From In Vivo Predictive Dissolution to Virtual Bioequivalence: A GastroPlus®-Driven Framework for Generic Candesartan Cilexetil Tablets
Abstract
:1. Introduction
2. Results and Discussion
2.1. Methodological Experiments
2.2. USP Apparatus 2 Dissolution Test
2.3. Construction of GastroPlus® Model
2.3.1. Intravenous Prediction Model Results
2.3.2. Oral Prediction Model Results
2.4. In Vivo Dissolution and Absorption Evaluation Based on GastroPlus®
2.5. Establishment of In Vivo Predictive Dissolution Method
2.6. Virtual Bioequivalence Simulation
3. Materials and Methods
3.1. Materials
3.2. HPLC Conditions
3.3. Method Validation
3.4. In Vitro Dissolution Tests
3.4.1. USP Apparatus 2
3.4.2. Flow-Through Cell
3.5. Construction of PBPK Model
3.6. Virtual Bioequivalence Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, V.P. Progressive Applications of Dissolution, Its Impact, and Implications in the Pharmaceutical World. J. Pharm. Sci. 2013, 102, 2895–2897. [Google Scholar] [CrossRef]
- Liu, W.; Tu, L.X.; Yang, S.L.; Jin, Y. Research progress of in vitro and in vivo correlation evaluation method for generic oral solid preparations. Drug Eval. Res. 2020, 43, 2565–2570. [Google Scholar]
- Alomari, N.; Alhussaini, W. Update on the Advances and Challenges in Bioequivalence Testing Methods for Complex Topical Generic Products. Front. Pharmacol. 2024, 15, 1330712. [Google Scholar] [CrossRef] [PubMed]
- Honório, T.D.S.; Pinto, E.C.; Rocha, H.V.A.; Esteves, V.S.D.; Dos Santos, T.C.; Castro, H.C.R.; Rodrigues, C.R.; De Sousa, V.P.; Cabral, L.M. In Vitro–In Vivo Correlation of Efavirenz Tablets Using GastroPlus®. AAPS PharmSciTech 2013, 14, 1244–1254. [Google Scholar] [CrossRef]
- Mondal, P.; Roy, S.; Loganathan, G.; Mandal, B.; Dharumadurai, D.; Akbarsha, M.A.; Sengupta, P.S.; Chattopadhyay, S.; Guin, P.S. 1-Amino-4-Hydroxy-9,10-Anthraquinone—An Analogue of Anthracycline Anticancer Drugs, Interacts with DNA and Induces Apoptosis in Human MDA-MB-231 Breast Adinocarcinoma Cells: Evaluation of Structure–Activity Relationship Using Computational, Spectroscopic and Biochemical Studies. Biochem. Biophys. Rep. 2015, 4, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Shuai, W.; Cao, J.; Qian, M.; Tang, Z. Physiologically Based Pharmacokinetic Modeling of Vancomycin in Critically Ill Neonates: Assessing the Impact of Pathophysiological Changes. J. Clin. Pharma 2024, 64, 1552–1565. [Google Scholar] [CrossRef]
- Kalsoom, S.; Rasool, M.F.; Imran, I.; Saeed, H.; Ahmad, T.; Alqahtani, F. A Comprehensive Physiologically Based Pharmacokinetic Model of Nadolol in Adults with Renal Disease and Pediatrics with Supraventricular Tachycardia. Pharmaceuticals 2024, 17, 265. [Google Scholar] [CrossRef]
- Kollipara, S.; Bhattiprolu, A.K.; Boddu, R.; Chougule, M.; Saha, P.; Ahmed, T. Demonstrating Discriminatory Power of a Dissolution Method Using DDDPlus: Case Study of an Extended-Release Formulation and Use in Regulatory Justifications. Dissolut. Technol. 2024, 31, 174–181. [Google Scholar] [CrossRef]
- Statelova, M.; Vertzoni, M.; Kourentas, A. Simulation of Intraluminal Performance of Lipophilic Weak Bases in Fasted Healthy Adults Using DDDPlusTM. AAPS J. 2022, 24, 89. [Google Scholar] [CrossRef]
- Njoku, J.O.; Amaral Silva, D.; Mukherjee, D.; Webster, G.K.; Löbenberg, R. In Silico Tools at Early Stage of Pharmaceutical Development: Data Needs and Software Capabilities. AAPS PharmSciTech 2019, 20, 243. [Google Scholar] [CrossRef]
- D’Arcy, D.M.; Liu, B.; Corrigan, O.I. Investigating the Effect of Solubility and Density Gradients on Local Hydrodynamics and Drug Dissolution in the USP 4 Dissolution Apparatus. Int. J. Pharm. 2011, 419, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Kushwah, V.; Arora, S.; Tamás Katona, M.; Modhave, D.; Fröhlich, E.; Paudel, A. On Absorption Modeling and Food Effect Prediction of Rivaroxaban, a BCS II Drug Orally Administered as an Immediate-Release Tablet. Pharmaceutics 2021, 13, 283. [Google Scholar] [CrossRef]
- Milanowski, B.; Hejduk, A.; Bawiec, M.A.; Jakubowska, E.; Urbańska, A.; Wiśniewska, A.; Garbacz, G.; Lulek, J. Biorelevant In Vitro Release Testing and In Vivo Study of Extended-Release Niacin Hydrophilic Matrix Tablets. AAPS PharmSciTech 2020, 21, 83. [Google Scholar] [CrossRef]
- Zarmpi, P.; Flanagan, T.; Meehan, E.; Mann, J.; Østergaard, J.; Fotaki, N. Biopharmaceutical Implications of Excipient Variability on Drug Dissolution from Immediate Release Products. Eur. J. Pharm. Biopharm. 2020, 154, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia; Chinese Pharmacopoeia Commission: Beijing, China, 2020; 4, pp. 132, 480. Available online: https://db.ouryao.com/yd2020/view.php?id=f91d2ccf6a (accessed on 3 April 2025).
- United States Pharmacopeia (USP 43-NF 38). <711> Dissolution. 2020. Available online: https://www.usp.org/search (accessed on 3 April 2025).
- Kane, Z.; Picetti, R.; Wilby, A.; Standing, J.F.; Grassin-Delyle, S.; Roberts, I.; Shakur-Still, H. Physiologically Based Modelling of Tranexamic Acid Pharmacokinetics Following Intravenous, Intramuscular, Sub-Cutaneous and Oral Administration in Healthy Volunteers. Eur. J. Pharm. Sci. 2021, 164, 105893. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.-S.; Jusko, W.J. Meta-Assessment of Metformin Absorption and Disposition Pharmacokinetics in Nine Species. Pharmaceuticals 2021, 14, 545. [Google Scholar] [CrossRef]
- Deb, S.; Reeves, A.A. Simulation of Remdesivir Pharmacokinetics and Its Drug Interactions. J. Pharm. Pharm. Sci. 2021, 24, 277–291. [Google Scholar] [CrossRef]
- Kim, C.; Lo Re, V.; Rodriguez, M.; Lukas, J.C.; Leal, N.; Campo, C.; García-Bea, A.; Suarez, E.; Schmidt, S.; Vozmediano, V. Application of a Dual Mechanistic Approach to Support Bilastine Dose Selection for Older Adults. CPT Pharmacom Syst. Pharma 2021, 10, 1006–1017. [Google Scholar] [CrossRef]
- Ye, L.; You, X.; Zhou, J.; Wu, C.; Ke, M.; Wu, W.; Huang, P.; Lin, C. Physiologically Based Pharmacokinetic Modeling of Daptomycin Dose Optimization in Pediatric Patients with Renal Impairment. Front. Pharmacol. 2022, 13, 838599. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, J.; Ruan, Z.; Jiang, B.; Yang, D.; Hu, Y.; Lou, H. Simulation of Febuxostat Pharmacokinetics in Healthy Subjects and Patients with Impaired Kidney Function Using Physiologically Based Pharmacokinetic Modeling. Biopharm. Drug Dispos. 2022, 43, 140–151. [Google Scholar] [CrossRef]
- Silva, T.M.D.; Honorio, T.D.S.; Chaves, M.H.D.C.; Duque, M.D.; Cabral, L.M.; Patricio, B.F.D.C.; Rocha, H.V.A. In Silico Bioavailability for BCS Class II Efavirenz Tablets Using Biorelevant Dissolution Media for IVIVR and Simulation of Formulation Changes. Drug Dev. Ind. Pharm. 2021, 47, 1342–1352. [Google Scholar] [CrossRef] [PubMed]
- Najjar, A.; Punt, A.; Wambaugh, J.; Paini, A.; Ellison, C.; Fragki, S.; Bianchi, E.; Zhang, F.; Westerhout, J.; Mueller, D.; et al. Towards Best Use and Regulatory Acceptance of Generic Physiologically Based Kinetic (PBK) Models for in Vitro-to-in Vivo Extrapolation (IVIVE) in Chemical Risk Assessment. Arch. Toxicol. 2022, 96, 3407–3419. [Google Scholar] [CrossRef] [PubMed]
- Rahim, N.; Naqvi, S.B.S. In Vitro In Vivo Extrapolation and Bioequivalence Prediction for Immediate-Release Capsules of Cefadroxil Based on a Physiologically-Based Pharmacokinetic ACAT Model. AAPS PharmSciTech 2024, 25, 100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, X.; Li, R.; Zhang, C.; Du, J.; Zhao, H.; Wen, Q. Development and Application of a Physiologically Based Pharmacokinetic Model for Elagolix in the Adult and Adolescent Population. Clin. Pharmacokinet. 2024, 63, 1357–1370. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, P.; Luo, T.; Yang, D.; Jiang, Q.; Chen, J.; Lou, H.; Ruan, Z.; Jiang, B. Physiologically Based Absorption Modeling to Predict the Bioequivalence of Two Cilostazol Formulations. Clin. Transl. Sci. 2023, 16, 2323–2330. [Google Scholar] [CrossRef]
- Cai, L.; Ke, M.; Wang, H.; Wu, W.; Lin, R.; Huang, P.; Lin, C. Physiologically Based Pharmacokinetic Model Combined with Reverse Dose Method to Study the Nephrotoxic Tolerance Dose of Tacrolimus. Arch. Toxicol. 2023, 97, 2659–2673. [Google Scholar] [CrossRef]
- Aly, U.F.; Sarhan, H.A.; Ali, T.F.; Sharkawy, H.A.E.-B. Applying Different Techniques to Improve the Bioavailability of Candesartan Cilexetil Antihypertensive Drug. Drug Des. Dev. Ther. 2020, 14, 1851–1865. [Google Scholar] [CrossRef]
- Tjandrawinata, R.R.; Setiawati, E.; Yunaidi, D.A.; Simanjuntak, R.; Santoso, I.D.; Susanto, L.W. Bioequivalence Study of Two Formulations of Candesartan Cilexetil Tablet in Healthy Subjects under Fasting Conditions. Drug Des. Dev. Ther. 2013, 7, 841–847. [Google Scholar] [CrossRef]
- Anwar, W.; Dawaba, H.M.; Afouna, M.I.; Samy, A.M.; Rashed, M.H.; Abdelaziz, A.E. Enhancing the Oral Bioavailability of Candesartan Cilexetil Loaded Nanostructured Lipid Carriers: In Vitro Characterization and Absorption in Rats after Oral Administration. Pharmaceutics 2020, 12, 1047. [Google Scholar] [CrossRef]
- Figueroa-Campos, A.; Sánchez-Dengra, B.; Merino, V.; Dahan, A.; González-Álvarez, I.; García-Arieta, A.; González-Álvarez, M.; Bermejo, M. Candesartan Cilexetil In Vitro–In Vivo Correlation: Predictive Dissolution as a Development Tool. Pharmaceutics 2020, 12, 633. [Google Scholar] [CrossRef]
- Dudhipala, N.; Veerabrahma, K. Candesartan Cilexetil Loaded Nanodelivery Systems for Improved Oral Bioavailability. Ther. Deliv. 2017, 8, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Reddy, V.A.; Arora, S.; Patel, K. Development of Surface Stabilized Candesartan Cilexetil Nanocrystals with Enhanced Dissolution Rate, Permeation Rate across CaCo-2, and Oral Bioavailability. Drug Deliv. Transl. Res. 2016, 6, 498–510. [Google Scholar] [CrossRef] [PubMed]
- International Council for Harmonisation. Validation of Analytical Procedures: Text and Methodology Q2 (R1). 2005. Available online: https://www.cde.org.cn/ichWeb/guideIch/downloadAtt/1/34be5e106c19f419d10dfd32fb760ec6 (accessed on 3 April 2025).
- Ma, H.Z. Study on Consistency of Dissolution and Simulation of Bioequivalence of Candesartan Cilexetil Tablets. Master’s Thesis, China Medical University, Shenyang, China, 2018. [Google Scholar]
- De Campos, D.P.; Silva-Barcellos, N.M.; Lima, R.R.; Savedra, R.M.L.; Siqueira, M.F.; Yoshida, M.I.; Da Nova Mussel, W.; De Souza, J. Polymorphic and Quantum Chemistry Characterization of Candesartan Cilexetil: Importance for the Correct Drug Classification According to Biopharmaceutics Classification System. AAPS PharmSciTech 2018, 19, 3019–3028. [Google Scholar] [CrossRef]
- Husain, A.; Azim, M.S.; Mitra, M.; Bhasin, P.S. A Review on Candesartan: Pharmacological and Pharmaceutical Profile. J. Appl. Pharm. Sci. 2011, 1, 12–17. [Google Scholar]
- Scholz, A.; Kostewicz, E.; Abrahamsson, B.; Dressman, J.B. Can the USP Paddle Method Be Used to Represent In-Vivo Hydrodynamics? J. Pharm. Pharmacol. 2003, 55, 443–451. [Google Scholar] [CrossRef]
- Haslam, I.S.; O’Reilly, D.A.; Sherlock, D.J.; Kauser, A.; Womack, C.; Coleman, T. Pancreatoduodenectomy as a Source of Human Small Intestine for Ussing Chamber Investigations and Comparative Studies with Rat Tissue. Biopharm. Drug Dispos. 2011, 32, 210–221. [Google Scholar] [CrossRef] [PubMed]
- van Lier, J.J.; van Heiningen, P.N.; Sunzel, M. Absorption, Metabolism and Excretion of 14C-Candesartan and 14C-Candesartan Cilexetil in Healthy Volunteers. J. Hum. Hypertens. 1997, 11 (Suppl. 2), S27–S28. [Google Scholar]
- Yu, J.; Ma, K.; Qi, J.W.; Jin, G.; Wang, Y.; Fang, S.G.; Li, G.H.; Xie, D. Pharmacokinetics and bioequivalence of candesartan cilexetic tablet and capsule in healthy volunteers. Chin. J. Clin. Pharmacol. Ther. 2009, 14, 794. [Google Scholar]
Manufacturer | pH 1.0 Hydrochloric Acid Solution (1.0% Tween 20) | pH 4.5 Acetate Buffer Solution (1.0% Tween 20) | pH 6.5 Phosphate Buffer Solution (0.25% Tween 20) | pH 6.5 Phosphate Buffer Solution (0.35% Tween 20) | Water (1.0% Tween 20) |
---|---|---|---|---|---|
A | 73 | 80 | 74 | 58 | 69 |
B | 29 | 28 | 48 | 49 | 28 |
C | 38 | 40 | 26 | 28 | 39 |
D | 32 | 41 | 44 | 41 | 39 |
Category | Cmax (ng·mL−1) | Tmax (h) | AUC0-inf (ng·h·mL−1) | AUC0-t (ng·h·mL−1) | |
---|---|---|---|---|---|
Candesartan Cilexetil po 8 mg in Japanese | Literature Value | 83.5 | 4.01 | 795.2 | 780.4 |
Predicted Value | 88.88 | 3.26 | 795.2 | 783.7 | |
PE% 1 | 6.44 | 18.70 | 0.00 | 0.42 | |
Candesartan Cilexetil po 8 mg in Chinese | Measured Value | 90.9 | 3.5 | 1118.5 | 1071.5 |
Predicted Value | 93.85 | 3.36 | 1123.4 | 1111.9 | |
PE% 1 | 3.25 | −4.00 | 0.44 | 3.77 |
Selected Method | Flow Rate (mL·min−1) | Medium | Sampling Time (min) |
---|---|---|---|
Method One (Open Loop) | 4 | pH 1.2 Hydrochloric Acid Solution (0.2% Tween 20) | 10, 20 |
pH 4.5 Acetate Buffer Solution (0.2% Tween 20) | 30, 45 | ||
pH 5.7 Phosphate Buffer Solution (0.2% Tween 20) | 60, 75, 90, 105, 120 | ||
pH 6.8 Phosphate Buffer Solution (0.3% Tween 20) | 135, 150, 180, 210, 240 | ||
Method Two (Open Loop) | 6 | pH 1.2 Hydrochloric Acid Solution (0.2% Tween 20) | 10, 20 |
pH 4.5 Acetate Buffer Solution (0.2% Tween 20) | 30, 45 | ||
pH 5.7 Phosphate Buffer Solution (0.2% Tween 20) | 60, 75, 90, 105, 120 | ||
pH 6.8 Phosphate Buffer Solution (0.3% Tween 20) | 135, 150, 180, 210, 240 | ||
Method Three (Open Loop) | 6 | pH 1.2 Hydrochloric Acid Solution (0.2% Tween 20) | 10, 20 |
pH 4.5 Acetate Buffer Solution (0.2% Tween 20) | 30, 45 | ||
pH 5.7 Phosphate Buffer Solution (0.2% Tween 20) | 60, 75, 90, 105, 120, 135, 150 | ||
pH 6.8 Phosphate Buffer Solution (0.3% Tween 20) | 180, 210, 240 |
Company A | Company B | Company C | Company D | ||
---|---|---|---|---|---|
Cmax | 90% CI (MeanT-MeanR) | 82.37~113.71 | 84.52~116.36 | 89.16~122.04 | 82.05~113.62 |
(GeomMeanT/GeomMeanR) × 100 | 99.09 | 101.3 | 106.3 | 98.67 | |
90% CI (GeomMeanT/GeomMeanR) | 80.10~122.60 | 81.80~125.35 | 85.88~131.59 | 79.75~122.07 | |
AUC | 90% CI (MeanT-MeanR) | 82.21~115.44 | 87.35~121.84 | 87.30~121.83 | 86.25~120.42 |
(GeomMeanT/GeomMeanR) × 100 | 99.87 | 105.2 | 105.1 | 104.1 | |
90% CI (GeomMeanT/GeomMeanR) | 80.40~124.04 | 84.66~130.84 | 84.55~130.73 | 83.82~129.41 | |
AUCt | 90% CI (MeanT-MeanR) | 82.30~115.34 | 87.39~121.65 | 87.42~121.76 | 86.30~120.25 |
(GeomMeanT/GeomMeanR) × 100 | 99.85 | 105.2 | 105.2 | 104.1 | |
90% CI (GeomMeanT/GeomMeanR) | 80.43~123.97 | 84.64~130.70 | 84.60~130.70 | 83.82~129.29 |
Medium | Flow Rate (r·min−1) | Sampling Time (min) |
---|---|---|
Water (1.0% Tween 20) | 50 | 10, 15, 30, 45, 60, 90, 120 |
pH 1.0 Hydrochloric Acid Solution (1.0% Tween 20) | 50 | 10, 15, 30, 45, 60, 90, 120 |
pH 4.5 Acetate Buffer Solution (1.0% Tween 20) | 50 | 10, 15, 30, 45, 60, 90, 120, 150 |
pH 6.5 Phosphate Buffer Solution (0.25% Tween 20) | 50 | 10, 15, 20, 30, 45, 60 |
pH 6.5 Phosphate Buffer Solution (0.35% Tween 20) | 50 | 10, 15, 20, 30, 45, 60 |
Medium | Flow Rate (mL·min−1) | Sampling Time (min) |
---|---|---|
pH 1.2 Hydrochloric Acid Solution (0.2% Tween 20) | 6 | 10, 20 |
pH 4.5 Acetate Buffer Solution (0.2% Tween 20) | 6 | 30, 45 |
pH 5.7 Phosphate Buffer Solution (0.2% Tween 20) | 6 | 60, 75, 90, 105, 120, 135, 150 |
pH 6.8 Phosphate Buffer Solution (0.3% Tween 20) | 6 | 180, 210, 240 |
Parameter | Value | Source |
---|---|---|
Molecular Weight | 440.46 g·mol−1 (candesartan) 610.67 g·mol−1 (candesartan cilexetil) | |
logP | 3.42 (candesartan) | [36] |
7.1 (candesartan cilexetil) | [37] | |
pKa | 1.45, 4.23 (candesartan) | [36] |
Acid: 6.0 (candesartan cilexetil) | [38] | |
Solubility (pH-solubility) | pH 1.0: 0.23 μg·mL−1 pH 4.5: 0.51 μg·mL−1 pH 6.5: 0.8 μg·mL−1 Water (pH 6.8): 1.4 μg·mL−1 | [36] |
Precipitation Time | 900 s | Default Value |
Diffusion Coefficient | 0.63 × 10−5 cm2·s−1 | Calculated based on the formula built in GastroPlus® |
Particle Density | 1.2 g·mL−1 | Default Value |
Particle Size | 4 μm | [39] |
Human Permeability | Human jejunal permeability coefficient: 3.6 × 10−4 cm·s−1 | [40] |
Whole Blood/Plasma Drug Concentration Ratio | 0.68 | Predicted Value from ADMET Predictor 9.5 |
Plasma Unbound Drug Fraction | 1% | Instruction Manual: Candesartan is more than 99% bound to plasma proteins |
Model | Dose (mg) | Population | Clearance Rate | Source |
---|---|---|---|---|
Candesartan Cilexetil iv 4 mg in American | 4 | American male (25 years old, 84.25 Kg body weight) under fasted conditions | / | Literature report |
Candesartan Cilexetil po 8 mg in Japanese | 8 | Japanese male (30 years old, 62.57 Kg body weight) under fasted conditions | Liver: 0.4 L·h−1 Kidney: 0.6 L·h−1 | Candesartan cilexetil tablet registration documents from Takeda |
Candesartan Cilexetil po 8 mg in Chinese | 8 | Chinese male (30 years old, 63 Kg body weight) under fasted conditions | Liver: 0.312 L·h−1 Kidney: 0.468 L·h−1 | Measured data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, H.; Geng, X.; Situ, Z.; Shen, Q.; Ye, T.; Chen, X.; Su, W. From In Vivo Predictive Dissolution to Virtual Bioequivalence: A GastroPlus®-Driven Framework for Generic Candesartan Cilexetil Tablets. Pharmaceuticals 2025, 18, 562. https://doi.org/10.3390/ph18040562
Ruan H, Geng X, Situ Z, Shen Q, Ye T, Chen X, Su W. From In Vivo Predictive Dissolution to Virtual Bioequivalence: A GastroPlus®-Driven Framework for Generic Candesartan Cilexetil Tablets. Pharmaceuticals. 2025; 18(4):562. https://doi.org/10.3390/ph18040562
Chicago/Turabian StyleRuan, Hao, Xiaoting Geng, Zijing Situ, Qian Shen, Tianjian Ye, Xin Chen, and Weike Su. 2025. "From In Vivo Predictive Dissolution to Virtual Bioequivalence: A GastroPlus®-Driven Framework for Generic Candesartan Cilexetil Tablets" Pharmaceuticals 18, no. 4: 562. https://doi.org/10.3390/ph18040562
APA StyleRuan, H., Geng, X., Situ, Z., Shen, Q., Ye, T., Chen, X., & Su, W. (2025). From In Vivo Predictive Dissolution to Virtual Bioequivalence: A GastroPlus®-Driven Framework for Generic Candesartan Cilexetil Tablets. Pharmaceuticals, 18(4), 562. https://doi.org/10.3390/ph18040562