The Use of [11C]C-Methionine in Diagnostics of Endocrine Disorders with Focus on Pituitary and Parathyroid Glands
Abstract
:1. Introduction
2. Methods
2.1. Hyperparathyroidism
2.2. Primary HPT
2.3. Secondary (and Primary) HPT
2.4. Tertiary (and Primary) HPT
2.5. Pituitary Tumors
2.6. Non-Functioning Tumors and Mixed Groups
2.7. Prolactinomas (PRL-OMAS)
2.8. Somatotropinomas (GH-Omas)
2.9. Thyrotropinomas (TSH-Omas)
2.10. Corticotropinomas (ACTH-Omas—Cushing Disease)
2.11. Pitfalls in Diagnostics
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zanzonico, P. Physics Instrumentation, and Radiation Safety and Regulations. In Clinical Nuclear Medicine; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–48. [Google Scholar]
- Berger, A. How does it work? Positron emission tomography. BMJ 2003, 326, 1449. [Google Scholar] [CrossRef] [PubMed]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef] [PubMed]
- Koole, M.; Armstrong, I.; Krizsan, A.K.; Stromvall, A.; Visvikis, D.; Sattler, B.; Nekolla, S.G.; Dickson, J. EANM guidelines for PET-CT and PET-MR routine quality control. Z. Fur Med. Phys. 2022, 33, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, V.; McCook, B.M.; Torok, F.S. An Introduction to PET-CT Imaging. RadioGraphics 2004, 24, 523–543. [Google Scholar] [CrossRef]
- Broski, S.M.; Goenka, A.H.; Kemp, B.J.; Johnson, G.B. Clinical PET/MRI: 2018 Update. Am. J. Roentgenol. 2018, 211, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, L.; Wang, H.; Cai, H.; Xiang, Y.; Li, L. Effective radiation dose of 18F-FDG PET/CT: How much does diagnostic CT contribute? Radiat. Prot. Dosim. 2019, 187, 183–190. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Shin, H.J.; Kim, M.J.; Lee, M.J. Comparison of effective radiation doses from X-ray, CT, and PET/CT in pediatric patients with neuroblastoma using a dose monitoring program. Diagn. Interv. Radiol. 2016, 22, 390–394. [Google Scholar] [CrossRef]
- Conti, M.; Eriksson, L. Physics of pure and non-pure positron emitters for PET: A review and a discussion. EJNMMI Phys. 2016, 3, 1–17. [Google Scholar] [CrossRef]
- Martínez, Y.; Li, X.; Liu, G.; Bin, P.; Yan, W.; Más, D.; Valdivié, M.; Hu, C.-A.A.; Ren, W.; Yin, Y. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 2017, 49, 2091–2098. [Google Scholar] [CrossRef]
- Navik, U.; Sheth, V.G.; Khurana, A.; Jawalekar, S.S.; Allawadhi, P.; Gaddam, R.R.; Bhatti, J.S.; Tikoo, K. Methionine as a double-edged sword in health and disease: Current perspective and future challenges. Ageing Res. Rev. 2021, 72, 101500. [Google Scholar] [CrossRef]
- Harris, S.M.; Davis, J.C.; Snyder, S.E.; Butch, E.R.; Vāvere, A.L.; Kocak, M.; Shulkin, B.L. Evaluation of the Biodistribution of 11C-Methionine in Children and Young Adults. J. Nucl. Med. 2013, 54, 1902–1908. [Google Scholar] [CrossRef]
- Leung, K. l-[methyl-11C]Methionine. In Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (USA): Bethesda, MD, USA, 2005. Available online: https://www.ncbi.nlm.nih.gov/books/NBK23696/ (accessed on 21 December 2011).
- Miller, P.W.; Long, N.J.; Vilar, R.; Gee, A.D. Synthesis of 11C, 18F, 15O, and 13N Radiolabels for Positron Emission Tomography. Angew. Chem. Int. Ed. Engl. 2008, 47, 8998–9033. [Google Scholar] [CrossRef]
- Deloar, H.M.; Fujiwara, T.; Nakamura, T.; Itoh, M.; Imai, D.; Miyake, M.; Watanuki, S. Estimation of internal absorbed dose of l -[methyl- 11 C]methionine using whole-body positron emission tomography. Eur. J. Nucl. Med. 1998, 25, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej, M.; Bober, B.; Saracyn, M.; Kamiński, G. The role of PET/CT with 11C-methionine in contemporary nuclear medicine. Wiad Lek. 2020, 73, 2076–2079. [Google Scholar] [CrossRef]
- Jeltema, H.-R.; van Dijken, B.R.J.; Tamási, K.; Drost, G.; Heesters, M.A.A.M.; van der Hoorn, A.; Glaudemans, A.W.J.M.; van Dijk, J.M.C. 11C-Methionine uptake in meningiomas after stereotactic radiotherapy. Ann. Nucl. Med. 2024, 38, 596–606. [Google Scholar] [CrossRef]
- Chung, J.-K.; Kim, Y.; Kim, S.-K.; Lee, Y.; Paek, S.; Yeo, J.; Jeong, J.; Lee, D.; Jung, H.; Lee, M. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Ninatti, G.; Sollini, M.; Bono, B.; Gozzi, N.; Fedorov, D.; Antunovic, L.; Gelardi, F.; Navarria, P.; Politi, L.S.; Pessina, F.; et al. Preoperative [11C]methionine PET to personalize treatment decisions in patients with lower-grade gliomas. Neuro-Oncology 2022, 24, 1546–1556. [Google Scholar] [CrossRef] [PubMed]
- van Dijken, B.R.J.; Ankrah, A.O.; Stormezand, G.N.; Dierckx, R.; van Laar, P.J.; van der Hoorn, A. Prognostic value of 11C-methionine volume-based PET parameters in IDH wild type glioblastoma. PLoS ONE 2022, 17, e0264387. [Google Scholar] [CrossRef] [PubMed]
- Taniegra, E.D. Hyperparathyroidism. Am. Fam. Physician 2004, 69, 333–339. [Google Scholar] [PubMed]
- Minisola, S.; Arnold, A.; Belaya, Z.; Brandi, M.L.; Clarke, B.L.; Hannan, F.M.; Hofbauer, L.C.; Insogna, K.L.; Lacroix, A.; Liberman, U.; et al. Epidemiology, Pathophysiology, and Genetics of Primary Hyperparathyroidism. J. Bone Miner. Res. 2022, 37, 2315–2329. [Google Scholar] [CrossRef]
- Kowalski, G.J.; Buła, G.; Żądło, D.; Gawrychowska, A.; Gawrychowski, J. Primary hyperparathyroidism. Endokrynol. Polska 2020, 71, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Dream, S.; Kuo, L.E.M.; Kuo, J.H.; Sprague, S.M.D.; Nwariaku, F.E.; Wolf, M.M.; Olson, J.A.J.; Moe, S.M.; Lindeman, B.M.; Chen, H. The American Association of Endocrine Surgeons Guidelines for the Definitive Surgical Management of Secondary and Tertiary Renal Hyperparathyroidism. Ann. Surg. 2022, 276, e141–e176. [Google Scholar] [CrossRef]
- Stack, B.C. Secondary Hyperparathyroidism. Otolaryngol. Clin. N. Am. 2024, 57, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Cusano, N.E.; Cetani, F. Normocalcemic primary hyperparathyroidism. Arch. Bras. Endocrinol. Metabol. 2022, 66, 666–677. [Google Scholar] [CrossRef]
- Byrd, C.; Kashyap, S.; Kwartowitz, G. Parathyroid Cancer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Abboud, B.; Daher, R.; Boujaoude, J. Digestive manifestations of parathyroid disorders. World J. Gastroenterol. 2011, 17, 4063–4066. [Google Scholar] [CrossRef] [PubMed]
- Salhi, H.; Bouziane, T.; Maaroufi, M.; Alaoui, N.I.; El Ouahabi, H. Primary Hyperparathyroidism: Correlation between cervical ultrasound and MIBI scan. Ann. Afr. Med. 2022, 21, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Thoma, N.; Dietlein, M.; Moka, D.; Eschner, W.; Faust, M.; Schröder, W.; Von Hülst-Schlabrendorff, M.; Ehses, W.; Schicha, H. 99mTc-MIBI SPECT in primary hyperparathyroidism. Influence of concomitant vitamin D deficiency for visualization of parathyroid adenomas. Nuklearmedizin 2008, 47, 1–7. [Google Scholar] [PubMed]
- Zheng, Y.T.; Chi, X.H.; Qi, Y.S.; Jiang, Y.; Huang, K.; He, Y.; Wang, S.F.; Li, G.P. Diagnostic value and influencing factors of 99mTc-MIBI SPECT/CT imaging combined with semiquantitative analysis in hyperparathyroidism. J. South. Med. Univ. 2021, 41, 1577–1582. [Google Scholar] [CrossRef]
- Abati, A.; Skarulis, M.C.; Shawker, T.; Solomon, D. Ultrasound-guided fine-needle aspiration of parathyroid lesions: A morphological and immunocytochemical approach. Hum. Pathol. 1995, 26, 338–343. [Google Scholar] [CrossRef]
- Petranović Ovčariček, P.; Giovanella, L.; Carrió Gasset, I.; Hindié, E.; Huellner, M.W.; Luster, M.; Piccardo, A.; Weber, T.; Talbot, J.-N.; Verburg, F.A. The EANM practice guidelines for parathyroid imaging. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2801–2822. [Google Scholar] [CrossRef]
- Dudoignon, D.; Delbot, T.; Cottereau, A.S.; Dechmi, A.; Bienvenu, M.; Koumakis, E.; Cormier, C.; Gaujoux, S.; Groussin, L.; Cochand-Priollet, B.; et al. 18F-fluorocholine PET/CT and conventional imaging in primary hyperparathyroidism. Diagn. Interv. Imaging 2022, 103, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Mathey, C.; Keyzer, C.; Blocklet, D.; Van Simaeys, G.; Trotta, N.; Lacroix, S.; Corvilain, B.; Goldman, S.; Moreno-Reyes, R. 18F-fluorocholine PET/CT is more sensitive than 11C-methionine PET/CT for the localization of hyperfunctioning parathyroid tissue in primary hyperparathyroidism. J. Nucl. Med. 2022, 63, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, N.; Nakamoto, Y.; Kurihara, K.; Yasoda, A.; Kanamoto, N.; Miura, M.; Inagaki, N.; Togashi, K. A comparison between 11C-methionine PET/CT and MIBI SPECT/CT for localization of parathyroid adenomas/hyperplasia. Nucl. Med. Commun. 2015, 36, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Braeuning, U.; Pfannenberg, C.; Gallwitz, B.; Teichmann, R.; Mueller, M.; Dittmann, H.; Reimold, M.; Bares, R. 11C-methionine PET/CT after in conclusive 99mTc-MIBI-SPECT/CT for localisation of parathyroid adenomas in primary hyperparathyroidism. Nuklearmedizin 2015, 54, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Schalin-Jäntti, C.; Ryhänen, E.; Heiskanen, I.; Seppänen, M.; Arola, J.; Schildt, J.; Väisänen, M.; Nelimarkka, L.; Lisinen, I.; Aalto, V.; et al. Planar Scintigraphy with 123I/99mTc-Sestamibi, 99mTc-Sestamibi SPECT/CT, 11C-Methionine PET/CT, or Selective Venous Sampling Before Reoperation of Primary Hyperparathyroidism? J. Nucl. Med. 2013, 54, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Huynh, K.A.; MacFarlane, J.; Newman, C.; Gillett, D.; Das, T.; Scoffings, D.; Cheow, H.K.; Moyle, P.; Koulouri, O.; Harper, I.; et al. Diagnostic utility of 11C-methionine PET/CT in primary hyperparathyroidism in a UK cohort: A single-centre experience and literature review. Clin. Endocrinol. 2023, 99, 233–245. [Google Scholar] [CrossRef]
- Mathew, V.; Mallikarjuna, V.; Ayyar, V.; Bantwal, G.; Ganesh, V.; George, B.; Hemanth, G.; Vinotha, P. Five-year retrospective study on primary hyperparathyroidism in South India: Emerging roles of minimally invasive parathyroidectomy and preoperative localization with methionine positron emission tomography-computed tomography scan. Indian J. Endocrinol. Metab. 2018, 22, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Noltes, M.E.; Kruijff, S.; Appelman, A.P.A.; Jansen, L.; Zandee, W.T.; Links, T.P.; van Hemel, B.M.; Schouw, H.M.; Dierckx, R.A.J.O.; Francken, A.B.; et al. Head-to-head comparison of [11C]methionine PET, [11C]choline PET, and 4-dimensional CT as second-line scans for detection of parathyroid adenomas in primary hyperparathyroidism. Eur. J. Nucl. Med. 2024, 51, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Lenschow, C.; Wennmann, A.; Hendricks, A.; Germer, C.-T.; Fassnacht, M.; Buck, A.; Werner, R.A.; Plassmeier, L.; Schlegel, N. Questionable value of [99mTc]-sestamibi scintigraphy in patients with pHPT and negative ultrasound. Langenbeck’s Arch. Surg. 2022, 407, 3661–3669. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, S.; Gerke, O.; Bay, M.; Madsen, A.R.; Stilgren, L.; Ejersted, C.; Rewers, K.I.; Jakobsen, N.; Asmussen, J.T.; Braad, P.-E.; et al. Head-to-Head Comparison of Tc-99m-sestamibi SPECT/CT and C-11-L-Methionin PET/CT in Parathyroid Scanning Before Operation for Primary Hyperparathyroidism. Mol. Imaging Biol. 2023, 25, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Iversen, P.; Arveschoug, A.K.; Rejnmark, L.; Rolighed, L. C-11 methionine positron emission tomography scans improve the preoperative localization of pathologic parathyroid glands in primary hyperparathyroidism. Scand. J. Surg. 2022, 111, 36837. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rodríguez, I.; Martínez-Amador, N.; de Arcocha-Torres, M.; Quirce, R.; Ortega-Nava, F.; Ibáñez-Bravo, S.; Lavado-Pérez, C.; Bravo-Ferrer, Z.; Carril, J. Comparison of 99mTc-sestamibi and 11C-methionine PET/CT in the localization of parathyroid adenomas in primary hyperparathyroidism. Rev. Esp. De Med. Nucl. E Imagen Mol. 2014, 33, 93–98. [Google Scholar] [CrossRef]
- Hellman, P.; Ahlström, H.; Bergström, M.; Sundin, A.; Långström, B.; Westerberg, G.; Juhlin, C.; Akerström, G.; Rastad, J. Positron emission tomography with 11C-methionine in hyperparathyroidism. Surgery 1994, 116, 974–981. [Google Scholar] [PubMed]
- Pogosian, K.; Karonova, T.; Ryzhkova, D.; Yanevskaya, L.; Tsoy, U.; Yudina, O.; Berkovich, G.; Dalmatova, A.; Grineva, E. 11C-methionine PET/CT and conventional imaging techniques in the diagnosis of primary hyperparathyroidism. Quant. Imaging Med. Surg. 2023, 13, 2352–2363. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Cheon, M. Role of 11C-Methionine PET/CT in 99mTc-Sestamibi-Negative Parathyroid Adenoma: A Case Report. Diagnostics 2021, 11, 831. [Google Scholar] [CrossRef]
- Damien, M.; Rodriguez, A.; Kleynen, P.; Dequanter, D.; Bouland, C. An Unusual Case of Primary Hyperparathyroidism: Case Report of a Bifocal Intrathyroidal Parathyroid Carcinoma. Ear Nose Throat. J. 2023, 102, NP5–NP7. [Google Scholar] [CrossRef]
- Rubello, D.; Fanti, S.; Nanni, C.; Farsad, M.; Castellucci, P.; Boschi, S.; Franchi, R.; Mariani, G.; Fig, L.M.; Gross, M.D. 11C-methionine PET/CT in 99mTc-sestamibi-negative hyperparathyroidism in patients with renal failure on chronic haemodialysis. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Sundin, A.; Johansson, C.; Hellman, P.; Bergstrom, M.; Ahlstrom, H.; Jacobson, G.B.; Langstrom, B.; Rastadet, J. PET and parathyroid L-[carbon-11]methionine accumulation in hyperparathyroidism. J. Nucl. Med. 1996, 37, 1766–1770. [Google Scholar] [PubMed]
- Tang, B.; Moreno-Reyes, R.; Blocklet, D.; Corvilain, B.; Cappello, M.; Delpierre, I.; Devuyst, F.; Van Simaeys, G.; Goldman, S. Accurate pre-operative localization of pathological parathyroid glands using 11C-methionine PET/CT. Contrast Media Mol. Imaging 2008, 3, 157–163. [Google Scholar] [CrossRef]
- Otto, D.; Boerner, A.R.; Hofmann, M.; Brunkhorst, T.; Meyer, G.J.; Petrich, T.; Scheumann, G.F.; Knapp, W.H. Pre-operative localisation of hyperfunctional parathyroid tissue with 11C-methionine PET. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Lenschow, C.; Gassmann, P.; Wenning, C.; Senninger, N.; Colombo-Benkmann, M. Preoperative 11C-Methionine PET/CT Enables Focussed Parathyroidectomy in MIBI-SPECT Negative Parathyroid Adenoma. World J. Surg. 2015, 39, 1750–1757. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Wong, J.; Smellie, W.; Young, A.; Maisey, M.; Fogelman, I. [11C]Methionine positron emission tomography for patients with persistent or recurrent hyperparathyroidism after surgery. Eur. J. Endocrinol. 1998, 139, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej, M.; Saracyn, M.; Lubas, A.; Dziuk, M.; Durma, A.D.; Smoszna, J.; Zelichowski, G.; Niemczyk, S.; Kamiński, G. Usefulness of PET/CT with Carbon-11-Labeled Methionine in the Diagnosis of Tertiary Hyperparathyroidism. Nutrients 2022, 15, 188. [Google Scholar] [CrossRef]
- Asa, S.L.; Mete, O.; Perry, A.; Osamura, R.Y. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr. Pathol. 2022, 33, 6–26. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Baussart, B.; Assié, G.; Raverot, G.; Roncaroli, F. The World Health Organization classifications of pituitary neuroendocrine tumours: A clinico-pathological appraisal. Endocr. Relat. Cancer 2023, 30, 21. [Google Scholar] [CrossRef] [PubMed]
- Tritos, N.A.; Miller, K.K. Diagnosis and Management of Pituitary Adenomas: A Review. JAMA 2023, 329, 1386–1398. [Google Scholar] [CrossRef] [PubMed]
- Bolanowski, M.; Ruchała, M.; Zgliczyński, W.; Kos-Kudła, B.; Hubalewska-Dydejczyk, A.; Lewiński, A. Diagnostics and treatment of acromegaly—Updated recommendations of the Polish Society of Endocrinology. Endokrynol. Pol. 2019, 70, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, G.; Podgórski, J.K.; Warczyńska, A.; Koziarski, A.; Zgliczyński, W. Tyreotropinoma--gruczolak przysadki wydzielajacy TSH [Thyrotropin--TSH secreting pituitary tumor]. Przegl Lek. 2002, 59, 1018–1023. [Google Scholar] [PubMed]
- Balomenaki, M.; Margaritopoulos, D.; Vassiliadi, D.A.; Tsagarakis, S. Diagnostic workup of Cushing’s syndrome. J. Neuroendocr. 2022, 34, e13111. [Google Scholar] [CrossRef] [PubMed]
- Yatavelli, R.K.R.; Bhusal, K. Prolactinoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Demura, R.; Kubo, O.; Demura, H.; Shizume, K. FSH and LH Secreting Pituitary Adenoma. J. Clin. Endocrinol. Metab. 1977, 45, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Alnasrallah, N.; Aljenaee, K.; AlMurshed, M.; Hajji, S. Clinically functioning gonadotropin-secreting pituitary adenoma. Endocrinol. Diabetes Metab. Case Rep. 2024, 2024, 322. [Google Scholar] [CrossRef]
- Waśko, R. Zmiany stezenia podjednostki alfa hormonów glikoproteidowych w surowicy chorych z guzami przysadki typu "alfoma" w przebiegu testów stymulacji LH-RH + TRH [Changes in serum levels of glycoprotein hormone alpha subunits in patients with alphoma-type pituitary tumors during LHRH and TRH stimulation tests]. Endokrynol. Pol. 1989, 40, 1–8. [Google Scholar] [PubMed]
- Daud, S.; Hamrahian, A.H.; Weil, R.J.; Hamaty, M.; Prayson, R.A.; Olansky, L. Acromegaly with negative pituitary MRI and no evidence of ectopic source: The role of transphenoidal pituitary exploration? Pituitary 2011, 14, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Tatsi, C.; Bompou, M.E.; Flippo, C.; Keil, M.; Chittiboina, P.; Stratakis, C.A. Paediatric patients with Cushing disease and negative pituitary MRI have a higher risk of nonremission after transsphenoidal surgery. Clin. Endocrinol. 2021, 95, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Bergström, M.; Muhr, C.; Lundberg, P.O.; Bergström, K.; Lundqvist, H.; Antoni, G.; Fasth, K.-J.; Långström, B. Amino Acid Distribution and Metabolism in Pituitary Adenomas Using Positron Emission Tomography with D-[11C]Methionine and L-[11C]Methionine. J. Comput. Assist. Tomogr. 1987, 11, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Tomura, N.; Saginoya, T.; Mizuno, Y.; Goto, H. Accumulation of 11C-methionine in the normal pituitary gland on 11C-methionine PET. Acta Radiol. 2017, 58, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.N.T.; Levivier, M.; Heureux, M.; Wikler, D.; Massager, N.; Devriendt, D.; David, P.; Dumarey, N.; Corvilain, B.; Goldman, S. 11C-methionine PET for the diagnosis and management of recurrent pituitary adenomas. Eur. J. Nucl. Med. Mol. Imaging 2006, 33, 169–178. [Google Scholar] [CrossRef]
- Bashari, W.A.; van der Meulen, M.; MacFarlane, J.; Gillett, D.; Senanayake, R.; Serban, L.; Powlson, A.S.; Brooke, A.M.; Scoffings, D.J.; Jones, J.; et al. 11C-methionine PET aids localization of microprolactinomas in patients with intolerance or resistance to dopamine agonist therapy. Pituitary 2022, 25, 573–586. [Google Scholar] [CrossRef]
- Haberbosch, L.; MacFarlane, J.; Koulouri, O.; Gillett, D.; Powlson, A.S.; Oddy, S.; Halsall, D.J.; A Huynh, K.; Jones, J.; Cheow, H.K.; et al. Real-world experience with 11C-methionine positron emission tomography in the management of acromegaly. Eur. J. Endocrinol. 2024, 190, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Koulouri, O.; Kandasamy, N.; Hoole, A.C.; Gillett, D.; Heard, S.; Powlson, A.S.; O’donovan, D.G.; Annamalai, A.K.; Simpson, H.L.; A Akker, S.; et al. Successful treatment of residual pituitary adenoma in persistent acromegaly following localisation by 11C-methionine PET co-registered with MRI. Eur. J. Endocrinol. 2016, 175, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Barcelo, S.; Gutierrez-Cardo, A.; Dominguez-Paez, M.; Medina-Imbroda, J.; Romero-Moreno, L.; Arraez-Sanchez, M. Clinical Usefulness of Coregistered 11C-Methionine Positron Emission Tomography/3-T Magnetic Resonance Imaging at the Follow-Up of Acromegaly. World Neurosurg. 2014, 82, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Gillett, D.; Senanayake, R.; MacFarlane, J.; van der Meulen, M.; Koulouri, O.; Powlson, A.S.; Crawford, R.; Gillett, B.; Bird, N.; Heard, S.; et al. Localization of TSH-secreting pituitary adenoma using 11C-methionine image subtraction. EJNMMI Res. 2022, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ishida, A.; Kaneko, K.; Minamimoto, R.; Hotta, M.; Inoshita, N.; Takano, K.; Yamada, S. Clinical decision-making based on 11C-methionine PET in recurrent Cushing’s disease with equivocal MRI findings. J. Neurosurg. 2023, 139, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Berkmann, S.; Roethlisberger, M.; Mueller, B.; Christ-Crain, M.; Mariani, L.; Nitzsche, E.; Juengling, F. Selective resection of cushing microadenoma guided by preoperative hybrid 18-fluoroethyl-L-tyrosine and 11-C-methionine PET/MRI. Pituitary 2021, 24, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Koulouri, O.; Steuwe, A.; Gillett, D.; Hoole, A.C.; Powlson, A.S.; A Donnelly, N.; Burnet, N.G.; Antoun, N.M.; Cheow, H.; Mannion, R.J.; et al. A role for 11C-methionine PET imaging in ACTH-dependent Cushing’s syndrome. Eur. J. Endocrinol. 2015, 173, M107–M120. [Google Scholar] [CrossRef]
- Feng, Z.; He, D.; Mao, Z.; Wang, Z.; Zhu, Y.; Zhang, X.; Wang, H. Utility of 11C-Methionine and 18F-FDG PET/CT in Patients with Functioning Pituitary Adenomas. Clin. Nucl. Med. 2016, 41, e130–e134. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Abe, T.; Watanabe, K. Usefulness of composite methionine–positron emission tomography/3.0-tesla magnetic resonance imaging to detect the localization and extent of early-stage Cushing adenoma. J. Neurosurg. 2010, 112, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Lurquin, F.; Constantinescu, S.M.; Furnica, R.M.; Duprez, T.; Raftopoulos, C.; Daoud, L.; Lammens, M.; Maiter, D. Ectopic sphenoidal ACTH-secreting adenoma revealed by 11C Methionine PET scan: Case report. BMC Endocr. Disord. 2023, 23, 1–6. [Google Scholar] [CrossRef]
- Adler, L.P.; Akhrass, R.; Ma, D.; Bloom, A.D. False-positive parathyroid scan leading to sternotomy: Incidental detection of a thymoma by C-11 methionine positron emission tomography. Surgery 1997, 122, 116–119. [Google Scholar] [CrossRef]
- Tripathi, M.; Mahajan, S.; Jaimini, A.; Dinesh, A. False positive localisation of C-11 methionine in a colloid nodule. Indian J. Nucl. Med. 2011, 26, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Noltes, M.E.; Coester, A.M.; van der Horst-Schrivers, A.N.A.; Dorgelo, B.; Jansen, L.; Noordzij, W.; Lemstra, C.; Brouwers, A.H.; Kruijff, S. Localization of parathyroid adenomas using 11C-methionine pet after prior inconclusive imaging. Langenbeck’s Arch. Surg. 2017, 402, 1109–1117. [Google Scholar] [CrossRef]
- Valizadeh, M.; Ahmadi, A.R.; Ebadinejad, A.; Rahmani, F.; Abiri, B. Diagnostic accuracy of bilateral inferior petrosal sinus sampling using desmopressin or corticotropic- releasing hormone in ACTH-dependent Cushing’s syndrome: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2022, 23, 881–892. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.-J.; Shen, C.-T.; Song, H.-J.; Qiu, Z.-L.; Luo, Q.-Y. Comparison of SPET/CT, SPET and planar imaging using Tc-99m-MIBI as independent techniques to support minimally invasive parathyroidectomy in primary hyperparathyroidism: A meta-analysis. Hell J. Nucl. Med. 2015, 18, 127–135. [Google Scholar] [PubMed]
- Caldarella, C.; Treglia, G.; Pontecorvi, A.; Giordano, A. Diagnostic performance of planar scintigraphy using 99mTc-MIBI in patients with secondary hyperparathyroidism: A meta-analysis. Ann. Nucl. Med. 2012, 26, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Friedman, K.; Somervell, H.; Patel, P.; Melton, G.B.; Garrett-Mayer, E.; Dackiw, A.P.; Civelek, A.C.; Zeiger, M.A. Effect of calcium channel blockers on the sensitivity of preoperative 99mTc-MIBI SPECT for hyperparathyroidism. Surgery 2004, 136, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durma, A.D.; Saracyn, M.; Kołodziej, M.; Jóźwik-Plebanek, K.; Kamiński, G. The Use of [11C]C-Methionine in Diagnostics of Endocrine Disorders with Focus on Pituitary and Parathyroid Glands. Pharmaceuticals 2025, 18, 229. https://doi.org/10.3390/ph18020229
Durma AD, Saracyn M, Kołodziej M, Jóźwik-Plebanek K, Kamiński G. The Use of [11C]C-Methionine in Diagnostics of Endocrine Disorders with Focus on Pituitary and Parathyroid Glands. Pharmaceuticals. 2025; 18(2):229. https://doi.org/10.3390/ph18020229
Chicago/Turabian StyleDurma, Adam Daniel, Marek Saracyn, Maciej Kołodziej, Katarzyna Jóźwik-Plebanek, and Grzegorz Kamiński. 2025. "The Use of [11C]C-Methionine in Diagnostics of Endocrine Disorders with Focus on Pituitary and Parathyroid Glands" Pharmaceuticals 18, no. 2: 229. https://doi.org/10.3390/ph18020229
APA StyleDurma, A. D., Saracyn, M., Kołodziej, M., Jóźwik-Plebanek, K., & Kamiński, G. (2025). The Use of [11C]C-Methionine in Diagnostics of Endocrine Disorders with Focus on Pituitary and Parathyroid Glands. Pharmaceuticals, 18(2), 229. https://doi.org/10.3390/ph18020229