks | ↓ weight for OLZ/SAM was less than compared with OLZ | Orthostatic hypotension, somnolence, nausea, abnormal liver function test |
OLZ/SAM [17] | 2021 | Schizophrenia, BD | Randomized, double-blind phase II placebo-controlled study | OLZ plus placebo or OLZ plus 5–10 mg/day, or 20 mg/day of SAM | 347 | 12 weeks | 37% lower weight gain with OLZ/SAM5–20/5 mg/day compared with OLZ/placebo | Somnolence, sedation, dizziness, constipation |
OLZ/SAM [18] | 2021 | Schizophrenia, BD | Phase I single-center, open-label, randomized study | 10 mg/day OLZ/10 mg/day SAM, 10 mg/day OLZ | 48 | Not available | OLZ/SAM does not affect PK and bioavailability of OLZ | Dizziness, somnolence, nausea, tachycardia, sedation, headache, ↑ CPK, syncope |
OLZ/SAM [19] | 2021 | Schizophrenia, BD | Two multicenter, open label, parallel-cohort studies (tolerability study) | A single oral dose of 5 mg/day OLZ plus 10 mg/day SAM | 41 | 6 weeks | Well tolerated in hepatic and renal impairment | Somnolence, dizziness, nausea, abdominal pain, lethargy |
OLZ/SAM [20] | 2021 | Schizophrenia, BD | Phase III, double-blind, randomized, active-(olanzapine) and placebo-controlled study | 20/10 mg/day OLZ/SAM, 20 mg/day OLZ | 401 | 4 weeks | Significant improvements in PANSS, CGI-S, and CGI-I with both OLZ/SAM and OLZ | ↓ weight, somnolence, dry mouth, anxiety, headache |
OLZ/SAM [21] | 2021 | Schizophrenia, BD | Phase III multicenter, randomized, double-blind study | 10 mg/day OLZ/10 mg/day SAM and 20 mg/day OLZ/10 mg/day SAM | 561 | 24 weeks | ↓ weight | Somnolence, dry mouth, ↑ appetite |
OLZ/SAM [22] | 2021 | Schizophrenia, BD | Open-label extension study | 10/10, 15/10, or 20/10 mg/day OLZ/SAM | 100 | 52 weeks | No significant QTc effect | Somnolence, ↑ weight, nausea, dizziness, constipation |
OLZ/SAM [23] | 2021 | Schizophrenia, BD | Phase I, randomized, double-blind, placebo- and positive (moxifloxacin)-controlled, parallel-group, multiple-dose study | Subjects in the active arm received a therapeutic dose of 10/10 mg/day OLZ/SAM on days 2–4, 20/20 mg/day on days 5–8, and a supratherapeutic dose of 30/30 mg/day | 42 | 2 weeks | Steady-state for OLZ took 3–4 days and SAM took 5 days. Different levels of OLZ had no impact on the pharmacokinetic profile of SAM. | Somnolence, ↑ weight, nausea, dizziness |
OLZ/SAM [24] | 2021 | Schizophrenia, BD | Open-label extension study [21] | 10 mg/day/10 mg/day OLZ/SAM, 15 mg/day/10 mg/day OLZ/SAM, or 20/10 mg/day OLZ/SAM | 265 | 52 weeks | Weight, waist circumference, metabolic parameters, and symptoms of schizophrenia remained stable with OLZ/SAM even after 1 year | ↑ glycosylated hemoglobin and psychotic disorder, headache |
Xanomeline/Trospium (KarXT) [25] | 2024 | Schizophrenia | Phase II, randomized, double-blind, placebo-controlled (EMERGENT 1) | Starting with 50 mg/day of xanomeline and 20 mg/day of trospium twice daily and increased to a maximum of 125 mg/day of xanomeline and 30 mg/day of trospium twice daily, with the option to return to 100 mg/day of xanomeline and 20 mg/day of trospium twice daily | 182 | 5 weeks | Improvement in PANSS, PANSS positive symptoms subscore, PANSS negative symptoms subscore | Constipation, nausea, dyspepsia, headache, somnolence, akathisia, dizziness, ↑ weight, tachycardia, diarrhea, ↑ γGT level, agitation, insomnia, ↓ appetite, hyperhidrosis |
KarXT [26] | 2024 | Schizophrenia | Post hoc analyses of safety and tolerability [25] (EMERGENT 2) | Dosages were the same as Brannan’s study (2021) [25] | 179 | 5 weeks | Reduction in the procholinergic and anticholinergic effects | Somnolence, sedation |
KarXT [27] | 2024 | Schizophrenia | Phase III randomized, double-blind, placebo-controlled, flexible-dose study (EMERGENT 3) | Xanomeline/trospium was started with 50 mg/day xanomeline and 20 mg/day trospium twice a day, and then increased to 100/20 mg/day | 256 | 5 weeks | Improvements in PANSS total score, PANSS negative factor score, CGI-S | Constipation, dyspepsia, headache, nausea, hypertension, dizziness, gastroesophageal reflux disease, diarrhea |
Drug | Approval Date | Diagnosis | Study Design | Dosage | Cohort | Treatment Duration | Results | Adverse Effects |
---|---|---|---|---|---|---|---|---|
Lumateperone [28] | 2021 | Schizophrenia, bipolar depression | Phase III randomized placebo-controlled trial | 42 mg/day or placebo | 377 | 6 weeks | Improvement in depressive symptoms (↓ MADRS and the CDSS) (in patients with negative symptoms at baseline) | Somnolence, nausea |
Lumateperone [29] | 2021 | Schizophrenia, bipolar depression | Randomized, placebo-controlled trial (different dosages) | 28 mg/day, 42 mg/day | 528 | 6 weeks | Improvement in overall symptoms severity and a reduction in the functional impact of symptoms. (↓ CGI-BP-S and SDS scores) | Somnolence, dizziness, nausea |
OLZ/SAM [30] | 2021 | Schizophrenia, BD | Phase III randomized controlled trial | OLZ/SAM 10–20 mg/day OLZ + 10 mg/day SAM, vs. OLZ 10–20 mg/day | 426 | 12 weeks | ↓ weight and waist changes in OLZ/SAM group vs. OLZ group; comparable reduction in disease severity in the two groups assessed by CGI-S (OLZ vs. OLZ/SAM) | ↑ weight mainly in OLZ group, somnolence |
Drug | Approval Date | Diagnosis | Study Design | Dosage | Cohort | Treatment Duration | Results | Adverse Effects |
---|---|---|---|---|---|---|---|---|
Esketamine [31] | 2019 | TRD and acute SI | Phase III, open-label trial | Esketamine 28 mg (starting dose age ≥ 65 years), or 56 mg, or 84 mg | 1148 | 4 weeks of drug administration twice a week (average 31.5 months maintenance phase) | Improvement in overall symptom severity and a reduction in the functional impact of symptoms (↓ MADRS, ↓ CGI-S, ↓ SDS, ↓ PHQ-9) | Dissociation, dizziness, nausea, headache, ↑ blood pressure, sedation, urinary tract infections, ↑ liver enzymes, suicidal ideation, mania/hypomania |
Dextromethorphan/bupropion (AXS-05) [32] | 2022 | MDD | Randomized, double-blind, multicenter, parallel-group trial | 45 mg/105 mg/day dextromethorphan/bupropion or 105 mg/day bupropion for the first 3 days and twice daily thereafter | 80 | 6 weeks | Improvement in depressive symptoms. Clinical response rates at week 6 in 60.5% in the dextromethorphan/bupropion group vs. 40.5% in bupropion group | Dizziness, nausea, dry mouth, decreased appetite, and anxiety |
Dextromethorphan/bupropion (AXS-05) (GEMINI) [33] | 2022 | MDD | Phase III randomized, controlled trial | 45 mg/day–105 mg/day | 327 | 6 weeks | Improvement in depressive symptoms and reduction in CGI scores. Clinical response of 54% at 6 weeks. | Dizziness, nausea, headache, drowsiness, dry mouth |
Brexanolone [34] | 2019 | PPD | Phase III randomized, controlled trial | During hours 0–4, 30 μg/kg/h; during hours 4–24, 60 μg/kg/h; during hours 24–52, 90 μg/kg/h; during hours 52–56, 60 μg/kg/h; during hours 56–60, 30 μg/kg/h | 21 | 30 days | Improvement in depressive symptoms (↓ HAM-D total score) | No SAE, dizziness, somnolence |
Brexanolone—Study 1 [35] | 2019 | PPD | Phase III randomized, placebo-controlled trial | 60 μg/kg/h, 90 μg/kg/h | 138 | 30 days | Improvement in depressive symptoms (↓ HAM-D total score) | Dizziness, somnolence, 1 SAE (suicidal ideation and intentional overdose attempt during follow-up; altered state of consciousness and syncope) |
Brexanolone—Study 2 [35] | 2019 | PPD | Phase III randomized, placebo-controlled trial | 90 μg/kg/h | 108 | 30 days | Improvement in depressive symptoms (↓ HAM-D total score) | Dizziness, somnolence, 1 SAE (suicidal ideation and intentional overdose attempt during follow-up; altered state of consciousness and syncope) |
Zuranolone (SAGE-217) [36] | 2021 | PPD | Phase III double-blind trial, placebo-controlled | 30 mg/day | 153 | 45 days | Improvement in depressive symptoms (↓ HAMD) | Drowsiness, dizziness, sedation |
Zuranolone (SAGE-217) [37] | 2023 | PPD | Phase III double-blind trial, placebo-controlled | 50 mg/day | 196 | 45 days | Improvement in overall symptoms (↓ PHQ-9, ↓ HAM-D, ↓ HAM-A, and ↓ CGI-S scores) | Headache, diarrhea |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozzatello, P.; Novelli, R.; Schisano, R.; Brasso, C.; Rocca, P.; Bellino, S. New Agents in the Treatment of Psychiatric Disorders: What Innovations and in What Areas of Psychopathology? Pharmaceuticals 2025, 18, 665. https://doi.org/10.3390/ph18050665
Bozzatello P, Novelli R, Schisano R, Brasso C, Rocca P, Bellino S. New Agents in the Treatment of Psychiatric Disorders: What Innovations and in What Areas of Psychopathology? Pharmaceuticals. 2025; 18(5):665. https://doi.org/10.3390/ph18050665
Chicago/Turabian StyleBozzatello, Paola, Roberta Novelli, Rebecca Schisano, Claudio Brasso, Paola Rocca, and Silvio Bellino. 2025. "New Agents in the Treatment of Psychiatric Disorders: What Innovations and in What Areas of Psychopathology?" Pharmaceuticals 18, no. 5: 665. https://doi.org/10.3390/ph18050665
APA StyleBozzatello, P., Novelli, R., Schisano, R., Brasso, C., Rocca, P., & Bellino, S. (2025). New Agents in the Treatment of Psychiatric Disorders: What Innovations and in What Areas of Psychopathology? Pharmaceuticals, 18(5), 665. https://doi.org/10.3390/ph18050665