Discovering New Tyrosinase Inhibitors by Using In Silico Modelling, Molecular Docking, and Molecular Dynamics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Variables
2.2. Model Performance and Validation
2.3. Virtual Screening
2.4. Absorption, Distribution, Metabolism, and Excretion (ADME) Predictions
2.5. Molecular Docking
2.6. Molecular Dynamics
3. Materials and Methods
3.1. Dataset
3.2. Variable Selection
3.3. Virtual Screening
3.4. Applicability Domain
3.5. Absorption, Distribution, Metabolism, and Excretion (ADME) Predictions
3.6. Molecular Docking
3.7. Molecular Dynamics
- A 2 fs time step (dt = 0.002 ps).
- The Verlet cutoff scheme for non-bonded interactions, with a short-range van der Waals cutoff of 1.2 nm and long-range electrostatics treated via particle mesh Ewald (PME) [84] with a 1.2 nm cutoff.
- Temperature coupling was performed in two groups (Protein_LIG and Water_and_ions) to ensure proper control over the system’s temperature, with a time constant (tau_t) of 0.1 ps for each group.
- The system was subjected to periodic boundary conditions (PBC) in all three dimensions, using pbc = xyz.
- SHAKE was not employed, as the LINCS algorithm suffices for constraints in this system. Dispersion corrections were not applied for proteins using the Amber99bsc1 force field [81].
3.8. Free Energy Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Thanigaimalai, P.; Lee, K.C.; Sharma, V.K.; Joo, C.; Cho, W.J.; Roh, E.; Kim, Y.; Jung, S.H. Structural requirement of phenylthiourea analogs for their inhibitory activity of melanogenesis and tyrosinase. Bioorganic Med. Chem. Lett. 2011, 21, 6824–6828. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.X.; Huang, H.; Kubo, I. Inactivation Kinetics of Mushroom Tyrosinase by Cetylpyridinium Chloride. J. Protein Chem. 2003, 22, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Uyama, H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell Mol. Life Sci. 2005, 62, 1707–1723. [Google Scholar] [CrossRef]
- Brenner, M.; Hearing, V.J. The Protective Role of Melanin Against UV Damage in Human Skin. Photochem. Photobiol. 2008, 84, 539. [Google Scholar] [CrossRef] [PubMed]
- Pacelli, C.; Bryan, R.A.; Onofri, S.; Selbmann, L.; Shuryak, I.; Dadachova, E. Melanin is effective in protecting fast and slow growing fungi from various types of ionizing radiation. Environ. Microbiol. 2017, 19, 1612–1624. [Google Scholar] [CrossRef]
- ElObeid, A.S.; Kamal-Eldin, A.; Abdelhalim, M.; Haseeb, A.M. Pharmacological Properties of Melanin and its Function in Health. Basic. Clin. Pharmacol. Toxicol. 2017, 120, 515–522. [Google Scholar] [CrossRef]
- Xie, J.; Dong, H.; Yu, Y.; Cao, S. Inhibitory effect of synthetic aromatic heterocycle thiosemicarbazone derivatives on mushroom tyrosinase: Insights from fluorescence, (1)H NMR titration and molecular docking studies. Food Chem. 2016, 190, 709–716. [Google Scholar] [CrossRef]
- Mort, R.L.; Jackson, I.J.; Patton, E.E. The melanocyte lineage in development and disease. Development 2015, 142, 620–632. [Google Scholar] [CrossRef]
- Jin, W.; Stehbens, S.J.; Barnard, R.T.; Blaskovich, M.; Ziora, Z.M. Dysregulation of tyrosinase activity: A potential link between skin disorders and neurodegeneration. J. Pharm. Pharmacol. 2024, 76, 13–22. [Google Scholar] [CrossRef]
- Kim, B.H.; Park, K.C.; Park, J.H.; Lee, C.G.; Ye, S.K.; Park, J.Y. Inhibition of tyrosinase activity and melanin production by the chalcone derivative 1-(2-cyclohexylmethoxy-6-hydroxy-phenyl)-3-(4-hydroxymethyl-phenyl)-propenone. Biochem. Biophys. Res. Commun. 2016, 480, 648–654. [Google Scholar] [CrossRef]
- Olsen, J.H.; Friis, S.; Frederiksen, K.; McLaughlin, J.K.; Mellemkjaer, L.; Møller, H. Atypical cancer pattern in patients with Parkinson’s disease. Br. J. Cancer. 2005, 92, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Simon, K.C.; Han, J.; Schwarzschild, M.A.; Ascherio, A. Genetic determinants of hair color and Parkinson’s disease risk. Ann. Neurol. 2009, 65, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Juneja, K. Tyrosinase-like Activity of Several Alzheimer’s Disease Related and Model Peptides and Their Inhibition by Natural Antioxidants. USF Tampa Graduate Theses and Dissertations. 2006. Available online: https://digitalcommons.usf.edu/etd/2576 (accessed on 7 September 2024).
- Da Silva, G.; Ming, L.J. Alzheimer’s disease related copper(II)- beta-amyloid peptide exhibits phenol monooxygenase and catechol oxidase activities. Angew. Chem. Int. Ed. Engl. 2005, 44, 5501–5504. [Google Scholar] [CrossRef]
- Sepehri, N.; Khoshneviszadeh, M.; Farid, S.M.; Moayedi, S.S.; Asgari, M.S.; Moazzam, A.; Hosseini, S.; Adibi, H.; Larijani, B.; Pirhadi, S.; et al. Design, synthesis, biological evaluation, and molecular docking study of thioxo-2,3-dihydroquinazolinone derivative as tyrosinase inhibitors. J. Mol. Struct. 2022, 1253, 132283. [Google Scholar] [CrossRef]
- Amaral, L.; Moniz, T.; Leite, A.; Oliveira, A.; Fernandes, P.; Ramos, M.J.; Araújo, A.N.; Freitas, M.; Fernandes, E.; Rangel, M. A combined experimental and computational study to discover novel tyrosinase inhibitors. J. Inorg. Biochem. 2022, 234, 111879. [Google Scholar] [CrossRef] [PubMed]
- Şöhretoğlu, D.; Sari, S.; Barut, B.; Özel, A. Tyrosinase inhibition by some flavonoids: Inhibitory activity, mechanism by in vitro and in silico studies. Bioorganic Chem. 2018, 81, 168–174. [Google Scholar] [CrossRef]
- Farasat, A.; Ghorbani, M.; Gheibi, N.; Shariatifar, H. In silico assessment of the inhibitory effect of four flavonoids (Chrysin, Naringin, Quercetin, Kaempferol) on tyrosinase activity using the MD simulation approach. BioTechnologia 2020, 101, 193–204. [Google Scholar] [CrossRef]
- Park, S.; Jegal, J.; Chung, K.W.; Jung, H.J.; Noh, S.G.; Chung, H.Y.; Ahn, J.; Kim, J.; Yang, M.H. Isolation of tyrosinase and melanogenesis inhibitory flavonoids from Juniperus chinensis fruits. Biosci. Biotechnol. Biochem. 2018, 82, 2041–2048. [Google Scholar] [CrossRef]
- Tang, K.; Jiang, Y.; Zhang, H.; Huang, W.; Xie, Y.; Deng, C.; Xu, H.; Song, X. Design, synthesis of Cinnamyl-paeonol derivatives with 1, 3-Dioxypropyl as link arm and screening of tyrosinase inhibition activity in vitro. Bioorganic Chem. 2021, 106, 104512. [Google Scholar] [CrossRef]
- Sari, S.; Barut, B.; Özel, A.; Şöhretoğlu, D. Tyrosinase inhibitory effects of Vinca major and its secondary metabolites: Enzyme kinetics and in silico inhibition model of the metabolites validated by pharmacophore modelling. Bioorganic Chem. 2019, 92, 103259. [Google Scholar] [CrossRef]
- Kuo, Y.H.; Chen, C.C.; Wu, P.Y.; Wu, C.S.; Sung, P.J.; Lin, C.Y.; Chiang, H.-M. N-(4-methoxyphenyl) caffeamide-induced melanogenesis inhibition mechanisms. BMC Complement. Altern. Med. 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Pintus, F.; Matos, M.J.; Vilar, S.; Hripcsak, G.; Varela, C.; Uriarte, E.; Santana, L.; Borges, F.; Medda, R.; Di Petrillo, A.; et al. New insights into highly potent tyrosinase inhibitors based on 3-heteroarylcoumarins: Anti-melanogenesis and antioxidant activities, and computational molecular modeling studies. Bioorganic Med. Chem. 2017, 25, 1687–1695. [Google Scholar] [CrossRef]
- Sheng, Z.; Ge, S.; Xu, X.; Zhang, Y.; Wu, P.; Zhang, K.; Xu, X.; Li, C.; Zhao, D.; Tang, X. Design, synthesis and evaluation of cinnamic acid ester derivatives as mushroom tyrosinase inhibitors. MedChemComm 2018, 9, 853. [Google Scholar] [CrossRef] [PubMed]
- Arroo, R.R.J.; Sari, S.; Barut, B.; Özel, A.; Ruparelia, K.C.; Şöhretoğlu, D. Flavones as tyrosinase inhibitors: Kinetic studies in vitro and in silico. Phytochem. Anal. 2020, 31, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liu, G.; Meng, Y.; Tian, J.; Chen, X.; Shen, M.; Li, Y.; Li, B.; Gao, C.; Wu, S.; et al. Synthesis and anti-tyrosinase mechanism of the substituted vanillyl cinnamate analogues. Bioorganic Chem. 2019, 93, 103316. [Google Scholar] [CrossRef]
- Chen, Q.X.; Kubo, I. Kinetics of mushroom tyrosinase inhibition by quercetin. J. Agric. Food Chem. 2002, 50, 4108–4112. [Google Scholar] [CrossRef]
- Chai, W.M.; Lin, M.Z.; Song, F.J.; Wang, Y.X.; Xu, K.L.; Huang, J.X.; Fu, J.-P.; Peng, Y.-Y. Rifampicin as a novel tyrosinase inhibitor: Inhibitory activity and mechanism. Int. J. Biol. Macromol. 2017, 102, 425–430. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Van Rijn, J.N.; Holmes, G.; Pfahringer, B.; Vanschoren, J. The online performance estimation framework: Heterogeneous ensemble learning for data streams. Mach. Learn. 2018, 107, 149–176. [Google Scholar] [CrossRef]
- Golbraikh, A.; Tropsha, A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Mol. Divers. 2000, 5, 231–243. [Google Scholar] [CrossRef]
- Gramatica, P. Principles of QSAR Modeling: Comments and Suggestions From Personal Experience. Int. J. Quant. Struct-Prop. Relat. 2020, 5, 61–97. [Google Scholar] [CrossRef]
- Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem. 2013, 34, 2121–2132. [Google Scholar] [CrossRef]
- Gramatica, P.; Cassani, S.; Chirico, N. QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J. Comput. Chem. 2014, 35, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Mrrero-Ponce, Y.; Casanola Martin, G.M.; Hassan Khan, M.T.; Torrens, F.; Rescigno, A.; Abad, C. Ligand-based computer-aided discovery of tyrosinase inhibitors. Applications of the TOMOCOMD-CARDD method to the elucidation of new compounds. Curr. Pharm. Des. 2010, 16, 2601–2624. [Google Scholar] [CrossRef]
- García-Jacas, C.R.; Marrero-Ponce, Y.; Acevedo-Martínez, L.; Barigye, S.J.; Valdés-Martiní, J.R.; Contreras-Torres, E. QuBiLS-MIDAS: A parallel free-software for molecular descriptors computation based on multilinear algebraic maps. J. Comput. Chem. 2014, 35, 1395–1409. [Google Scholar] [CrossRef]
- García-Jacas, C.R.; Aguilera-Mendoza, L.; González-Pérez, R.; Marrero-Ponce, Y.; Acevedo-Martínez, L.; Barigye, S.J.; Avdeenko, T. Multi-Server Approach for High-Throughput Molecular Descriptors Calculation based on Multi-Linear Algebraic Maps. Mol. Inform. 2015, 34, 60–69. [Google Scholar] [CrossRef]
- AnalytiCon Discovery. Screening Libraries—Natural Products Libraries; AnalytiCon Discovery: Potsdam, Germany, 2024; Available online: https://ac-discovery.com/screening-libraries-natural-products-libraries/ (accessed on 7 September 2024).
- Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. [Google Scholar] [CrossRef]
- Wildman, S.A.; Crippen, G.M. Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868–873. [Google Scholar] [CrossRef]
- Moriguchi, I.; Hirono, S.; Liu, Q.; Izum, N.; Matsushita, Y. Simple Method of Calculating Octanol/Water Partition Coefficient. Chem. Pharm. Bull. 1992, 40, 127–130. [Google Scholar] [CrossRef]
- Moriguchi, I.; Hirano, H.; Nakagome, I. Comparison of Relibility of log P Values for Drugs Calculated by Several Methods. Chem. Pharm. Bull. 1994, 42, 976–978. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Kaup, M.; Plange, N.; Niegel, M.; Remky, A.; Arend, O. Effects of brinzolamide on ocular haemodynamics in healthy volunteers. Br. J. Ophthalmol. 2004, 88, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Iester, M.; Altieri, M.; Michelson, G.; Vittone, P.; Traverso, C.E.; Calabria, G. Retinal peripapillary blood flow before and after topical brinzolamide. Ophthalmologica 2004, 218, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Iester, M. Brinzolamide ophthalmic suspension: A review of its pharmacology and use in the treatment of open angle glaucoma and ocular hypertension. Clin. Ophthalmol. 2008, 2, 517. [Google Scholar] [CrossRef] [PubMed]
- Carbain, B.; Paterson, D.J.; Anscombe, E.; Campbell, A.J.; Cano, C.; Echalier, A.; Endicott, J.A.; Golding, B.T.; Haggerty, K.; Hardcastle, I.R.; et al. 8-Substituted O(6)-cyclohexylmethylguanine CDK2 inhibitors: Using structure-based inhibitor design to optimize an alternative binding mode. J. Med. Chem. 2014, 57, 56–70. [Google Scholar] [CrossRef]
- Davis, S.T.; Benson, B.G.; Bramson, H.N.; Chapman, D.E.; Dickerson, S.H.; Dold, K.M.; Eberwein, D.J.; Edelstein, M.; Frye, S.V.; Gampe, R.T., Jr.; et al. Prevention of Chemotherapy-Induced Alopecia in Rats by CDK Inhibitors. Science 2001, 291, 134–137. [Google Scholar] [CrossRef]
- Nordhoff, S.; Cerezo-Gálvez, S.; Deppe, H.; Hill, O.; López-Canet, M.; Rummey, C.; Thiemann, M.; Matassa, V.G.; Edwards, P.J.; Feurer, A. Discovery of β-homophenylalanine based pyrrolidin-2-ylmethyl amides and sulfonamides as highly potent and selective inhibitors of dipeptidyl peptidase IV. Bioorganic Med. Chem. Lett. 2009, 19, 4201–4203. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Uchida, T.; Nochi, K.; Yamashita, T.; Teramae, N. Adsorption behavior of lauric acid at heptane/water interface as studied by second harmonic generation spectroscopy and interfacial tensiometry. Anal. Sci. 2004, 20, 1523–1527. [Google Scholar] [CrossRef]
- Beare-Rogers, J.; Dieffenbacher, A.; Holm, J.V. Lexicon of lipid nutrition. Pure Appl. Chem. 2001, 73, 685–744. [Google Scholar] [CrossRef]
- Ramya, V.; Shyam, K.P.; Angelmary, A.; Kadalmani, B. Lauric acid epigenetically regulates lncRNA HOTAIR by remodeling chromatin H3K4 tri-methylation and modulates glucose transport in SH-SY5Y human neuroblastoma cells: Lipid switch in macrophage activation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2024, 1869, 159429. [Google Scholar] [CrossRef] [PubMed]
- Feunang, Y.D.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; et al. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 2016, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Silvaggi, N.R.; Josephine, H.R.; Kuzin, A.P.; Nagarajan, R.; Pratt, R.F.; Kelly, J.A. Crystal Structures of Complexes between the R61 DD-peptidase and Peptidoglycan-mimetic β-Lactams: A Non-covalent Complex with a “Perfect Penicillin”. J. Mol. Biol. 2005, 345, 521–533. [Google Scholar] [CrossRef]
- De La Torre, S.; Cuesta, S.A.; Calle, L.; Mora, J.R.; Paz, J.L.; Espinoza-Montero, P.J.; Flores-Sumoza, M.; Márquez, E.A. Computational approaches for lead compound discovery in dipeptidyl peptidase-4 inhibition using machine learning and molecular dynamics techniques. Comput. Biol. Chem. 2024, 112, 108145. [Google Scholar] [CrossRef]
- Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. [Google Scholar] [CrossRef]
- Cabrera, N.; Cuesta, S.A.; Mora, J.R.; Calle, L.; Márquez, E.A.; Kaunas, R.; Paz, J.L. In Silico Searching for Alternative Lead Compounds to Treat Type 2 Diabetes through a QSAR and Molecular Dynamics Study. Pharmaceutics 2022, 14, 232. [Google Scholar] [CrossRef] [PubMed]
- Valencia, J.; Rubio, V.; Puerto, G.; Vasquez, L.; Bernal, A.; Mora, J.R.; Cuesta, S.A.; Paz, J.L.; Insuasty, B.; Abonia, R.; et al. QSAR Studies, Molecular Docking, Molecular Dynamics, Synthesis, and Biological Evaluation of Novel Quinolinone-Based Thiosemicarbazones against Mycobacterium tuberculosis. Antibiotics 2023, 12, 61. [Google Scholar] [CrossRef]
- Cuesta, S.A.; Moreno, M.; López, R.A.; Mora, J.R.; Paz, J.L.; Márquez, E.A. ElectroPredictor: An Application to Predict Mayr’s Electrophilicity E through Implementation of an Ensemble Model Based on Machine Learning Algorithms. J. Chem. Inf. Model. 2023, 63, 507–521. [Google Scholar] [CrossRef]
- Valdés-Martiní, J.R.; Marrero-Ponce, Y.; García-Jacas, C.R.; Martinez-Mayorga, K.; Barigye, S.J.; Vaz D‘Almeida, Y.S.; Pham-The, H.; Pérez-Giménez, F.; Morell, C.A. QuBiLS-MAS, open source multi-platform software for atom- and bond-based topological (2D) and chiral (2.5D) algebraic molecular descriptors computations. J. Cheminform. 2017, 9, 35. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, revision C.01.; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef]
- Leonard, J.T.; Roy, K. On Selection of Training and Test Sets for the Development of Predictive QSAR models. QSAR Comb. Sci. 2006, 25, 235–251. [Google Scholar] [CrossRef]
- Khan, P.M.; Roy, K. Current approaches for choosing feature selection and learning algorithms in quantitative structure-activity relationships (QSAR). Expert. Opin. Drug Discov. 2018, 13, 1075–1089. [Google Scholar] [CrossRef]
- Crowley, J.L.; Parker, A.C. A representation for shape based on peaks and ridges in the difference of low-pass transform. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.L.; Huang, D.S.; Cheun, Y.M.; Sun, Z.L.; Huang, D.S.; Cheun, Y.M. Extracting nonlinear features for multispectral images by FCMC and KPCA. Digit. Signal Process. 2005, 15, 331–346. [Google Scholar] [CrossRef]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Jaworska, J.; Nikolova-Jeliazkova, N. How can structural similarity analysis help in category formation? SAR QSAR Environ. Res. 2007, 18, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Jeliazkova, N.; Chomenidis, C.; Doganis, P.; Fadeel, B.; Grafström, R.; Hardy, B.; Hastings, J.; Hegi, M.; Jeliazkov, V.; Kochev, N.; et al. The eNanoMapper database for nanomaterial safety information. Beilstein J. Nanotechnol. 2015, 6, 1609–1634. [Google Scholar] [CrossRef]
- Mora, J.R.; Marrero-Ponce, Y.; García-Jacas, C.R.; Suarez Causado, A. Ensemble Models Based on QuBiLS-MAS Features and Shallow Learning for the Prediction of Drug-Induced Liver Toxicity: Improving Deep Learning and Traditional Approaches. Chem. Res. Toxicol. 2020, 33, 1855–1873. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 2011, 50, 5477–5486. [Google Scholar] [CrossRef] [PubMed]
- Sanner, M.; Huey, R.; Dallakyan, S.; Karnati, S.; Lindstrom, W.; Morris, G.; Norledge, B.; Omelchenko, A.; Stoffler, D.; Vareille, G. AutoDockTools, version 1.5.7.; The Scripps Research Institute: La Jolla, CA, USA, 2007. [Google Scholar]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct. Bioinform. 2006, 65, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis; University of California, San Francisco: San Francisco, CA, USA, 2004. [Google Scholar]
- Sousa da Silva, A.W.; Vranken, W.F. ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open chemical toolbox. J. Cheminform. 2011, 3, 1–14. [Google Scholar] [CrossRef]
- Berendsen, H.; Postma, J.; Van Gunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
Model | R2 | Q2Loo | Q2LMO | Q2ext | Kxx | MAEtr | MAEcv | s | F |
---|---|---|---|---|---|---|---|---|---|
M3 | 0.8687 | 0.8030 | 0.7806 | 0.9151 | 0.2396 | 0.2424 | 0.3003 | 0.3562 | 37.4824 |
M4 | 0.855 | 0.7808 | 0.7568 | 0.9545 | 0.2361 | 0.2837 | 0.3508 | 0.3742 | 33.4248 |
M6 | 0.8235 | 0.7488 | 0.7291 | 0.9127 | 0.1943 | 0.2965 | 0.356 | 0.4069 | 32.6646 |
M9 | 0.8.762 | 0.7826 | 0.7486 | 0.7771 | 0.2607 | 0.2565 | 0.3379 | 0.3565 | 28.2981 |
Criterion | Leave-One-Out Validation | External Validation | ||
---|---|---|---|---|
Result | Assessment | Result | Assessment | |
R2 > 0.6 | 0.8687 | Pass | 0.8687 | Pass |
R2val > 0.5 | 0.8030 | Pass | 0.9151 | Pass |
(R2val − R02)/R2val < 0.1 | 0.0008 | Pass | 0.0040 | Pass |
(R2val − R0′2)/R2val < 0.1 | 0.0423 | Pass | 0.0005 | Pass |
abs (R02 − R0′2) < 0.1 | 0.0334 | Pass | 0.0032 | Pass |
0.85 < k < 1.15 | 1.0016 | Pass | 1.0057 | Pass |
0.85 < k′ < 1.15 | 0.9901 | Pass | 0.9896 | Pass |
Cod | Name IUPAC | Commercial Name | DrugBank Access Number | CalculatedpIC50 |
---|---|---|---|---|
1S | (4R)-4-(ethylamino)-2-(3-methoxypropyl)-1,1-dioxo-2H,3H,4H-1lambda6-thieno [3,2-e][1,2]thiazine-6-sulfonamide | Brinzolamide | DB01194 | 8357 |
2S | (2S,5R,6R)-6-[(6S)-6-(2-azaniumylacetamido)-6-carboxylatohexanamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo [3.2.0]heptane-2-carboxylate | - | DB03820 | 8193 |
3S | Dodecanoic acid | Lauric acid | DB03017 | 7953 |
4S | 6-(cyclohexyl methoxy)-8-(propan-2-yl)-9H-purin-2-amine | - | DB08247 | 7942 |
5S | N-{[(2S)-1-[(3R)-3-amino-4-(3-chlorophenyl)butanoyl]pyrrolidin-2-yl]methyl}-3-methanesulfonylbenzamide | - | DB08429 | 7828 |
Cod | D.S. Average | pIC50 Pre. | H Bond | H-Bonding Distance (Å) |
---|---|---|---|---|
1S | −7.350 | 8.357 | ASN 260 | 2.77 |
2S | −7.873 | 8.193 | HIS 85 | 3.23 |
CYS 83 | 3.09 | |||
MET 280 | 2.21 | |||
3S | −4.577 | 7.953 | ASN 260 | 1.98 |
4S | −7.043 | 7.942 | HIS 85 | 2.41 |
5S | −8.950 | 7.828 | VAL 283 | 3.34 |
MET 280 | 2.35 | |||
HIS 85 | 3.24 |
Number | Docking Score | D.S. Average | pIC50 Pre. | ||
---|---|---|---|---|---|
1S | −7.32 | −7.09 | −7.64 | −7.350 | 8.357 |
2S | −8.06 | −8.23 | −7.33 | −7.873 | 8.193 |
3S | −4.61 | −4.68 | −4.44 | −4.577 | 7.953 |
4S | −7.05 | −7.07 | −7.01 | −7.043 | 7.942 |
5S | −9.46 | −8.46 | −8.93 | −8.950 | 7.828 |
6S | −8.82 | −8.26 | −8.69 | −8.590 | 7.821 |
7S | −8.01 | −8.06 | −8.02 | −8.030 | 7.816 |
8S | −7.3 | −7.29 | −7.29 | −7.293 | 7.779 |
9S | −8.36 | −8.39 | −8.27 | −8.340 | 7.727 |
10S | −6.54 | −6.24 | −6.62 | −6.467 | 7.506 |
11S | −8.21 | −8.19 | −8.19 | −8.197 | 7.525 |
12S | −4.93 | −4.94 | −4.53 | −4.800 | 7.384 |
13S | −8.62 | −7.76 | −7.59 | −7.990 | 7.222 |
14S | −7.08 | −7.08 | −7.08 | −7.080 | 7.046 |
15S | −7.48 | −6.5 | −6.73 | −6.903 | 7.039 |
TROPOLONA | −4.39 | −4.39 | −4.39 | −4.390 | - |
Van der Waal Energy | Electrostatic Energy | SASA Energy | Binding Energy | |
---|---|---|---|---|
1S | −127.101 | 13.975 | −13.481 | −37.541 |
2S | −123.600 | −43.783 | −14.183 | −58.897 |
3S | −121.350 | −3.193 | −14.545 | −81.305 |
4S | −100.239 | −9.749 | −11.871 | −58.395 |
5S | −117.633 | 3.132 | −13.651 | −48.059 |
1 | −134.124 | −23.746 | −15.918 | −73.032 |
2 | −97.265 | −4.652 | −11.665 | −50.099 |
16 | −66.685 | −20.318 | −7.604 | −46.119 |
20 | −132.890 | −43.267 | −13.689 | −61.021 |
25 | −142.256 | −43.267 | −13.689 | −61.021 |
26 | −100.899 | −47.307 | −13.259 | −45.756 |
28 | −39.580 | −14.562 | −5.562 | −30.439 |
33 | −46.112 | −12.488 | −5.957 | −23.152 |
50 | −103.203 | −81.459 | −11.914 | −70.130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
OréMaldonado, K.A.; Cuesta, S.A.; Mora, J.R.; Loroño, M.A.; Paz, J.L. Discovering New Tyrosinase Inhibitors by Using In Silico Modelling, Molecular Docking, and Molecular Dynamics. Pharmaceuticals 2025, 18, 418. https://doi.org/10.3390/ph18030418
OréMaldonado KA, Cuesta SA, Mora JR, Loroño MA, Paz JL. Discovering New Tyrosinase Inhibitors by Using In Silico Modelling, Molecular Docking, and Molecular Dynamics. Pharmaceuticals. 2025; 18(3):418. https://doi.org/10.3390/ph18030418
Chicago/Turabian StyleOréMaldonado, Kevin A., Sebastián A. Cuesta, José R. Mora, Marcos A. Loroño, and José L. Paz. 2025. "Discovering New Tyrosinase Inhibitors by Using In Silico Modelling, Molecular Docking, and Molecular Dynamics" Pharmaceuticals 18, no. 3: 418. https://doi.org/10.3390/ph18030418
APA StyleOréMaldonado, K. A., Cuesta, S. A., Mora, J. R., Loroño, M. A., & Paz, J. L. (2025). Discovering New Tyrosinase Inhibitors by Using In Silico Modelling, Molecular Docking, and Molecular Dynamics. Pharmaceuticals, 18(3), 418. https://doi.org/10.3390/ph18030418