Bioconversion of Fe3O4 Nanoparticles by Probiotics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological and Structural Characterization of Fe3O4 NPs
2.2. Impact of Fe3O4 NPs on Bacterial Fermentation
2.3. Ferric-Reducing Activity of Probiotics
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Iron Oxide Nanoparticles
3.3. Characterization of the Fe3O4 NPs
3.4. Probiotic Inoculum Preparation with Fe3O4 NPs
3.5. Ferric-Reducing Activity of Probiotics
3.5.1. Secondary Metabolite Identification
3.5.2. Characterization of the Probiotic Biomass Enriched with Fe3O4 NPs
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Wu, H.; Jia, M.; Zhang, Z.; Wang, J.; Yue, Z.; Wu, H.; Yang, T. Construction of iron oxide nanoparticles modified with Angelica sinensis polysaccharide for the treatment of iron deficiency anemia. J. Nanopart. Res. 2024, 26, 250. [Google Scholar] [CrossRef]
- Stoffel, N.U.; von Siebenthal, H.K.; Moretti, D.; Zimmermann, M.B. Oral iron supplementation in iron-deficient women: How much and how often? Mol. Asp. Med. 2020, 75, 100865. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewska, Z.; Zawartka, A.; Schab, M.; Martyniak, A.; Skoczen, S.; Tomasik, P.J.; Wedrychowicz, A. Prebiotics, Probiotics, and Postbiotics in the Prevention and Treatment of Anemia. Microorganisms 2022, 10, 1330. [Google Scholar] [CrossRef] [PubMed]
- Garces, V.; Rodriguez-Nogales, A.; Gonzalez, A.; Galvez, N.; Rodriguez-Cabezas, M.E.; Garcia-Martin, M.L.; Gutierrez, L.; Rondon, D.; Olivares, M.; Galvez, J.; et al. Bacteria-Carried Iron Oxide Nanoparticles for Treatment of Anemia. Bioconjug. Chem. 2018, 29, 1785–1791. [Google Scholar] [CrossRef]
- Ciont, C.; Mesaros, A.; Pop, O.L.; Vodnar, D.C. Iron oxide nanoparticles carried by probiotics for iron absorption: A systematic review. J. Nanobiotechnol. 2023, 21, 124. [Google Scholar] [CrossRef]
- Segers, M.; Lebeer, S. Towards a Better Understanding of Lactobacillus rhamnosus GG—Host Interactions. Microb. Cell Factories 2014, 13 (Suppl. S1), S7. [Google Scholar] [CrossRef]
- Zhou, K.-Z.; Wu, K.; Deng, L.-X.; Hu, M.; Luo, Y.-X.; Zhang, L.-Y. Probiotics to Prevent Necrotizing Enterocolitis in Very Low Birth Weight Infants: A Network Meta-Analysis. Front. Pediatr. 2023, 11, 1095368. [Google Scholar] [CrossRef]
- Archer, A.C.; Halami, P.M. Probiotic attributes of Lactobacillus fermentum isolated from human feces and dairy products. Appl. Microbiol. Biotechnol. 2015, 99, 8113–8123. [Google Scholar] [CrossRef]
- Thumu, S.C.R.; Halami, P.M. In Vivo Safety Assessment of Lactobacillus fermentum Strains, Evaluation of Their Cholesterol-lowering Ability and Intestinal Microbial Modulation. J. Sci. Food Agric. 2019, 100, 705–713. [Google Scholar] [CrossRef]
- Echegaray, N.; Yilmaz, B.; Sharma, H.; Kumar, M.; Pateiro, M.; Ozogul, F.; Lorenzo, J.M. A novel approach to Lactiplantibacillus plantarum: From probiotic properties to the omics insights. Microbiol. Res. 2023, 268, 127289. [Google Scholar] [CrossRef]
- Averina, O.V.; Poluektova, E.U.; Marsova, M.V.; Danilenko, V.N. Biomarkers and utility of the antioxidant potential of probiotic Lactobacilli and Bifidobacteria as representatives of the human gut microbiota. Biomedicines 2021, 9, 1340. [Google Scholar] [CrossRef] [PubMed]
- Cain, T.J.; Smith, A.T. Ferric iron reductases and their contribution to unicellular ferrous iron uptake. J. Inorg. Biochem. 2021, 218, 111407. [Google Scholar] [CrossRef] [PubMed]
- Tejedor-Sanz, S.; Stevens, E.T.; Li, S.; Finnegan, P.; Nelson, J.; Knoesen, A.; Light, S.H.; Ajo-Franklin, C.M.; Marco, M.L. Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism. eLife 2022, 11, e70684. [Google Scholar] [CrossRef]
- Yao, T.; Li, L. The influence of microbiota on ferroptosis in intestinal diseases. Gut Microbes 2023, 15, 2263210. [Google Scholar] [CrossRef]
- Bermudez-Humaran, L.G.; Chassaing, B.; Langella, P. Exploring the interaction and impact of probiotic and commensal bacteria on vitamins, minerals and short chain fatty acids metabolism. Microb. Cell Fact. 2024, 23, 172. [Google Scholar] [CrossRef]
- González, A.; Gálvez, N.; Martín, J.; Reyes, F.; Pérez-Victoria, I.; Dominguez-Vera, J.M. Identification of the key excreted molecule by Lactobacillus fermentum related to host iron absorption. Food Chem. 2017, 228, 374–380. [Google Scholar] [CrossRef]
- Mondal, K.C.; Samanta, S.; Mondal, S.; Mondal, S.P.; Mondal, K.; Halder, S.K. Navigating the frontiers of mineral absorption in the human body: Exploring the impact of probiotic innovations: Impact of probiotics in mineral absorption by human body. Indian J. Exp. Biol. (IJEB) 2024, 62, 475–483. [Google Scholar] [CrossRef]
- Varvara, R.A.; Vodnar, D.C. Probiotic-driven advancement: Exploring the intricacies of mineral absorption in the human body. Food Chem. X 2024, 21, 101067. [Google Scholar] [CrossRef]
- Ciont, C.; Difonzo, G.; Pasqualone, A.; Chis, M.S.; Ranga, F.; Szabo, K.; Simon, E.; Naghiu, A.; Barbu-Tudoran, L.; Caponio, F.; et al. Phenolic profile of micro- and nano-encapsulated olive leaf extract in biscuits during in vitro gastrointestinal digestion. Food Chem. 2023, 428, 136778. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, Y.; Fei, Y.; Zhang, J.; Yin, S.; Zou, H.; Zhu, F. Efficacy of probiotic, prebiotic, and synbiotics supplements in individuals with anemia: A systematic review and meta-analysis of randomized controlled trials. BMC Gastroenterol. 2024, 24, 472. [Google Scholar] [CrossRef]
- Mesaros, A.; Neamțu, B.V.; Marinca, T.F.; Popa, F.; Cupa, G.; Vasile, O.R.; Chicinaș, I. Preparation of Fe@Fe3O4/ZnFe2O4 Powders and Their Consolidation via Hybrid Cold-Sintering/Spark Plasma-Sintering. Nanomaterials 2024, 14, 149. [Google Scholar] [CrossRef] [PubMed]
- Sara, S.H.; Yasser, J.J.; Latif, I.K. Influence of Zinc and Probiotics on Productive Performance, Immune Response and Mineral Content in Muscle of Broiler Chickens. Acad. Int. J. Vet. Med. 2023, 1, 15–21. [Google Scholar] [CrossRef]
- Rusu, I.G.; Suharoschi, R.; Vodnar, D.C.; Pop, C.R.; Socaci, S.A.; Vulturar, R.; Istrati, M.; Morosan, I.; Farcas, A.C.; Kerezsi, A.D.; et al. Iron Supplementation Influence on the Gut Microbiota and Probiotic Intake Effect in Iron Deficiency—A Literature-Based Review. Nutrients 2020, 12, 1993. [Google Scholar] [CrossRef]
- Apte, A.; Parge, A.; Nimkar, R.; Sinha, A. Effect of probiotic and prebiotics supplementation on hemoglobin levels and iron absorption among women of reproductive age and children: A systematic review and meta-analysis. BMC Nutr. 2025, 11, 31. [Google Scholar] [CrossRef]
- Sazawal, S.; Dhingra, U.; Hiremath, G.; Sarkar, A.; Dhingra, P.; Dutta, A.; Menon, V.P.; Black, R.E. Effects of Bifidobacterium lactis HN019 and prebiotic oligosaccharide added to milk on iron status, anemia, and growth among children 1 to 4 years old. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 341–346. [Google Scholar] [CrossRef]
- Sarkar, A.; Mandal, S. Bifidobacteria—Insight into clinical outcomes and mechanisms of its probiotic action. Microbiol. Res. 2016, 192, 159–171. [Google Scholar] [CrossRef]
- Barkhidarian, B.; Roldos, L.; Iskandar, M.M.; Saedisomeolia, A.; Kubow, S. Probiotic Supplementation and Micronutrient Status in Healthy Subjects: A Systematic Review of Clinical Trials. Nutrients 2021, 13, 3001. [Google Scholar] [CrossRef]
- Sagar, P.; Singh, V.; Gupta, R.; Kaul, S.; Sharma, S.; Kaur, S.; Bhunia, R.K.; Kondepudi, K.K.; Singhal, N.K. pH-Triggered, Synbiotic Hydrogel Beads for In Vivo Therapy of Iron Deficiency Anemia and Reduced Inflammatory Response. ACS Appl. Bio Mater. 2021, 4, 7467–7484. [Google Scholar] [CrossRef]
- Das, N.K.; Schwartz, A.J.; Barthel, G.; Inohara, N.; Liu, Q.; Sankar, A.; Hill, D.R.; Ma, X.; Lamberg, O.; Schnizlein, M.K.; et al. Microbial Metabolite Signaling Is Required for Systemic Iron Homeostasis. Cell Metab. 2020, 31, 115–130.e6. [Google Scholar] [CrossRef]
- Hoppe, M.; Onning, G.; Berggren, A.; Hulthen, L. Probiotic strain Lactobacillus plantarum 299v increases iron absorption from an iron-supplemented fruit drink: A double-isotope cross-over single-blind study in women of reproductive age. Br. J. Nutr. 2015, 114, 1195–1202. [Google Scholar] [CrossRef]
- Besenhard, M.O.; LaGrow, A.P.; Hodzic, A.; Kriechbaum, M.; Panariello, L.; Bais, G.; Loizou, K.; Damilos, S.; Margarida Cruz, M.; Thanh, N.T.K.; et al. Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry. Chem. Eng. J. 2020, 399, 125740. [Google Scholar] [CrossRef]
- Krausova, G.; Hyrslova, I.; Hynstova, I. In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains. Fermentation 2019, 5, 100. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, Z.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb. Cell Fact. 2020, 19, 23. [Google Scholar] [CrossRef]
- Campaña, A.L.; Saragliadis, A.; Mikheenko, P.; Linke, D. Insights into the bacterial synthesis of metal nanoparticles. Front. Nanotechnol. 2023, 5, 1216921. [Google Scholar] [CrossRef]
- Albutt, N.; Sonsupup, S.; Sinprachim, T.; Thonglor, P. Synthesis of Magnetic Nanoparticles Coated with Chitosan for Biomedical Applications. Key Eng. Mater. 2024, 1005, 49–57. [Google Scholar] [CrossRef]
- Silveira, M.L.D.C.; Silva, I.M.B.; Magdalena, A.G. Synthesis and characterization of Fe3O4-NH2 and Fe3O4-NH2-chitosan nanoparticles. Cerâmica 2021, 67, 295–300. [Google Scholar] [CrossRef]
- Martin, M.; Rodriguez-Nogales, A.; Garces, V.; Galvez, N.; Gutierrez, L.; Galvez, J.; Rondon, D.; Olivares, M.; Dominguez-Vera, J.M. Magnetic study on biodistribution and biodegradation of oral magnetic nanostructures in the rat gastrointestinal tract. Nanoscale 2016, 8, 15041–15047. [Google Scholar] [CrossRef]
- Fan, X.; Bao, T.; Yi, H.; Zhang, Z.; Zhang, K.; Liu, X.; Lin, X.; Zhang, Z.; Feng, Z. Ribosome Profiling and RNA Sequencing Reveal Genome-Wide Cellular Translation and Transcription Regulation Under Osmotic Stress in Lactobacillus rhamnosus ATCC 53103. Front. Microbiol. 2021, 12, 781454. [Google Scholar] [CrossRef]
- Vargas-Blanco, D.A.; Shell, S.S. Regulation of mRNA Stability During Bacterial Stress Responses. Front. Microbiol. 2020, 11, 2111. [Google Scholar] [CrossRef]
- Albert, B.; Kos-Braun, I.C.; Henras, A.K.; Dez, C.; Rueda, M.P.; Zhang, X.; Gadal, O.; Kos, M.; Shore, D. A ribosome assembly stress response regulates transcription to maintain proteome homeostasis. eLife 2019, 8, e45002. [Google Scholar] [CrossRef]
- Lau, L.Y.J.; Quek, S.Y. Probiotics: Health benefits, food application, and colonization in the human gastrointestinal tract. Food Bioeng. 2024, 3, 41–64. [Google Scholar] [CrossRef]
- Kanamarlapudi, S.L.; Muddada, S. Biosorption of Iron (II) by Lactobacillus fermentum from Aqueous Solutions. Pol. J. Environ. Stud. 2020, 29, 1659–1670. [Google Scholar] [CrossRef] [PubMed]
- Vega-Bautista, A.; de la Garza, M.; Carrero, J.C.; Campos-Rodriguez, R.; Godinez-Victoria, M.; Drago-Serrano, M.E. The Impact of Lactoferrin on the Growth of Intestinal Inhabitant Bacteria. Int. J. Mol. Sci. 2019, 20, 4707. [Google Scholar] [CrossRef]
- Jang, H.Y.; Kim, M.J.; Bae, M.; Hwang, I.M.; Lee, J.H. Transcriptional analysis of the molecular mechanism underlying the response of Lactiplantibacillus plantarum to lactic acid stress conditions. Heliyon 2023, 9, e16520. [Google Scholar] [CrossRef]
- Panda, S.H.; Goli, J.K.; Das, S.; Mohanty, N. Production, optimization and probiotic characterization of potential lactic acid bacteria producing siderophores. AIMS Microbiol. 2017, 3, 88–107. [Google Scholar] [CrossRef]
- Kumar, A.; Yang, T.; Chakravorty, S.; Majumdar, A.; Nairn, B.L.; Six, D.A.; Marcondes Dos Santos, N.; Price, S.L.; Lawrenz, M.B.; Actis, L.A.; et al. Fluorescent sensors of siderophores produced by bacterial pathogens. J. Biol. Chem. 2022, 298, 101651. [Google Scholar] [CrossRef]
- Kiousi, D.E.; Efstathiou, C.; Tzampazlis, V.; Plessas, S.; Panopoulou, M.; Koffa, M.; Galanis, A. Genetic and phenotypic assessment of the antimicrobial activity of three potential probiotic lactobacilli against human enteropathogenic bacteria. Front. Cell. Infect. Microbiol. 2023, 13, 1127256. [Google Scholar] [CrossRef]
- Bradley, J.M.; Svistunenko, D.A.; Wilson, M.T.; Hemmings, A.M.; Moore, G.R.; Le Brun, N.E. Bacterial iron detoxification at the molecular level. J. Biol. Chem. 2020, 295, 17602–17623. [Google Scholar] [CrossRef]
- Sanchez-Lopez, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef]
- Algadi, H.; Alhoot, M.A.; Al-Maleki, A.R.; Purwitasari, N. Effects of Metal and Metal Oxide Nanoparticles against Biofilm-Forming Bacteria: A Systematic Review. J. Microbiol. Biotechnol. 2024, 34, 1748–1756. [Google Scholar] [CrossRef]
- Shen, L.; Li, B.; Qiao, Y. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials 2018, 11, 324. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Yang, Y.; Jia, J.; Zhang, T.; Jiang, B. Production of 4-hydroxyphenyllactic acid by Lactobacillus sp. SK007 fermentation. J. Biosci. Bioeng. 2010, 109, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Myojin, T.; Li, K.; Kurita, A.; Seto, M.; Motoyama, A.; Liu, X.; Satoh, A.; Munemasa, S.; Murata, Y.; et al. A Major Intestinal Catabolite of Quercetin Glycosides, 3-Hydroxyphenylacetic Acid, Protects the Hepatocytes from the Acetaldehyde-Induced Cytotoxicity through the Enhancement of the Total Aldehyde Dehydrogenase Activity. Int. J. Mol. Sci. 2022, 23, 1762. [Google Scholar] [CrossRef] [PubMed]
- Skrypnik, K.; Bogdanski, P.; Schmidt, M.; Suliburska, J. The Effect of Multispecies Probiotic Supplementation on Iron Status in Rats. Biol. Trace Elem. Res. 2019, 192, 234–243. [Google Scholar] [CrossRef]
- Ji, J.J.; Sun, Q.M.; Nie, D.Y.; Wang, Q.; Zhang, H.; Qin, F.F.; Wang, Q.S.; Lu, S.F.; Pang, G.M.; Lu, Z.G. Probiotics protect against RSV infection by modulating the microbiota-alveolar-macrophage axis. Acta Pharmacol. Sin. 2021, 42, 1630–1641. [Google Scholar] [CrossRef]
- Vonderheid, S.C.; Tussing-Humphreys, L.; Park, C.; Pauls, H.; OjiNjideka Hemphill, N.; LaBomascus, B.; McLeod, A.; Koenig, M.D. A Systematic Review and Meta-Analysis on the Effects of Probiotic Species on Iron Absorption and Iron Status. Nutrients 2019, 11, 2938. [Google Scholar] [CrossRef]
- Skrypnik, K.; Olejnik-Schmidt, A.; Mikolajczyk-Stecyna, J.; Schmidt, M.; Suliburska, J. Influence of supplementation with probiotic bacteria Lactiplantibacillus plantarum and Latilactobacillus curvatus on selected parameters of duodenum iron metabolism in rats on a high-fat, iron-deficient diet. Nutrition 2025, 129, 112591. [Google Scholar] [CrossRef]
- Khan, A.Z.; Badar, S.; O’Callaghan, K.M.; Zlotkin, S.; Roth, D.E. Fecal Iron Measurement in Studies of the Human Intestinal Microbiome. Curr. Dev. Nutr. 2022, 6, nzac143. [Google Scholar] [CrossRef]
- Noordine, M.L.; Seyoum, Y.; Bruneau, A.; Baye, K.; Lefebvre, T.; Cherbuy, C.; Canonne-Hergaux, F.; Nicolas, G.; Humblot, C.; Thomas, M. The microbiota and the host organism switch between cooperation and competition based on dietary iron levels. Gut Microbes 2024, 16, 2361660. [Google Scholar] [CrossRef]
- Diaconeasa, Z.; Barbu-Tudoran, L.; Coman, C.; Leopold, L.; Mesaros, A.; Pop, O.; RUGINĂ, D.; Socaciu, C. Evaluation of antiproliferative potential of cerium oxide nanoparticles on hela human cervical tumor cell. Bull. UASVM Food Sci. Technol. 2015, 72, 109–114. [Google Scholar] [CrossRef]
- Vodnar, D.C.; SOCACIU, C. Monitoring lactic acid fermentation in media containing dandelion (Taraxacum officinale) by FTIR spectroscopy. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 65–68. [Google Scholar] [CrossRef]
- Pop, O.L.; Mesaros, A.; Vodnar, D.C.; Suharoschi, R.; Tăbăran, F.; Magerușan, L.; Tódor, I.S.; Diaconeasa, Z.; Balint, A.; Ciontea, L.; et al. Cerium Oxide Nanoparticles and Their Efficient Antibacterial Application In Vitro against Gram-Positive and Gram-Negative Pathogens. Nanomaterials 2020, 10, 1614. [Google Scholar] [CrossRef] [PubMed]
- Csatlos, N.I.; Simon, E.; Teleky, B.E.; Szabo, K.; Diaconeasa, Z.M.; Vodnar, D.C.; Ciont Nagy, C.; Pop, O.L. Development of a Fermented Beverage with Chlorella vulgaris Powder on Soybean-Based Fermented Beverage. Biomolecules 2023, 13, 245. [Google Scholar] [CrossRef] [PubMed]
- Tafazzoli, K.; Ghavami, M.; Khosravi-Darani, K. Production of iron enriched Saccharomyces boulardii: Impact of process variables. Sci. Rep. 2024, 14, 4844. [Google Scholar] [CrossRef]
- Teleky, B.E.; Martău, A.G.; Ranga, F.; Chețan, F.; Vodnar, D.C. Exploitation of Lactic Acid Bacteria and Baker’s Yeast as Single or Multiple Starter Cultures of Wheat Flour Dough Enriched with Soy Flour. Biomolecules 2020, 10, 778. [Google Scholar] [CrossRef]
- Rao, V.; Poonia, A. Microbial biosynthesis of selenium nanoparticles using probiotic strain and its characterization. J. Food Meas. Charact. 2024, 18, 5477–5488. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, B.; Kaushik, A.; Mostafavi, E. Nanobiotechnological prospects of probiotic microflora: Synthesis, mechanism, and applications. Sci. Total Environ. 2022, 838 Pt 3, 156212. [Google Scholar] [CrossRef]
Compound | Time | L. plantarum | L. rhamnosus | L. fermentum | |||
---|---|---|---|---|---|---|---|
LP-C | LP-Fe3O4 | LR-C | LR-Fe3O4 | LF-C | LF-Fe3O4 | ||
Fructose | 0 | 2.39 ± 0.01 | 2.28 ± 0.04 | 4.91 ± 0.03 | 4.47 ± 0.059 | 7.74 ± 0.17 | 7.70 ± 0.15 |
4 | 1.50 ± 0.10 | 1.56 ± 0.03 | 3.17 ± 0.10 | 3.69 ± 0.041 | 3.17 ± 0.14 | 3.19 ± 0.10 | |
8 | 0.86 ± 0.07 | 0.90 ± 0.10 | 2.00 ± 0.05 | 2.71 ± 0.050 | 2.33 ± 0.25 | 2.30 ± 0.05 | |
12 | 0.48 ± 0.09 | 0.34 ± 0.12 | 1.91 ± 0.02 | 1.47 * ± 0.074 | 1.65 ± 0.14 | 1.60 ± 0.04 | |
24 | 0.33 ± 0.08 | 0.38 ± 0.11 | 0.63 ± 0.14 | N.D. | 0.26 ± 0.04 | 0.28 ± 0.08 | |
Glucose | 0 | 19.54 ± 0.02 | 19.61 ± 0.14 | 19.73 ± 0.12 | 19.549 ± 0.04 | 19.06 ± 0.09 | 18.86 ± 0.05 |
4 | 13.71 ± 0.07 | 13.53 ± 0.25 | 18.41 ± 0.04 | 18.607 ± 0.09 | 16.68 ± 0.14 | 16.55 ± 0.10 | |
8 | 7.65 ± 0.02 | 7.49 ± 0.11 | 17.32 ± 0.11 | 17.395 ± 0.36 | 5.64 ± 0.10 | 5.60 ± 0.11 | |
12 | 5.88 ± 0.10 | 5.91 ± 0.11 | 14.42 ± 0.20 | 3.047 * ± 0.08 | 2.52 ± 0.08 | 2.50 ± 0.02 | |
24 | 3.54 ± 0.02 | 3.37 ± 0.20 | 8.29 ± 0.11 | N.D. | 1.50 ± 0.11 | 1.54 ± 0.10 | |
HPLA | 0 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
4 | N.D. | N.D. | N.D. | N.D. | 1.26 ± 0.14 | 1.21 ± 0.11 | |
8 | 4.87 ± 0.06 | 3.98 * ± 0.05 | N.D. | N.D. | 4.36 ± 0.16 | 4.29 * ± 0.10 | |
12 | 5.12 ± 0.05 | 4.69 * ± 0.02 | 4.77 ± 0.10 | 4.49 ± 0.14 | 7.49 ± 0.12 | 6.56 * ± 0.22 | |
24 | 10.23 ± 0.06 | 10.13 ± 0.04 | 5.04 ± 0.12 | 4.27 ± 0.04 | 11.73 ± 0.09 | 10.45 * ± 0.10 | |
Lactic acid | 0 | 0.09 ± 0.01 | 0.08 ± 0.02 | 0.21 ± 0.11 | 0.25 ± 0.01 | 0.05 ± 0.01 | 0.03 ± 0.01 |
4 | 0.18 ± 0.05 | 0.21 ± 0.07 | 0.35 ± 0.12 | 0.31 ± 0.14 | 0.13 ± 0.02 | 0.15 ± 0.04 | |
8 | 0.27 ± 0.08 | 0.29 ± 0.04 | 0.48 ± 0.15 | 0.42 ± 0.01 | 0.32 ± 0.05 | 0.30 ± 0.02 | |
12 | 0.34 ± 0.01 | 0.30 ± 0.10 | 0.83 ± 0.05 | 0.85 ± 0.04 | 0.41 ± 0.05 | 0.44 ± 0.03 | |
24 | 0.88 ± 0.07 | 0.92 * ± 0.12 | 1.12 ± 0.10 | 1.30 ± 0.11 | 1.91 ± 0.16 | 1.90 ± 0.10 | |
Acetic acid | 0 | 0.19 ± 0.06 | 0.16 ± 0.07 | 0.09 ± 0.03 | 0.10 ± 0.02 | N.D. | N.D. |
4 | 0.29 ± 0.05 | 0.27 ± 0.10 | 0.13 ± 0.02 | 0.12 ± 0.05 | 0.01 ± 0.01 | 0.01 ± 0.02 | |
8 | 0.34 ± 0.03 | 0.34 ± 0.12 | 0.22± 0.04 | 0.20± 0.02 | 0.04± 0.05 | 0.03± 0.04 | |
12 | 0.59 ± 0.04 | 0.58 ± 0.06 | 0.31 ± 0.01 | 0.35 ± 0.01 | 0.13 ± 0.01 | 0.10 ± 0.03 | |
24 | 2.56 ± 0.06 | 2.53 ± 0.06 | 0.45 ± 0.07 | 0.46 ± 0.02 | 0.27 ± 0.02 | 0.29 ± 0.02 | |
Propionic acid | 0 | 0.01 ± 0.07 | N.D. | 0.26 ± 0.10 | 0.30 ± 0.05 | 0.25 ± 0.06 | 0.22 ± 0.07 |
4 | 0.48 ± 0.04 | 0.41 ± 0.10 | 0.30 ± 0.04 | 0.32 ± 0.03 | 0.26 ± 0.02 | 0.22 ± 0.08 | |
8 | 0.57 ± 0.02 | 0.48 ± 0.03 | 0.32 ± 0.10 | 0.36 ± 0.09 | 0.30 ± 0.01 | 0.25 ± 0.05 | |
12 | 0.85 ± 0.01 | 0.56 ± 0.05 | 0.35 ± 0.06 | 0.40 ± 0.07 | 0.35 ± 0.06 | 0.29 ± 0.02 | |
24 | 1.96 ± 0.03 | 1.01 * ± 0.07 | 0.41 ± 0.08 | 0.55 ± 0.06 | 0.37 ± 0.05 | 0.32 ± 0.04 | |
Ethanol | 0 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
4 | 0.28 ± 0.02 | 0.29 ± 0.02 | 0.19 ± 0.04 | 0.18 ± 0.02 | 0.28 ± 0.05 | 0.23 ± 0.04 | |
8 | 0.32 ± 0.05 | 0.34 ± 0.03 | 0.20 ± 0.10 | 0.22 ± 0.02 | 0.37 ± 0.10 | 0.35 ± 0.12 | |
12 | 0.57 ± 0.03 | 0.59 ± 0.03 | 0.29 ± 0.02 | 0.25 ± 0.03 | 0.48 ± 0.12 | 0.49 ± 0.02 | |
24 | 3.82 ± 0.14 | 3.80 ± 0.04 | 0.59 ± 0.01 | 0.63 ± 0.04 | 0.57 ± 0.21 | 0.55 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciont, C.; Mesaros, A.; Cocean, A.M.; Varvara, R.A.; Simon, E.; Barbu-Tudoran, L.; Ranga, F.; Teleky, B.-E.; Mitrea, L.; Vodnar, D.C.; et al. Bioconversion of Fe3O4 Nanoparticles by Probiotics. Pharmaceuticals 2025, 18, 542. https://doi.org/10.3390/ph18040542
Ciont C, Mesaros A, Cocean AM, Varvara RA, Simon E, Barbu-Tudoran L, Ranga F, Teleky B-E, Mitrea L, Vodnar DC, et al. Bioconversion of Fe3O4 Nanoparticles by Probiotics. Pharmaceuticals. 2025; 18(4):542. https://doi.org/10.3390/ph18040542
Chicago/Turabian StyleCiont, Călina, Amalia Mesaros, Ana Maria Cocean, Rodica Anita Varvara, Elemer Simon, Lucian Barbu-Tudoran, Florica Ranga, Bernadette-Emoke Teleky, Laura Mitrea, Dan Cristian Vodnar, and et al. 2025. "Bioconversion of Fe3O4 Nanoparticles by Probiotics" Pharmaceuticals 18, no. 4: 542. https://doi.org/10.3390/ph18040542
APA StyleCiont, C., Mesaros, A., Cocean, A. M., Varvara, R. A., Simon, E., Barbu-Tudoran, L., Ranga, F., Teleky, B.-E., Mitrea, L., Vodnar, D. C., & Pop, O. L. (2025). Bioconversion of Fe3O4 Nanoparticles by Probiotics. Pharmaceuticals, 18(4), 542. https://doi.org/10.3390/ph18040542