Investigation of the Anti-Lung Cancer Mechanisms of Taraxacum officinale Based on Network Pharmacology and Multidimensional Experimental Validation
Abstract
:1. Introduction
2. Results
2.1. Network Pharmacology Research
2.1.1. Key Active Compounds of Dandelion
2.1.2. Key Active Compounds and Their Targets Associated with LC
2.1.3. Intersection Targets Between Dandelion and LC
2.1.4. PPI Network Analysis of Core Targets Associated with the Anti-LC Effects of Dandelion
2.1.5. GO and KEGG Analysis
2.2. Molecular Docking Results
2.3. MD Simulation Results
2.4. In Vitro Evaluation of Anticancer Activity
2.5. SEM Analysis
3. Discussion
4. Materials and Methods
4.1. Reagents and Materials
4.2. Experimental Procedures
4.2.1. Screening of Active Compounds in Dandelion and Target Prediction
4.2.2. PPI Network Analysis
4.2.3. GO and KEGG Enrichment Analysis
4.2.4. Molecular Docking
4.2.5. Molecular Dynamics Simulation
4.2.6. Cell Viability Assay
4.2.7. SEM Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A549 | Human Lung Adenocarcinoma Cell Line |
ARG | Arginine |
ASN | Asparagine |
BP | Biological Process |
CASP3 | Cysteine-aspartic Protease 3 |
CC | Cellular Component |
DL | Drug-likeness |
EGFR | Epidermal Growth Factor Receptor |
ESR1 | Estrogen Receptor 1 |
GLU | Glutamic Acid |
GLY | Glycine |
GO | Gene Ontology |
HIS | Histidine |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
L929 | Mouse Fibroblast Cell Line |
LYS | Lysine |
MD | Molecular Dynamics |
MF | Molecular Function |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide |
NPT | Isothermal Isobaric Ensemble |
NQO1 | NAD(P)H Quinone Dehydrogenase 1 |
NVT | Canonical Ensemble |
OB | Oral Bioavailability |
OD | Optical Density |
PHE | Phenylalanine |
PPI | Protein–Protein Interaction |
Rg | Gyration Analysis |
RMSD | Root Mean Square Deviation |
SEM | Scanning Electron Microscopy |
SER | Serine |
SPC/E | Single Point Charge Extended |
TCM | Traditional Chinese Medicine |
TCMSP | Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform |
TP53 | Tumor Protein p53 |
TRP | Tryptophan |
TYR | Tyrosine |
UV | Ultraviolet |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Sandler, A.B.; Buzaid, A.C. Lung cancer: A review of current therapeutic modalities. Lung 1992, 170, 249–265. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Lu, J.-J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect. 2021, 11, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Ali Abdalla, Y.O.; Subramaniam, B.; Nyamathulla, S.; Shamsuddin, N.; Arshad, N.M.; Mun, K.S.; Awang, K.; Nagoor, N.H. Natural products for cancer therapy: A review of their mechanism of actions and toxicity in the past decade. J. Trop. Med. 2022, 2022, 5794350. [Google Scholar] [CrossRef]
- Sigstedt, S.C.; Hooten, C.J.; Callewaert, M.C.; Jenkins, A.R.; Romero, A.E.; Pullin, M.J.; Steelant, W.F. Evaluation of aqueous extracts of Taraxacum officinale on growth and invasion of breast and prostate cancer cells. Int. J. Oncol. 2008, 32, 1085–1090. [Google Scholar] [CrossRef]
- Choi, U.-K.; Lee, O.-H.; Yim, J.H.; Cho, C.-W.; Rhee, Y.K.; Lim, S.-I.; Kim, Y.-C. Hypolipidemic and antioxidant effects of dandelion (Taraxacum officinale) root and leaf on cholesterol-fed rabbits. Int. J. Mol. Sci. 2010, 11, 67–78. [Google Scholar] [CrossRef]
- Li, X.H.; He, X.R.; Zhou, Y.Y.; Yang, L.; Zeng, S.; Sun, Y.H.; Chen, W.S. Taraxacum mongolicum extract induced endoplasmic reticulum stress-associated apoptosis in triple-negative breast cancer cells. J. Ethnopharmacol. 2017, 206, 55–64. [Google Scholar] [CrossRef]
- Trinh, N.V.; Doan-Phuong Dang, N.; Hong Tran, D.; Nguyen, T.T.; Tran, L.T.; Nguyen, T.H. Taraxacum officinale dandelion extracts efficiently inhibited the breast cancer stem cell proliferation. Biomed. Res. Ther. 2016, 3, 733–741. [Google Scholar] [CrossRef]
- Yan, S.; Yin, L.; Dong, R. Inhibition of IEC-6 cell proliferation and the mechanism of ulcerative colitis in C57BL/6 mice by dandelion root polysaccharides. Foods 2023, 12, 3800. [Google Scholar] [CrossRef]
- Wang, S.-H.; Wu, C.-H.; Tsai, C.-C.; Chen, T.-Y.; Tsai, K.-J.; Hung, C.-M.; Hsu, C.-Y.; Wu, C.-W.; Hsieh, T.-H. Effects of luteolin on human breast cancer using gene expression array: Inferring novel genes. Curr. Issues Mol. Biol. 2022, 44, 2107–2121. [Google Scholar] [CrossRef]
- Liang, X.-L.; Ji, M.-M.; Chen, L.; Liao, Y.; Kong, X.-Q.; Xu, X.-Q.; Liao, Z.-G.; Wilson, D.W. Traditional Chinese herbal medicine Astragalus Radix and its effects on intestinal absorption of aconite alkaloids in rats. Chin. Herb. Med. 2021, 13, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant. Biol. 2019, 7, 83–89. [Google Scholar] [CrossRef]
- Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev. 2017, 9, 91–102. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef]
- Karplus, M.; Petsko, G.A. Molecular dynamics simulations in biology. Nature 1990, 347, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Nwachukwu, I.D.; Sarteshnizi, R.A.; Udenigwe, C.C.; Aluko, R.E. A concise review of current in vitro chemical and cell-based antioxidant assay methods. Molecules 2021, 26, 4865. [Google Scholar] [CrossRef]
- Passey, S.; Pellegrin, S.; Mellor, H. Scanning electron microscopy of cell surface morphology. Curr. Protoc. Cell Biol. 2007, 37, 4.17.1–4.17.13. [Google Scholar] [CrossRef]
- Subramanian, K.; Jia, D.; Kapoor-Vazirani, P.; Powell, D.R.; Collins, R.E.; Sharma, D.; Peng, J.; Cheng, X.; Vertino, P.M. Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol. Cell 2008, 30, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Aertgeerts, K.; Skene, R.; Yano, J.; Sang, B.C.; Zou, H.; Snell, G.; Jennings, A.; Iwamoto, K.; Habuka, N.; Hirokawa, A.; et al. Structural Analysis of the Mechanism of Inhibition and Allosteric Activation of the Kinase Domain of HER2 Protein. J. Biol. Chem. 2011, 286, 18756–18765. [Google Scholar] [CrossRef] [PubMed]
- Grieco, A.; Ruiz-Fresneda, M.A.; Gomez-Mulas, A.; Pacheco-Garcia, J.L.; Quereda-Moraleda, I.; Pey, A.L.; Martin-Garcia, J.M. Structural Dynamics at the Active Site of the Cancer-Associated Flavoenzyme NQO1 Probed by Chemical Modification with PMSF. FEBS Lett. 2023, 597, 2687–2698. [Google Scholar] [CrossRef] [PubMed]
- Feeney, B.; Pop, C.; Swartz, P.; Mattos, C.; Clark, A.C. Role of Loop Bundle Hydrogen Bonds in the Maturation and Activity of (Pro)Caspase-3. Biochemistry 2006, 45, 13249–13257. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Wang, Y. Chemical constituents from Oldenlandia diffusa and their cytotoxic effects on human cancer cell lines. Nat. Prod. Res. 2021, 37, 397–403. [Google Scholar] [CrossRef]
- Wang, S.; Yin, N.; Li, Y.; Ma, Z.; Lin, W.; Zhang, L.; Cui, Y.; Xia, J.; Geng, L. Molecular mechanism of the treatment of lung adenocarcinoma by Hedyotis diffusa: An integrative study with real-world clinical data and experimental validation. Front. Pharmacol. 2024, 15, 1355531. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Zhou, J.; Jie, C.; Xing, D.; Zhang, Y. Anticancer activity and mechanism of Scutellaria barbata extract on human lung cancer cell line A549. Life Sci. 2004, 75, 2233–2244. [Google Scholar] [CrossRef]
- Chen, H.; Yang, J.; Hao, J.; Lv, Y.; Chen, L.; Lin, Q.; Yuan, J.; Yang, X. A novel flavonoid kushenol Z from Sophora flavescens mediates mTOR pathway by inhibiting phosphodiesterase and Akt activity to induce apoptosis in non-small-cell lung cancer cells. Molecules 2019, 24, 4425. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-H.; Yu, D.; Huang, N.-N.; Wu, J.-K.; Du, X.-W.; Wang, X.-J. Immunoregulatory mechanism studies of ginseng leaves on lung cancer based on network pharmacology and molecular docking. Sci. Rep. 2021, 11, 18201. [Google Scholar] [CrossRef]
- Ni, X.; Jiang, X.; Yu, S.; Wu, F.; Zhou, J.; Mao, D.; Wang, H.; Liu, Y.; Jin, F. Triptonodiol, a diterpenoid extracted from Tripterygium wilfordii, inhibits the migration and invasion of non-small-cell lung cancer. Molecules 2023, 28, 4708. [Google Scholar] [CrossRef]
- Man, J.; Wu, L.; Han, P.; Hao, Y.; Li, J.; Gao, Z.; Wang, J.; Yang, W.; Tian, Y. Revealing the metabolic mechanism of dandelion extract against A549 cells using UPLC-QTOF MS. Biomed. Chromatogr. 2022, 36, e5272. [Google Scholar] [CrossRef]
- Kang, L.; Miao, M.-S.; Song, Y.-G.; Fang, X.-Y.; Zhang, J.; Zhang, Y.-N.; Miao, J.-X. Total flavonoids of Taraxacum mongolicum inhibit non-small cell lung cancer by regulating immune function. J. Ethnopharmacol. 2021, 281, 114514. [Google Scholar] [CrossRef]
- Fan, M.; Zhang, X.; Song, H.; Zhang, Y. Dandelion (Taraxacum genus): A review of chemical constituents and pharmacological effects. Molecules 2023, 28, 5022. [Google Scholar] [CrossRef] [PubMed]
- Banu, H.; Al-Shammari, E.; Shahanawaz, S.; Azam, F.; Patel, M.; Alarifi, N.A.; Ahmad, M.F.; Adnan, M.; Ashraf, S.A. Insights into the therapeutic targets and molecular mechanisms of Eruca sativa against colorectal cancer: An integrated approach combining network pharmacology, molecular docking and dynamics simulation. Pharmaceuticals 2025, 18, 453. [Google Scholar] [CrossRef] [PubMed]
- OréMaldonado, K.A.; Cuesta, S.A.; Mora, J.R.; Loroño, M.A.; Paz, J.L. Discovering new tyrosinase inhibitors by using in silico modelling, molecular docking, and molecular dynamics. Pharmaceuticals 2025, 18, 418. [Google Scholar] [CrossRef] [PubMed]
- Stabile, L.P.; Davis, A.L.G.; Gubish, C.T.; Hopkins, T.M.; Luketich, J.D.; Christie, N.; Finkelstein, S.; Siegfried, J.M. Human Non-Small Cell Lung Tumors and Cells Derived from Normal Lung Express Both Estrogen Receptor α and β and Show Biological Responses to Estrogen. Cancer Res. 2002, 62, 2141–2150. [Google Scholar] [PubMed]
- Meador, C.B.; Micheel, C.M.; Levy, M.A.; Lovly, C.M.; Horn, L.; Warner, J.L.; Johnson, D.B.; Zhao, Z.; Anderson, I.A.; Sosman, J.A.; et al. Beyond Histology: Translating Tumor Genotypes into Clinically Effective Targeted Therapies. Clin. Cancer Res. 2014, 20, 2264–2275. [Google Scholar] [CrossRef]
- Chao, C.; Zhang, Z.-F.; Berthiller, J.; Boffetta, P.; Hashibe, M. NAD(P)H:Quinone Oxidoreductase 1 (NQO1) Pro187Ser Polymorphism and the Risk of Lung, Bladder, and Colorectal Cancers: A Meta-analysis. Cancer Epidemiol. Biomarkers Prev. 2006, 15, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Porter, A.; Jänicke, R. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999, 6, 99–104. [Google Scholar] [CrossRef]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci. 2012, 13, 6964–6982. [Google Scholar] [CrossRef]
Target Component | Binding Energy (kcal/mol) | ||||
---|---|---|---|---|---|
Quercetin | Apigenin | Kaempferol | Luteolin | Taraxasterol | |
TP53 | −8.2 | −7.7 | −7.6 | −7.9 | −7.7 |
CASP3 | −7.0 | −7.4 | −7.2 | −7.2 | −6.8 |
EGFR | −6.9 | −7.1 | −6.7 | −7.5 | −7.5 |
AKT1 | −7.7 | −8.0 | −8.0 | −8.1 | −9.7 |
ESR1 | −8.9 | −8.5 | −9.0 | −9.0 | −8.1 |
NQO1 | −8.8 | −9.5 | −8.7 | −8.3 | −8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Yang, H.; Liu, R.; Sun, D.; Liu, Y.; Lu, J.; Liu, J.; Lu, J. Investigation of the Anti-Lung Cancer Mechanisms of Taraxacum officinale Based on Network Pharmacology and Multidimensional Experimental Validation. Pharmaceuticals 2025, 18, 663. https://doi.org/10.3390/ph18050663
Liu J, Yang H, Liu R, Sun D, Liu Y, Lu J, Liu J, Lu J. Investigation of the Anti-Lung Cancer Mechanisms of Taraxacum officinale Based on Network Pharmacology and Multidimensional Experimental Validation. Pharmaceuticals. 2025; 18(5):663. https://doi.org/10.3390/ph18050663
Chicago/Turabian StyleLiu, Jianing, Hailing Yang, Ran Liu, Dongjin Sun, Yongbao Liu, Jing Lu, Jinbiao Liu, and Junrui Lu. 2025. "Investigation of the Anti-Lung Cancer Mechanisms of Taraxacum officinale Based on Network Pharmacology and Multidimensional Experimental Validation" Pharmaceuticals 18, no. 5: 663. https://doi.org/10.3390/ph18050663
APA StyleLiu, J., Yang, H., Liu, R., Sun, D., Liu, Y., Lu, J., Liu, J., & Lu, J. (2025). Investigation of the Anti-Lung Cancer Mechanisms of Taraxacum officinale Based on Network Pharmacology and Multidimensional Experimental Validation. Pharmaceuticals, 18(5), 663. https://doi.org/10.3390/ph18050663