A Short-Chain Analogue of Seminolipid: Synthesis and Inhibitory Effect on Mouse Fertilization
Abstract
:1. Introduction
2. Results
2.1. Design and Synthesis of SC-SGG
2.2. Differential Solubility in an Aqueous Environment Between SC-SGG and SGG
2.3. Inhibitory Effects of SC-SGG on Mouse In Vitro Fertilization
3. Discussion
4. Materials and Methods
4.1. Chemical Synthesis of SC-SGG
Procedures for the Synthesis of Short-Chain SGG (SC-SGG, Compound 1)
- -
- Synthesis of 1-O-Hexadecyl-2-O-hexanoyl-3-O-(2,3,4,6-tetra-O-benzyl-β-d-galactopyranosyl)-sn-glycerol (compound 3)
- -
- Synthesis of 1-O-Hexadecyl-2-O-hexanoyl-3-O-(β-d-galactopyranosyl)-sn-glycerol (compound 4)
- -
- Synthesis of 1-O-Hexadecyl-2-O-hexanoyl-3-O-[3-O-(sodium oxysulfonyl)-β-d-galactopyranosyl)-sn-glycerol (compound 1, SC-SGG)
4.2. Differential Solubility of SC-SGG Versus SGG in 1% Dimethylsulfoxide (DMSO) in PBS
4.2.1. Chemicals
4.2.2. Assessment of the Solubility of SC-SGG-Na, SGG-Na and DPPC in 1% DMSO in PBS
4.3. Effects of SC-SGG and Palmitylglycerol on Mouse Sperm Motility, Sperm–Zona Pellucida (ZP) Interaction and In Vitro Fertilization (IVF)
4.3.1. Chemicals
4.3.2. Animals
4.3.3. Preparation of SC-SGG and PG Solutions for Treatment of Gametes
4.3.4. Medium
4.3.5. Preparation of Percoll Gradient-Centrifuged (PGC) Sperm
4.3.6. Effects of SC-SGG and PG on Motility of Capacitated Mouse Sperm
4.3.7. Collection of Mature Oviductal Eggs
4.3.8. Effects of SC-SGG and PG on Sperm-Zona Pellucida Interaction and In Vitro Fertilization
4.3.9. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Florman, H.; Fissore, R. Fertilization in Mammals. In Knobil and Neill’s Physiology of Reproduction, 4th ed.; Tony, M.P., Anthony, Z., Eds.; Elsevier Inc.: New York, NY, USA, 2015; pp. 149–195. [Google Scholar]
- Okabe, M. The cell biology of mammalian fertilization. Development 2013, 140, 4471–4479. [Google Scholar] [CrossRef] [PubMed]
- Talbot, P.; Shur, B.D.; Myles, D.G. Cell adhesion and fertilization: Steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biol. Reprod. 2003, 68, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wassarman, P.M.; Litscher, E.S. Female fertility and the mammalian egg’s zona pellucida. Histol. Histopathol. 2024, 39, 1273–1284. [Google Scholar] [PubMed]
- Tanphaichitr, N.; Carmona, E.; Bou Khalil, M.; Xu, H.; Berger, T.; Gerton, G.L. New insights into sperm-zona pellucida interaction: Involvement of sperm lipid rafts. Front. Biosci. 2007, 12, 1748–1766. [Google Scholar] [CrossRef]
- Tanphaichitr, N.; Faull, K.F.; Yaghoubian, A.; Xu, H. Lipid rafts and sulfogalactosylglycerolipid (SGG) in sperm functions: Consensus and controversy. Trends Glycosci. Glycotechnol. 2007, 19, 67–83. [Google Scholar] [CrossRef]
- Tanphaichitr, N.; Kongmanas, K.; Kruevaisayawan, H.; Saewu, A.; Sugeng, C.; Fernandes, J.; Souda, P.; Angel, J.B.; Faull, K.F.; Aitken, R.J.; et al. Remodeling of the plasma membrane in preparation for sperm-egg recognition: Roles of acrosomal proteins. Asian J. Androl. 2015, 17, 574–582. [Google Scholar] [CrossRef]
- Tumova, L.; Zigo, M.; Sutovsky, P.; Sedmikova, M.; Postlerova, P. Ligands and receptors involved in the sperm-zona pellucida interactions in mammals. Cells 2021, 10, 133. [Google Scholar] [CrossRef]
- Tanphaichitr, N.; Kongmanas, K.; Faull, K.F.; Whitelegge, J.; Compostella, F.; Goto-Inoue, N.; Linton, J.J.; Doyle, B.; Oko, R.; Xu, H.; et al. Properties, metabolism and roles of sulfogalactosylglycerolipid in male reproduction. Prog. Lipid Res. 2018, 72, 18–41. [Google Scholar] [CrossRef]
- White, D.; Weerachatyanukul, W.; Gadella, B.; Kamolvarin, N.; Attar, M.; Tanphaichitr, N. Role of sperm sulfogalactosylglycerolipid in mouse sperm-zona pellucida binding. Biol. Reprod. 2000, 63, 147–155. [Google Scholar] [CrossRef]
- Weerachatyanukul, W.; Rattanachaiyanont, M.; Carmona, E.; Furimsky, A.; Mai, A.; Shoushtarian, A.; Sirichotiyakul, S.; Ballakier, H.; Leader, A.; Tanphaichitr, N. Sulfogalactosylglycerolipid is involved in human gamete interaction. Mol. Reprod. Dev. 2001, 60, 569–578. [Google Scholar] [CrossRef]
- Bou, K.M.; Chakrabandhu, K.; Xu, H.; Weerachatyanukul, W.; Buhr, M.; Berger, T.; Carmona, E.; Vuong, N.; Kumarathasan, P.; Wong, P.T.; et al. Sperm capacitation induces an increase in lipid rafts having zona pellucida binding ability and containing sulfogalactosylglycerolipid. Dev. Biol. 2006, 290, 220–235. [Google Scholar]
- Weerachatyanukul, W.; Probodh, I.; Kongmanas, K.; Tanphaichiatr, N.; Johnston, L.J. Visualizing the localization of sulfoglycolipids in lipid raft domains in model membranes and sperm membrane extracts. Biochim. Biophys. Acta (BBA) Biomembr. 2007, 1768, 299–310. [Google Scholar] [CrossRef]
- Kongmanas, K.; Kruevaisayawan, H.; Saewu, A.; Sugeng, C.; Fernandes, J.; Souda, P.; Angel, J.B.; Faull, K.F.; Aitken, R.J.; Whitelegge, J.; et al. Proteomic characterization of pig sperm anterior head plasma membrane reveals roles of acrosomal proteins in ZP3 binding. J. Cell. Physiol. 2015, 230, 449–463. [Google Scholar] [CrossRef]
- Carmona, E.; Weerachatyanukul, W.; Soboloff, T.; Fluhary, A.L.; White, D.; Promdee, L.; Ekker, M.; Berger, T.; Buhr, M.; Tanphaichitr, N. Arylsulfatase A is present on the pig sperm surface and is involved in sperm-zona pellucida binding. Dev. Biol. 2002, 247, 182–196. [Google Scholar] [CrossRef] [PubMed]
- Tantibhedhyangkul, J.; Weerachatyanukul, W.; Carmona, E.; Xu, H.; Anupriwan, A.; Michaud, D.; Tanphaichitr, N. Role of sperm sufrace arylsulfatase A in mouse sperm-zona pellucida binding. Biol. Reprod. 2002, 67, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liu, F.; Srakaew, N.; Koppisetty, C.; Nyholm, P.G.; Carmona, E.; Tanphaichitr, N. Sperm arylsulfatase A binds to mZP2 and mZP3 glycoproteins in a nonenzymatic manner. Reproduction 2012, 144, 209–219. [Google Scholar] [CrossRef]
- Carmona, E.; Weerachatyanukul, W.; Xu, H.; Fluharty, A.; Anupriwan, A.; Shoushtarian, A.; Chakrabandhu, K.; Tanphaichitr, N. Binding of arylsulfatase A to mouse sperm inhibits gamete interaction and induces the acrosome reaction. Biol. Reprod. 2002, 66, 1820–1827. [Google Scholar] [CrossRef]
- Weerachatyanukul, W.; Xu, H.; Anupriwan, A.; Carmona, E.; Wade, M.; Hermo, L.; da Silva, S.M.; Rippstein, P.; Sobhon, P.; Sretarugsa, P.; et al. Acquisition of arylsulfatase A onto the mouse sperm surface during epididymal transit. Biol. Reprod. 2003, 69, 1183–1192. [Google Scholar] [CrossRef]
- Fischer, G.; Reiter, S.; Jatzkewitz, H. Enzymic hydrolysis of sulphosphingolipids and sulphoglycerolipids by sulphatase A in the presence and absence of activator protein. Hoppe Seyler’s Z. Physiol. Chem. 1978, 359, 863–866. [Google Scholar]
- Nixon, B.; Bielanowicz, A.; McLaughlin, E.A.; Tanphaichitr, N.; Ensslin, M.A.; Aitken, R.J. Composition and significance of detergent resistant membranes in mouse spermatozoa. J. Cell. Physiol. 2009, 218, 122–134. [Google Scholar] [CrossRef]
- Baba, T.; Niida, Y.; Michikawa, Y.; Kashiwabara, S.; Kodaira, K.; Takenaka, M.; Kohno, N.; Gerton, G.L.; Arai, Y. An acrosomal protein, sp32, in mammalian sperm is a binding protein specific for two proacrosins and an acrosin intermediate. J. Biol. Chem. 1994, 269, 10133–10140. [Google Scholar] [CrossRef] [PubMed]
- Kongmanas, K. Roles of Seminolipid and Its Associated Membrane Domain in Male Fertility. Ph.D. Thesis, Université d’Ottawa/University of Ottawa, Ottawa, ON, Canada, 2015. [Google Scholar]
- Ahnonkitpanit, V.; White, D.; Suwajanakorn, S.; Kan, F.; Namking, M.; Wells, G.; Tanphaichitr, N. Role of egg sulfolipidimmobilizing protein 1 (SLIP1) on sperm-egg plasma membrane binding. Biol. Reprod. 1999, 61, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Schenk, M.; Koppisetty, C.A.; Santos, D.C.; Carmona, E.; Bhatia, S.; Nyholm, P.G.; Tanphaichitr, N. Interaction of arylsulfatase-A (ASA) with its natural sulfoglycolipid substrates: A computational and site-directed mutagenesis study. Glycoconj. J. 2009, 26, 1029–1045. [Google Scholar] [CrossRef] [PubMed]
- Franchini, L.; Panza, L.; Kongmanas, K.; Tanphaichitr, N.; Faull, K.F.; Ronchetti, F. An efficient and convenient synthesis of deuterium-labelled seminolipid isotopomers and their ESI-MS characterization. Chem. Phys. Lipids 2008, 152, 78–85. [Google Scholar] [CrossRef]
- Shimada, N.; Fukuhara, K.; Urata, S.; Makino, K. Total syntheses of seminolipid and its analogues by using 2, 6-bis (trifluoromethyl) phenylboronic acid as protective reagent. Org. Biomol. Chem. 2019, 17, 7325–7329. [Google Scholar] [CrossRef]
- Gigg, R. The allyl ether as a protecting group in carbohydrate chemistry. Part 10. Synthesis of 3-O-(β-D-galactopyranosyl 3-sulphate)-2-O-hexadecanoyl-1-O-hexadecyl-L-glycerol, ‘seminolipid’. J. Chem. Soc., Perkin Trans. 1 1979, 712–718. [Google Scholar] [CrossRef]
- Tupper, S.; Wong, P.T.; Kates, M.; Tanphaichitr, N. Interaction of divalent cations with germ cell specific sulfogalactosylglycerolipid and the effects on lipid chain dynamics. Biochemistry 1994, 33, 13250–13258. [Google Scholar] [CrossRef]
- Gadella, B.; Lopes-Cardozo, M.; Golde, L.v.; Colenbrander, B.; Gadella, T., Jr. Glycolipid migration from the apical to the equatorial subdomains of the sperm head plasma membrane precedes the acrosome reaction Evidence for a primary capacitation event in boar spermatozoa. J. Cell Sci. 1995, 108, 935–946. [Google Scholar] [CrossRef]
- Lindberg, J.; Svensson, S.C.T.; Pahlsson, P.; Konradsson, P. Synthesis of galactoglycerolipids found in the HT29 human colon carcinoma cell line. Tetrahedron 2002, 58, 5109–5117. [Google Scholar] [CrossRef]
- Modica, E.; Compostella, F.; Colombo, D.; Franchini, L.; Cavallari, M.; Mori, L.; De Libero, G.; Panza, L.; Ronchetti, F. Stereoselective synthesis and immunogenic activity of the C-analogue of sulfatide. Org. Lett. 2006, 8, 3255–3258. [Google Scholar] [CrossRef]
- García-Vázquez, F.A.; Garrappa, G.; Luongo, C.; Hamze, J.G.; Caballero, M.; Marco-Jiménez, F.; Vicente Antón, J.S.; Molina-Cuberos, G.J.; Jiménez-Movilla, M. Magnetic-assisted control of eggs and embryos via zona pellucida-linked nanoparticles. Adv. Sci. 2024, 11, 2306901. [Google Scholar] [CrossRef]
- Luo, X.; Jia, K.; Xing, J.; Yi, J. The utilization of nanotechnology in the female reproductive system and related disorders. Heliyon 2024, 10, e25477. [Google Scholar] [CrossRef] [PubMed]
- Howard, S.A.; Benhabbour, S.R. Non-hormonal contraception. J. Clin. Med. 2023, 12, 4791. [Google Scholar] [CrossRef] [PubMed]
- Barton, B.E.; Erickson, J.A.; Allred, S.I.; Jeffries, J.M.; Stephens, K.K.; Hunter, M.I.; Woodall, K.A.; Winuthayanon, W. Reversible female contraceptives: Historical, current, and future perspectives. Biol. Reprod. 2024, 110, 14–32. [Google Scholar] [CrossRef] [PubMed]
- Still, W.C.; Kahn, M.; Mitra, A. Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 1978, 43, 2923–2925. [Google Scholar] [CrossRef]
- Tanphaichitr, N.; Smith, J.; Kates, M. Levels of sulfogalactosylglycerolipid in capacitated motile and immotile mouse spermatozoa. Biochem. Cell Biol. 1990, 68, 528–535. [Google Scholar] [CrossRef]
- Visconti, P.E.; Ning, X.; Fornes, M.W.; Alvarez, J.G.; Stein, P.; Connors, S.A.; Kopf, G.S. Cholesterol efflux-mediated signal transductin in mammalian sperm: Cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev. Biol. 1999, 214, 429–443. [Google Scholar] [CrossRef]
- Suarez, S.S. Control of hyperactivation in sperm. Hum. Reprod. Update 2008, 14, 647–657. [Google Scholar] [CrossRef]
- Tanphaichitr, N.; Smith, J.; Mongkolsirikieart, S.; Gradil, C.; Lingwood, C. Role of a gamete specific sulfoglycolipid-immobilizing protein on mouse sperm-egg binding. Dev. Biol. 1993, 156, 164–175. [Google Scholar] [CrossRef]
- Lawitts, J.A.; Biggers, J.D. [9] Culture of preimplantation embryos. Methods iEnzymol. 1993, 225, 153–164. [Google Scholar]
- Biggers, J.D.; McGinnis, L.K.; Raffin, M. Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol. Reprod. 2000, 63, 281–293. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.G.; Vahdati, L.; Morelli, L.; Panza, L.; Compostella, F.; Tanphaichitr, N. A Short-Chain Analogue of Seminolipid: Synthesis and Inhibitory Effect on Mouse Fertilization. Pharmaceuticals 2025, 18, 611. https://doi.org/10.3390/ph18050611
Lee SG, Vahdati L, Morelli L, Panza L, Compostella F, Tanphaichitr N. A Short-Chain Analogue of Seminolipid: Synthesis and Inhibitory Effect on Mouse Fertilization. Pharmaceuticals. 2025; 18(5):611. https://doi.org/10.3390/ph18050611
Chicago/Turabian StyleLee, Seung Gee, Leila Vahdati, Laura Morelli, Luigi Panza, Federica Compostella, and Nongnuj Tanphaichitr. 2025. "A Short-Chain Analogue of Seminolipid: Synthesis and Inhibitory Effect on Mouse Fertilization" Pharmaceuticals 18, no. 5: 611. https://doi.org/10.3390/ph18050611
APA StyleLee, S. G., Vahdati, L., Morelli, L., Panza, L., Compostella, F., & Tanphaichitr, N. (2025). A Short-Chain Analogue of Seminolipid: Synthesis and Inhibitory Effect on Mouse Fertilization. Pharmaceuticals, 18(5), 611. https://doi.org/10.3390/ph18050611