The Use of [11C]C-Methionine in Diagnostics of Endocrine Disorders with Focus on Pituitary and Parathyroid Glands
Abstract
1. Introduction
2. Methods
2.1. Hyperparathyroidism
2.2. Primary HPT
2.3. Secondary (and Primary) HPT
2.4. Tertiary (and Primary) HPT
2.5. Pituitary Tumors
2.6. Non-Functioning Tumors and Mixed Groups
2.7. Prolactinomas (PRL-OMAS)
2.8. Somatotropinomas (GH-Omas)
2.9. Thyrotropinomas (TSH-Omas)
2.10. Corticotropinomas (ACTH-Omas—Cushing Disease)
2.11. Pitfalls in Diagnostics
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zanzonico, P. Physics Instrumentation, and Radiation Safety and Regulations. In Clinical Nuclear Medicine; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–48. [Google Scholar]
- Berger, A. How does it work? Positron emission tomography. BMJ 2003, 326, 1449. [Google Scholar] [CrossRef] [PubMed]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef] [PubMed]
- Koole, M.; Armstrong, I.; Krizsan, A.K.; Stromvall, A.; Visvikis, D.; Sattler, B.; Nekolla, S.G.; Dickson, J. EANM guidelines for PET-CT and PET-MR routine quality control. Z. Fur Med. Phys. 2022, 33, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, V.; McCook, B.M.; Torok, F.S. An Introduction to PET-CT Imaging. RadioGraphics 2004, 24, 523–543. [Google Scholar] [CrossRef]
- Broski, S.M.; Goenka, A.H.; Kemp, B.J.; Johnson, G.B. Clinical PET/MRI: 2018 Update. Am. J. Roentgenol. 2018, 211, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, L.; Wang, H.; Cai, H.; Xiang, Y.; Li, L. Effective radiation dose of 18F-FDG PET/CT: How much does diagnostic CT contribute? Radiat. Prot. Dosim. 2019, 187, 183–190. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Shin, H.J.; Kim, M.J.; Lee, M.J. Comparison of effective radiation doses from X-ray, CT, and PET/CT in pediatric patients with neuroblastoma using a dose monitoring program. Diagn. Interv. Radiol. 2016, 22, 390–394. [Google Scholar] [CrossRef]
- Conti, M.; Eriksson, L. Physics of pure and non-pure positron emitters for PET: A review and a discussion. EJNMMI Phys. 2016, 3, 1–17. [Google Scholar] [CrossRef]
- Martínez, Y.; Li, X.; Liu, G.; Bin, P.; Yan, W.; Más, D.; Valdivié, M.; Hu, C.-A.A.; Ren, W.; Yin, Y. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 2017, 49, 2091–2098. [Google Scholar] [CrossRef]
- Navik, U.; Sheth, V.G.; Khurana, A.; Jawalekar, S.S.; Allawadhi, P.; Gaddam, R.R.; Bhatti, J.S.; Tikoo, K. Methionine as a double-edged sword in health and disease: Current perspective and future challenges. Ageing Res. Rev. 2021, 72, 101500. [Google Scholar] [CrossRef]
- Harris, S.M.; Davis, J.C.; Snyder, S.E.; Butch, E.R.; Vāvere, A.L.; Kocak, M.; Shulkin, B.L. Evaluation of the Biodistribution of 11C-Methionine in Children and Young Adults. J. Nucl. Med. 2013, 54, 1902–1908. [Google Scholar] [CrossRef]
- Leung, K. l-[methyl-11C]Methionine. In Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (USA): Bethesda, MD, USA, 2005. Available online: https://www.ncbi.nlm.nih.gov/books/NBK23696/ (accessed on 21 December 2011).
- Miller, P.W.; Long, N.J.; Vilar, R.; Gee, A.D. Synthesis of 11C, 18F, 15O, and 13N Radiolabels for Positron Emission Tomography. Angew. Chem. Int. Ed. Engl. 2008, 47, 8998–9033. [Google Scholar] [CrossRef]
- Deloar, H.M.; Fujiwara, T.; Nakamura, T.; Itoh, M.; Imai, D.; Miyake, M.; Watanuki, S. Estimation of internal absorbed dose of l -[methyl- 11 C]methionine using whole-body positron emission tomography. Eur. J. Nucl. Med. 1998, 25, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej, M.; Bober, B.; Saracyn, M.; Kamiński, G. The role of PET/CT with 11C-methionine in contemporary nuclear medicine. Wiad Lek. 2020, 73, 2076–2079. [Google Scholar] [CrossRef]
- Jeltema, H.-R.; van Dijken, B.R.J.; Tamási, K.; Drost, G.; Heesters, M.A.A.M.; van der Hoorn, A.; Glaudemans, A.W.J.M.; van Dijk, J.M.C. 11C-Methionine uptake in meningiomas after stereotactic radiotherapy. Ann. Nucl. Med. 2024, 38, 596–606. [Google Scholar] [CrossRef]
- Chung, J.-K.; Kim, Y.; Kim, S.-K.; Lee, Y.; Paek, S.; Yeo, J.; Jeong, J.; Lee, D.; Jung, H.; Lee, M. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Ninatti, G.; Sollini, M.; Bono, B.; Gozzi, N.; Fedorov, D.; Antunovic, L.; Gelardi, F.; Navarria, P.; Politi, L.S.; Pessina, F.; et al. Preoperative [11C]methionine PET to personalize treatment decisions in patients with lower-grade gliomas. Neuro-Oncology 2022, 24, 1546–1556. [Google Scholar] [CrossRef] [PubMed]
- van Dijken, B.R.J.; Ankrah, A.O.; Stormezand, G.N.; Dierckx, R.; van Laar, P.J.; van der Hoorn, A. Prognostic value of 11C-methionine volume-based PET parameters in IDH wild type glioblastoma. PLoS ONE 2022, 17, e0264387. [Google Scholar] [CrossRef] [PubMed]
- Taniegra, E.D. Hyperparathyroidism. Am. Fam. Physician 2004, 69, 333–339. [Google Scholar] [PubMed]
- Minisola, S.; Arnold, A.; Belaya, Z.; Brandi, M.L.; Clarke, B.L.; Hannan, F.M.; Hofbauer, L.C.; Insogna, K.L.; Lacroix, A.; Liberman, U.; et al. Epidemiology, Pathophysiology, and Genetics of Primary Hyperparathyroidism. J. Bone Miner. Res. 2022, 37, 2315–2329. [Google Scholar] [CrossRef]
- Kowalski, G.J.; Buła, G.; Żądło, D.; Gawrychowska, A.; Gawrychowski, J. Primary hyperparathyroidism. Endokrynol. Polska 2020, 71, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Dream, S.; Kuo, L.E.M.; Kuo, J.H.; Sprague, S.M.D.; Nwariaku, F.E.; Wolf, M.M.; Olson, J.A.J.; Moe, S.M.; Lindeman, B.M.; Chen, H. The American Association of Endocrine Surgeons Guidelines for the Definitive Surgical Management of Secondary and Tertiary Renal Hyperparathyroidism. Ann. Surg. 2022, 276, e141–e176. [Google Scholar] [CrossRef]
- Stack, B.C. Secondary Hyperparathyroidism. Otolaryngol. Clin. N. Am. 2024, 57, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Cusano, N.E.; Cetani, F. Normocalcemic primary hyperparathyroidism. Arch. Bras. Endocrinol. Metabol. 2022, 66, 666–677. [Google Scholar] [CrossRef]
- Byrd, C.; Kashyap, S.; Kwartowitz, G. Parathyroid Cancer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Abboud, B.; Daher, R.; Boujaoude, J. Digestive manifestations of parathyroid disorders. World J. Gastroenterol. 2011, 17, 4063–4066. [Google Scholar] [CrossRef] [PubMed]
- Salhi, H.; Bouziane, T.; Maaroufi, M.; Alaoui, N.I.; El Ouahabi, H. Primary Hyperparathyroidism: Correlation between cervical ultrasound and MIBI scan. Ann. Afr. Med. 2022, 21, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Thoma, N.; Dietlein, M.; Moka, D.; Eschner, W.; Faust, M.; Schröder, W.; Von Hülst-Schlabrendorff, M.; Ehses, W.; Schicha, H. 99mTc-MIBI SPECT in primary hyperparathyroidism. Influence of concomitant vitamin D deficiency for visualization of parathyroid adenomas. Nuklearmedizin 2008, 47, 1–7. [Google Scholar] [PubMed]
- Zheng, Y.T.; Chi, X.H.; Qi, Y.S.; Jiang, Y.; Huang, K.; He, Y.; Wang, S.F.; Li, G.P. Diagnostic value and influencing factors of 99mTc-MIBI SPECT/CT imaging combined with semiquantitative analysis in hyperparathyroidism. J. South. Med. Univ. 2021, 41, 1577–1582. [Google Scholar] [CrossRef]
- Abati, A.; Skarulis, M.C.; Shawker, T.; Solomon, D. Ultrasound-guided fine-needle aspiration of parathyroid lesions: A morphological and immunocytochemical approach. Hum. Pathol. 1995, 26, 338–343. [Google Scholar] [CrossRef]
- Petranović Ovčariček, P.; Giovanella, L.; Carrió Gasset, I.; Hindié, E.; Huellner, M.W.; Luster, M.; Piccardo, A.; Weber, T.; Talbot, J.-N.; Verburg, F.A. The EANM practice guidelines for parathyroid imaging. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2801–2822. [Google Scholar] [CrossRef]
- Dudoignon, D.; Delbot, T.; Cottereau, A.S.; Dechmi, A.; Bienvenu, M.; Koumakis, E.; Cormier, C.; Gaujoux, S.; Groussin, L.; Cochand-Priollet, B.; et al. 18F-fluorocholine PET/CT and conventional imaging in primary hyperparathyroidism. Diagn. Interv. Imaging 2022, 103, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Mathey, C.; Keyzer, C.; Blocklet, D.; Van Simaeys, G.; Trotta, N.; Lacroix, S.; Corvilain, B.; Goldman, S.; Moreno-Reyes, R. 18F-fluorocholine PET/CT is more sensitive than 11C-methionine PET/CT for the localization of hyperfunctioning parathyroid tissue in primary hyperparathyroidism. J. Nucl. Med. 2022, 63, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, N.; Nakamoto, Y.; Kurihara, K.; Yasoda, A.; Kanamoto, N.; Miura, M.; Inagaki, N.; Togashi, K. A comparison between 11C-methionine PET/CT and MIBI SPECT/CT for localization of parathyroid adenomas/hyperplasia. Nucl. Med. Commun. 2015, 36, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Braeuning, U.; Pfannenberg, C.; Gallwitz, B.; Teichmann, R.; Mueller, M.; Dittmann, H.; Reimold, M.; Bares, R. 11C-methionine PET/CT after in conclusive 99mTc-MIBI-SPECT/CT for localisation of parathyroid adenomas in primary hyperparathyroidism. Nuklearmedizin 2015, 54, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Schalin-Jäntti, C.; Ryhänen, E.; Heiskanen, I.; Seppänen, M.; Arola, J.; Schildt, J.; Väisänen, M.; Nelimarkka, L.; Lisinen, I.; Aalto, V.; et al. Planar Scintigraphy with 123I/99mTc-Sestamibi, 99mTc-Sestamibi SPECT/CT, 11C-Methionine PET/CT, or Selective Venous Sampling Before Reoperation of Primary Hyperparathyroidism? J. Nucl. Med. 2013, 54, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Huynh, K.A.; MacFarlane, J.; Newman, C.; Gillett, D.; Das, T.; Scoffings, D.; Cheow, H.K.; Moyle, P.; Koulouri, O.; Harper, I.; et al. Diagnostic utility of 11C-methionine PET/CT in primary hyperparathyroidism in a UK cohort: A single-centre experience and literature review. Clin. Endocrinol. 2023, 99, 233–245. [Google Scholar] [CrossRef]
- Mathew, V.; Mallikarjuna, V.; Ayyar, V.; Bantwal, G.; Ganesh, V.; George, B.; Hemanth, G.; Vinotha, P. Five-year retrospective study on primary hyperparathyroidism in South India: Emerging roles of minimally invasive parathyroidectomy and preoperative localization with methionine positron emission tomography-computed tomography scan. Indian J. Endocrinol. Metab. 2018, 22, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Noltes, M.E.; Kruijff, S.; Appelman, A.P.A.; Jansen, L.; Zandee, W.T.; Links, T.P.; van Hemel, B.M.; Schouw, H.M.; Dierckx, R.A.J.O.; Francken, A.B.; et al. Head-to-head comparison of [11C]methionine PET, [11C]choline PET, and 4-dimensional CT as second-line scans for detection of parathyroid adenomas in primary hyperparathyroidism. Eur. J. Nucl. Med. 2024, 51, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Lenschow, C.; Wennmann, A.; Hendricks, A.; Germer, C.-T.; Fassnacht, M.; Buck, A.; Werner, R.A.; Plassmeier, L.; Schlegel, N. Questionable value of [99mTc]-sestamibi scintigraphy in patients with pHPT and negative ultrasound. Langenbeck’s Arch. Surg. 2022, 407, 3661–3669. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, S.; Gerke, O.; Bay, M.; Madsen, A.R.; Stilgren, L.; Ejersted, C.; Rewers, K.I.; Jakobsen, N.; Asmussen, J.T.; Braad, P.-E.; et al. Head-to-Head Comparison of Tc-99m-sestamibi SPECT/CT and C-11-L-Methionin PET/CT in Parathyroid Scanning Before Operation for Primary Hyperparathyroidism. Mol. Imaging Biol. 2023, 25, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Iversen, P.; Arveschoug, A.K.; Rejnmark, L.; Rolighed, L. C-11 methionine positron emission tomography scans improve the preoperative localization of pathologic parathyroid glands in primary hyperparathyroidism. Scand. J. Surg. 2022, 111, 36837. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rodríguez, I.; Martínez-Amador, N.; de Arcocha-Torres, M.; Quirce, R.; Ortega-Nava, F.; Ibáñez-Bravo, S.; Lavado-Pérez, C.; Bravo-Ferrer, Z.; Carril, J. Comparison of 99mTc-sestamibi and 11C-methionine PET/CT in the localization of parathyroid adenomas in primary hyperparathyroidism. Rev. Esp. De Med. Nucl. E Imagen Mol. 2014, 33, 93–98. [Google Scholar] [CrossRef]
- Hellman, P.; Ahlström, H.; Bergström, M.; Sundin, A.; Långström, B.; Westerberg, G.; Juhlin, C.; Akerström, G.; Rastad, J. Positron emission tomography with 11C-methionine in hyperparathyroidism. Surgery 1994, 116, 974–981. [Google Scholar] [PubMed]
- Pogosian, K.; Karonova, T.; Ryzhkova, D.; Yanevskaya, L.; Tsoy, U.; Yudina, O.; Berkovich, G.; Dalmatova, A.; Grineva, E. 11C-methionine PET/CT and conventional imaging techniques in the diagnosis of primary hyperparathyroidism. Quant. Imaging Med. Surg. 2023, 13, 2352–2363. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Cheon, M. Role of 11C-Methionine PET/CT in 99mTc-Sestamibi-Negative Parathyroid Adenoma: A Case Report. Diagnostics 2021, 11, 831. [Google Scholar] [CrossRef]
- Damien, M.; Rodriguez, A.; Kleynen, P.; Dequanter, D.; Bouland, C. An Unusual Case of Primary Hyperparathyroidism: Case Report of a Bifocal Intrathyroidal Parathyroid Carcinoma. Ear Nose Throat. J. 2023, 102, NP5–NP7. [Google Scholar] [CrossRef]
- Rubello, D.; Fanti, S.; Nanni, C.; Farsad, M.; Castellucci, P.; Boschi, S.; Franchi, R.; Mariani, G.; Fig, L.M.; Gross, M.D. 11C-methionine PET/CT in 99mTc-sestamibi-negative hyperparathyroidism in patients with renal failure on chronic haemodialysis. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Sundin, A.; Johansson, C.; Hellman, P.; Bergstrom, M.; Ahlstrom, H.; Jacobson, G.B.; Langstrom, B.; Rastadet, J. PET and parathyroid L-[carbon-11]methionine accumulation in hyperparathyroidism. J. Nucl. Med. 1996, 37, 1766–1770. [Google Scholar] [PubMed]
- Tang, B.; Moreno-Reyes, R.; Blocklet, D.; Corvilain, B.; Cappello, M.; Delpierre, I.; Devuyst, F.; Van Simaeys, G.; Goldman, S. Accurate pre-operative localization of pathological parathyroid glands using 11C-methionine PET/CT. Contrast Media Mol. Imaging 2008, 3, 157–163. [Google Scholar] [CrossRef]
- Otto, D.; Boerner, A.R.; Hofmann, M.; Brunkhorst, T.; Meyer, G.J.; Petrich, T.; Scheumann, G.F.; Knapp, W.H. Pre-operative localisation of hyperfunctional parathyroid tissue with 11C-methionine PET. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Lenschow, C.; Gassmann, P.; Wenning, C.; Senninger, N.; Colombo-Benkmann, M. Preoperative 11C-Methionine PET/CT Enables Focussed Parathyroidectomy in MIBI-SPECT Negative Parathyroid Adenoma. World J. Surg. 2015, 39, 1750–1757. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Wong, J.; Smellie, W.; Young, A.; Maisey, M.; Fogelman, I. [11C]Methionine positron emission tomography for patients with persistent or recurrent hyperparathyroidism after surgery. Eur. J. Endocrinol. 1998, 139, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej, M.; Saracyn, M.; Lubas, A.; Dziuk, M.; Durma, A.D.; Smoszna, J.; Zelichowski, G.; Niemczyk, S.; Kamiński, G. Usefulness of PET/CT with Carbon-11-Labeled Methionine in the Diagnosis of Tertiary Hyperparathyroidism. Nutrients 2022, 15, 188. [Google Scholar] [CrossRef]
- Asa, S.L.; Mete, O.; Perry, A.; Osamura, R.Y. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr. Pathol. 2022, 33, 6–26. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Baussart, B.; Assié, G.; Raverot, G.; Roncaroli, F. The World Health Organization classifications of pituitary neuroendocrine tumours: A clinico-pathological appraisal. Endocr. Relat. Cancer 2023, 30, 21. [Google Scholar] [CrossRef] [PubMed]
- Tritos, N.A.; Miller, K.K. Diagnosis and Management of Pituitary Adenomas: A Review. JAMA 2023, 329, 1386–1398. [Google Scholar] [CrossRef] [PubMed]
- Bolanowski, M.; Ruchała, M.; Zgliczyński, W.; Kos-Kudła, B.; Hubalewska-Dydejczyk, A.; Lewiński, A. Diagnostics and treatment of acromegaly—Updated recommendations of the Polish Society of Endocrinology. Endokrynol. Pol. 2019, 70, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, G.; Podgórski, J.K.; Warczyńska, A.; Koziarski, A.; Zgliczyński, W. Tyreotropinoma--gruczolak przysadki wydzielajacy TSH [Thyrotropin--TSH secreting pituitary tumor]. Przegl Lek. 2002, 59, 1018–1023. [Google Scholar] [PubMed]
- Balomenaki, M.; Margaritopoulos, D.; Vassiliadi, D.A.; Tsagarakis, S. Diagnostic workup of Cushing’s syndrome. J. Neuroendocr. 2022, 34, e13111. [Google Scholar] [CrossRef] [PubMed]
- Yatavelli, R.K.R.; Bhusal, K. Prolactinoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Demura, R.; Kubo, O.; Demura, H.; Shizume, K. FSH and LH Secreting Pituitary Adenoma. J. Clin. Endocrinol. Metab. 1977, 45, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Alnasrallah, N.; Aljenaee, K.; AlMurshed, M.; Hajji, S. Clinically functioning gonadotropin-secreting pituitary adenoma. Endocrinol. Diabetes Metab. Case Rep. 2024, 2024, 322. [Google Scholar] [CrossRef]
- Waśko, R. Zmiany stezenia podjednostki alfa hormonów glikoproteidowych w surowicy chorych z guzami przysadki typu "alfoma" w przebiegu testów stymulacji LH-RH + TRH [Changes in serum levels of glycoprotein hormone alpha subunits in patients with alphoma-type pituitary tumors during LHRH and TRH stimulation tests]. Endokrynol. Pol. 1989, 40, 1–8. [Google Scholar] [PubMed]
- Daud, S.; Hamrahian, A.H.; Weil, R.J.; Hamaty, M.; Prayson, R.A.; Olansky, L. Acromegaly with negative pituitary MRI and no evidence of ectopic source: The role of transphenoidal pituitary exploration? Pituitary 2011, 14, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Tatsi, C.; Bompou, M.E.; Flippo, C.; Keil, M.; Chittiboina, P.; Stratakis, C.A. Paediatric patients with Cushing disease and negative pituitary MRI have a higher risk of nonremission after transsphenoidal surgery. Clin. Endocrinol. 2021, 95, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Bergström, M.; Muhr, C.; Lundberg, P.O.; Bergström, K.; Lundqvist, H.; Antoni, G.; Fasth, K.-J.; Långström, B. Amino Acid Distribution and Metabolism in Pituitary Adenomas Using Positron Emission Tomography with D-[11C]Methionine and L-[11C]Methionine. J. Comput. Assist. Tomogr. 1987, 11, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Tomura, N.; Saginoya, T.; Mizuno, Y.; Goto, H. Accumulation of 11C-methionine in the normal pituitary gland on 11C-methionine PET. Acta Radiol. 2017, 58, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.N.T.; Levivier, M.; Heureux, M.; Wikler, D.; Massager, N.; Devriendt, D.; David, P.; Dumarey, N.; Corvilain, B.; Goldman, S. 11C-methionine PET for the diagnosis and management of recurrent pituitary adenomas. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 169–178. [Google Scholar] [CrossRef]
- Bashari, W.A.; van der Meulen, M.; MacFarlane, J.; Gillett, D.; Senanayake, R.; Serban, L.; Powlson, A.S.; Brooke, A.M.; Scoffings, D.J.; Jones, J.; et al. 11C-methionine PET aids localization of microprolactinomas in patients with intolerance or resistance to dopamine agonist therapy. Pituitary 2022, 25, 573–586. [Google Scholar] [CrossRef]
- Haberbosch, L.; MacFarlane, J.; Koulouri, O.; Gillett, D.; Powlson, A.S.; Oddy, S.; Halsall, D.J.; A Huynh, K.; Jones, J.; Cheow, H.K.; et al. Real-world experience with 11C-methionine positron emission tomography in the management of acromegaly. Eur. J. Endocrinol. 2024, 190, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Koulouri, O.; Kandasamy, N.; Hoole, A.C.; Gillett, D.; Heard, S.; Powlson, A.S.; O’donovan, D.G.; Annamalai, A.K.; Simpson, H.L.; A Akker, S.; et al. Successful treatment of residual pituitary adenoma in persistent acromegaly following localisation by 11C-methionine PET co-registered with MRI. Eur. J. Endocrinol. 2016, 175, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Barcelo, S.; Gutierrez-Cardo, A.; Dominguez-Paez, M.; Medina-Imbroda, J.; Romero-Moreno, L.; Arraez-Sanchez, M. Clinical Usefulness of Coregistered 11C-Methionine Positron Emission Tomography/3-T Magnetic Resonance Imaging at the Follow-Up of Acromegaly. World Neurosurg. 2014, 82, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Gillett, D.; Senanayake, R.; MacFarlane, J.; van der Meulen, M.; Koulouri, O.; Powlson, A.S.; Crawford, R.; Gillett, B.; Bird, N.; Heard, S.; et al. Localization of TSH-secreting pituitary adenoma using 11C-methionine image subtraction. EJNMMI Res. 2022, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ishida, A.; Kaneko, K.; Minamimoto, R.; Hotta, M.; Inoshita, N.; Takano, K.; Yamada, S. Clinical decision-making based on 11C-methionine PET in recurrent Cushing’s disease with equivocal MRI findings. J. Neurosurg. 2023, 139, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Berkmann, S.; Roethlisberger, M.; Mueller, B.; Christ-Crain, M.; Mariani, L.; Nitzsche, E.; Juengling, F. Selective resection of cushing microadenoma guided by preoperative hybrid 18-fluoroethyl-L-tyrosine and 11-C-methionine PET/MRI. Pituitary 2021, 24, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Koulouri, O.; Steuwe, A.; Gillett, D.; Hoole, A.C.; Powlson, A.S.; A Donnelly, N.; Burnet, N.G.; Antoun, N.M.; Cheow, H.; Mannion, R.J.; et al. A role for 11C-methionine PET imaging in ACTH-dependent Cushing’s syndrome. Eur. J. Endocrinol. 2015, 173, M107–M120. [Google Scholar] [CrossRef]
- Feng, Z.; He, D.; Mao, Z.; Wang, Z.; Zhu, Y.; Zhang, X.; Wang, H. Utility of 11C-Methionine and 18F-FDG PET/CT in Patients with Functioning Pituitary Adenomas. Clin. Nucl. Med. 2016, 41, e130–e134. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Abe, T.; Watanabe, K. Usefulness of composite methionine–positron emission tomography/3.0-tesla magnetic resonance imaging to detect the localization and extent of early-stage Cushing adenoma. J. Neurosurg. 2010, 112, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Lurquin, F.; Constantinescu, S.M.; Furnica, R.M.; Duprez, T.; Raftopoulos, C.; Daoud, L.; Lammens, M.; Maiter, D. Ectopic sphenoidal ACTH-secreting adenoma revealed by 11C Methionine PET scan: Case report. BMC Endocr. Disord. 2023, 23, 1–6. [Google Scholar] [CrossRef]
- Adler, L.P.; Akhrass, R.; Ma, D.; Bloom, A.D. False-positive parathyroid scan leading to sternotomy: Incidental detection of a thymoma by C-11 methionine positron emission tomography. Surgery 1997, 122, 116–119. [Google Scholar] [CrossRef]
- Tripathi, M.; Mahajan, S.; Jaimini, A.; Dinesh, A. False positive localisation of C-11 methionine in a colloid nodule. Indian J. Nucl. Med. 2011, 26, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Noltes, M.E.; Coester, A.M.; van der Horst-Schrivers, A.N.A.; Dorgelo, B.; Jansen, L.; Noordzij, W.; Lemstra, C.; Brouwers, A.H.; Kruijff, S. Localization of parathyroid adenomas using 11C-methionine pet after prior inconclusive imaging. Langenbeck’s Arch. Surg. 2017, 402, 1109–1117. [Google Scholar] [CrossRef]
- Valizadeh, M.; Ahmadi, A.R.; Ebadinejad, A.; Rahmani, F.; Abiri, B. Diagnostic accuracy of bilateral inferior petrosal sinus sampling using desmopressin or corticotropic- releasing hormone in ACTH-dependent Cushing’s syndrome: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2022, 23, 881–892. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.-J.; Shen, C.-T.; Song, H.-J.; Qiu, Z.-L.; Luo, Q.-Y. Comparison of SPET/CT, SPET and planar imaging using Tc-99m-MIBI as independent techniques to support minimally invasive parathyroidectomy in primary hyperparathyroidism: A meta-analysis. Hell J. Nucl. Med. 2015, 18, 127–135. [Google Scholar] [PubMed]
- Caldarella, C.; Treglia, G.; Pontecorvi, A.; Giordano, A. Diagnostic performance of planar scintigraphy using 99mTc-MIBI in patients with secondary hyperparathyroidism: A meta-analysis. Ann. Nucl. Med. 2012, 26, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Friedman, K.; Somervell, H.; Patel, P.; Melton, G.B.; Garrett-Mayer, E.; Dackiw, A.P.; Civelek, A.C.; Zeiger, M.A. Effect of calcium channel blockers on the sensitivity of preoperative 99mTc-MIBI SPECT for hyperparathyroidism. Surgery 2004, 136, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durma, A.D.; Saracyn, M.; Kołodziej, M.; Jóźwik-Plebanek, K.; Kamiński, G. The Use of [11C]C-Methionine in Diagnostics of Endocrine Disorders with Focus on Pituitary and Parathyroid Glands. Pharmaceuticals 2025, 18, 229. https://doi.org/10.3390/ph18020229
Durma AD, Saracyn M, Kołodziej M, Jóźwik-Plebanek K, Kamiński G. The Use of [11C]C-Methionine in Diagnostics of Endocrine Disorders with Focus on Pituitary and Parathyroid Glands. Pharmaceuticals. 2025; 18(2):229. https://doi.org/10.3390/ph18020229
Chicago/Turabian StyleDurma, Adam Daniel, Marek Saracyn, Maciej Kołodziej, Katarzyna Jóźwik-Plebanek, and Grzegorz Kamiński. 2025. "The Use of [11C]C-Methionine in Diagnostics of Endocrine Disorders with Focus on Pituitary and Parathyroid Glands" Pharmaceuticals 18, no. 2: 229. https://doi.org/10.3390/ph18020229
APA StyleDurma, A. D., Saracyn, M., Kołodziej, M., Jóźwik-Plebanek, K., & Kamiński, G. (2025). The Use of [11C]C-Methionine in Diagnostics of Endocrine Disorders with Focus on Pituitary and Parathyroid Glands. Pharmaceuticals, 18(2), 229. https://doi.org/10.3390/ph18020229