Comparative Efficacy and Safety of JAK Inhibitors in the Management of Rheumatoid Arthritis: A Network Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Study Characteristics
2.2. Subject Characteristics
2.3. Risk of Bias Assessment
2.4. Networks
2.5. Efficacy Outcomes
2.5.1. ACR20 Response
2.5.2. ACR50 Response
2.5.3. ACR70 Response
2.5.4. HAQ-DI Score
2.5.5. Incidence of Adverse Drug Reactions (ADRs)
2.6. Incidence of Serious ADRs
2.7. Incidence of Infection and Other Risks
2.7.1. Infection Risk
2.7.2. Herpes Zoster Risk
2.7.3. Thrombotic Risk
2.7.4. Malignancy Risk
2.7.5. Major Adverse Cardiovascular Events (MACE) Risk
2.7.6. Hypercholesterolemia Risk
2.8. Discontinuation Due to ADRs
2.9. Incidence of Death
2.10. Publication Bias Assessment
3. Discussion
4. Materials and Methods
4.1. Eligibility Criteria
4.2. Search Methods
4.3. Study Selection
4.4. Data Extraction and Management
4.5. Assessment of Risk of Bias in Included Studies
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Angum, F.; Khan, T.; Kaler, J.; Siddiqui, L.; Hussain, A. The Prevalence of Autoimmune Disorders in Women: A Narrative Review. Cureus 2020, 12, e8094. [Google Scholar] [CrossRef]
- Batko, B.; Rolska-Wójcik, P.; Władysiuk, M. Indirect Costs of Rheumatoid Arthritis Depending on Type of Treatment-A Systematic Literature Review. Int. J. Environ. Res. Public Health 2019, 16, 2966. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Banik, S. Pharmacotherapy options in rheumatoid arthritis. Clin. Med. Insights Arthritis Musculoskelet Disord. 2013, 6, 35–43. [Google Scholar] [CrossRef]
- Curtis, J.R.; Singh, J.A. Use of biologics in rheumatoid arthritis: Current and emerging paradigms of care. Clin. Ther. 2011, 33, 679–707. [Google Scholar] [CrossRef] [PubMed]
- Harrington, R.; Al Nokhatha, S.A.; Conway, R. JAK Inhibitors in Rheumatoid Arthritis: An Evidence-Based Review on the Emerging Clinical Data. J. Inflamm. Res. 2020, 13, 519–531. [Google Scholar] [CrossRef]
- Soendergaard, M.; Thomsen, T.; Stengaard-Pedersen, K.; Johansen, M.B.; Nielsen, H.; Hetland, M.L.; Ostergaard, M. A nationwide cohort study of TNF inhibitor therapy and cancer risk in rheumatoid arthritis. Curr. Med. Chem. 2018, 25, 1163–1170. [Google Scholar]
- Wang, F.; Tang, X.; Zhu, M.; Mao, H.; Wan, H.; Luo, F. Efficacy and Safety of JAK Inhibitors for Rheumatoid Arthritis: A Meta-Analysis. J. Clin. Med. 2022, 11, 4459. [Google Scholar] [CrossRef]
- Schwartz, D.M.; Kanno, Y.; Villarino, A.; Ward, M.; Gadina, M.; O’Shea, J.J. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 2017, 17, 78. [Google Scholar] [CrossRef]
- Radu, A.F.; Bungau, S.G. Management of Rheumatoid Arthritis: An Overview. Cells 2021, 10, 2857. [Google Scholar] [CrossRef]
- Rouse, B.; Chaimani, A.; Li, T. Network meta-analysis: An introduction for clinicians. Intern. Emerg. Med. 2017, 12, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Biehl, A.; Gadina, M.; Hasni, S.; Schwartz, D.M. JAK-STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs 2017, 77, 521–546. [Google Scholar] [CrossRef]
- Kremer, J.M.; Bloom, B.J.; Breedveld, F.C.; Coombs, J.H.; Fletcher, M.P.; Gruben, D.; Krishnaswami, S.; Burgos-Vargas, R.; Wilkinson, B.; Zerbini, C.A.; et al. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: Results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum. 2009, 60, 1895–1905. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Suzuki, M.; Nakamura, H.; Toyoizumi, S.; Zwillich, S.H.; Investigators, T.S. Phase II study of tofacitinib (CP-690,550) combined with methotrexate in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Care Res. 2011, 63, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- van Vollenhoven, R.F.; Fleischmann, R.; Cohen, S.; Lee, E.B.; García Meijide, J.A.; Wagner, S.; Forejtova, S.; Zwillich, S.H.; Gruben, D.; Koncz, T.; et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Engl. J. Med. 2012, 367, 508–519. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, R.; Cutolo, M.; Genovese, M.C.; Lee, E.B.; Kanik, K.S.; Sadis, S.; Connell, C.A.; Gruben, D.; Krishnaswami, S.; Wallenstein, G.; et al. Phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) or adalimumab monotherapy versus placebo in patients with active rheumatoid arthritis with an inadequate response to disease-modifying antirheumatic drugs. Arthritis Rheum. 2012, 64, 617–629. [Google Scholar] [CrossRef]
- Fleischmann, R.; Kremer, J.; Cush, J.; Schulze-Koops, H.; Connell, C.A.; Bradley, J.D.; Gruben, D.; Wallenstein, G.V.; Zwillich, S.H.; Kanik, K.S.; et al. Placebo-Controlled Trial of Tofacitinib Monotherapy in Rheumatoid Arthritis. N. Engl. J. Med. 2012, 367, 495–507. [Google Scholar] [CrossRef]
- Kremer, J.M.; Cohen, S.; Wilkinson, B.E.; Connell, C.A.; French, J.L.; Gomez-Reino, J.; Gruben, D.; Kanik, K.S.; Krishnaswami, S.; Pascual-Ramos, V.; et al. A phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) versus placebo in combination with background methotrexate in patients with active rheumatoid arthritis and an inadequate response to methotrexate alone. Arthritis Rheum. 2012, 64, 970–981. [Google Scholar] [CrossRef]
- Burmester, G.R.; Blanco, R.; Charles-Schoeman, C.; Wollenhaupt, J.; Zerbini, C.; Benda, B.; Gruben, D.; Wallenstein, G.; Krishnaswami, S.; Zwillich, S.H.; et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: A randomised phase 3 trial. Lancet 2013, 381, 451–460. [Google Scholar] [CrossRef]
- Kremer, J.; Li, Z.G.; Hall, S.; Fleischmann, R.; Genovese, M.; Martin-Mola, E.; Isaacs, J.D.; Gruben, D.; Wallenstein, G.; Krishnaswami, S.; et al. Tofacitinib in Combination with Nonbiologic Disease-Modifying Antirheumatic Drugs in Patients With Active Rheumatoid Arthritis. Ann. Intern. Med. 2013, 159, 253–261. [Google Scholar] [CrossRef]
- van der Heijde, D.; Tanaka, Y.; Fleischmann, R.; Keystone, E.; Kremer, J.; Zerbini, C.; Cardiel, M.H.; Cohen, S.; Nash, P.; Song, Y.W.; et al. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: Twelve-month data from a twenty-four–month phase III randomized radiographic study. Arthritis Rheum. 2013, 65, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Boyle, D.L.; Soma, K.; Hodge, J.; Kavanaugh, A.; Mandel, D.; Mease, P.; Shurmur, R.; Singhal, A.K.; Wei, N.; Rosengren, S.; et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann. Rheum. Dis. 2015, 74, 1311–1316. [Google Scholar] [CrossRef]
- Tanaka, Y.; Takeuchi, T.; Yamanaka, H.; Nakamura, H.; Toyoizumi, S.; Zwillich, S. Efficacy and safety of tofacitinib as monotherapy in Japanese patients with active rheumatoid arthritis: A 12-week, randomized, phase 2 study. Mod. Rheumatol. 2015, 25, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Keystone, E.C.; Taylor, P.C.; Drescher, E.; Schlichting, D.E.; Beattie, S.D.; Berclaz, P.Y.; Lee, C.H.; Fidelus-Gort, R.K.; Luchi, M.E.; Rooney, T.P.; et al. Safety and efficacy of baricitinib at 24 weeks in patients with rheumatoid arthritis who have had an inadequate response to methotrexate. Ann. Rheum. Dis. 2015, 74, 333–340. [Google Scholar] [CrossRef]
- Tanaka, Y.; Emoto, K.; Cai, Z.; Aoki, T.; Schlichting, D.; Rooney, T.; Macias, W. Efficacy and Safety of Baricitinib in Japanese Patients with Active Rheumatoid Arthritis Receiving Background Methotrexate Therapy: A 12-week, Double-blind, Randomized Placebo-controlled Study. J. Rheumatol. 2016, 43, 504–511. [Google Scholar] [CrossRef]
- INCB028050 Compared to Background Therapy in Patients with Active Rheumatoid Arthritis (RA) with Inadequate Response to Disease Modifying Anti-Rheumatic Drugs. Available online: https://ClinicalTrials.gov/show/NCT00902486 (accessed on 22 September 2024).
- Genovese, M.C.; Kremer, J.; Zamani, O.; Ludivico, C.; Krogulec, M.; Xie, L.; Beattie, S.D.; Koch, A.E.; Cardillo, T.E.; Rooney, T.P.; et al. Baricitinib in Patients with Refractory Rheumatoid Arthritis. N. Engl. J. Med. 2016, 374, 1243–1252. [Google Scholar] [CrossRef]
- Taylor, P.C.; Keystone, E.C.; van der Heijde, D.; Weinblatt, M.E.; Del Carmen Morales, L.; Reyes Gonzaga, J.; Yakushin, S.; Ishii, T.; Emoto, K.; Beattie, S.; et al. Baricitinib versus Placebo or Adalimumab in Rheumatoid Arthritis. N. Engl. J. Med. 2017, 376, 652–662. [Google Scholar] [CrossRef]
- Dougados, M.; van der Heijde, D.; Chen, Y.C.; Greenwald, M.; Drescher, E.; Liu, J.; Beattie, S.; Witt, S.; de la Torre, I.; Gaich, C.; et al. Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDs: Results from the RA-BUILD study. Ann. Rheum. Dis. 2017, 76, 88–95. [Google Scholar] [CrossRef]
- Li, Z.; Hu, J.; Bao, C.; Li, X.; Li, X.; Xu, J.; Spindler, A.J.; Zhang, X.; Xu, J.; He, D.; et al. Baricitinib in patients with rheumatoid arthritis with inadequate response to methotrexate: Results from a phase 3 study. Clin. Exp. Rheumatol. 2020, 38, 732–741. Available online: https://pubmed.ncbi.nlm.nih.gov/32452344/ (accessed on 1 January 2023). [PubMed]
- Kremer, J.M.; Emery, P.; Camp, H.S.; Friedman, A.; Wang, L.; Othman, A.A.; Khan, N.; Pangan, A.L.; Jungerwirth, S.; Keystone, E.C. A Phase IIb Study of ABT-494, a Selective JAK-1 Inhibitor, in Patients With Rheumatoid Arthritis and an Inadequate Response to Anti–Tumor Necrosis Factor Therapy. Arthritis Rheumatol. 2016, 68, 2867–2877. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M.C.; Smolen, J.S.; Weinblatt, M.E.; Burmester, G.R.; Meerwein, S.; Camp, H.S.; Wang, L.; Othman, A.A.; Khan, N.; Pangan, A.L.; et al. Efficacy and Safety of ABT-494, a Selective JAK-1 Inhibitor, in a Phase IIb Study in Patients With Rheumatoid Arthritis and an Inadequate Response to Methotrexate. Arthritis Rheumatol. 2016, 68, 2857–2866. [Google Scholar] [CrossRef] [PubMed]
- Burmester, G.R.; Kremer, J.M.; Van den Bosch, F.; Kivitz, A.; Bessette, L.; Li, Y.; Zhou, Y.; Othman, A.A.; Pangan, A.L.; Camp, H.S. Safety and efficacy of upadacitinib in patients with rheumatoid arthritis and inadequate response to conventional synthetic disease-modifying anti-rheumatic drugs (SELECT-NEXT): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2018, 391, 2503–2512. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M.C.; Fleischmann, R.; Combe, B.; Hall, S.; Rubbert-Roth, A.; Zhang, Y.; Zhou, Y.; Mohamed, M.F.; Meerwein, S.; Pangan, A.L. Safety and efficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): A double-blind, randomised controlled phase 3 trial. Lancet 2018, 391, 2513–2524. [Google Scholar] [CrossRef]
- Fleischmann, R.; Pangan, A.L.; Song, I.H.; Mysler, E.; Bessette, L.; Peterfy, C.; Durez, P.; Ostor, A.J.; Li, Y.; Zhou, Y.; et al. Upadacitinib Versus Placebo or Adalimumab in Patients With Rheumatoid Arthritis and an Inadequate Response to Methotrexate: Results of a Phase III, Double-Blind, Randomized Controlled Trial. Arthritis Rheumatol. 2019, 71, 1788–1800. [Google Scholar] [CrossRef]
- Kameda, H.; Takeuchi, T.; Yamaoka, K.; Oribe, M.; Kawano, M.; Zhou, Y.; Othman, A.A.; Pangan, A.L.; Kitamura, S.; Meerwein, S.; et al. Efficacy and safety of upadacitinib in Japanese patients with rheumatoid arthritis (SELECT-SUNRISE): A placebo-controlled phase IIb/III study. Rheumatology 2020, 59, 3303–3313. [Google Scholar] [CrossRef] [PubMed]
- A Study with Upadacitinib (ABT-494) in Subjects from China and Selected Countries with Moderately to Severely Active Rheumatoid Arthritis Who Have Had an Inadequate Response to Conventional Synthetic Disease-Modifying Anti-Rheumatic Drugs (csDMARDs). Available online: https://ClinicalTrials.gov/show/NCT02955212 (accessed on 22 September 2024).
- Fleischmann, R.; Pangan, A.L.; Song, I.H.; Mysler, E.; Bessette, L.; Peterfy, C.; Durez, P.; Ostor, A.J.; Li, Y.; Zhou, Y.; et al. A Randomized, Double-Blind, Placebo-Controlled, Twelve-Week, Dose-Ranging Study of Decernotinib, an Oral Selective JAK-3 Inhibitor, as Monotherapy in Patients with Active Rheumatoid Arthritis. Arthritis Rheumatol. 2015, 67, 334–343. [Google Scholar] [CrossRef]
- Genovese, M.C.; Yang, F.; Østergaard, M.; Kinnman, N. Efficacy of VX-509 (decernotinib) in combination with a disease-modifying antirheumatic drug in patients with rheumatoid arthritis: Clinical and MRI findings. Ann. Rheum. Dis. 2016, 75, 1979–1983. [Google Scholar] [CrossRef]
- Genovese, M.C.; van Vollenhoven, R.F.; Pacheco-Tena, C.; Zhang, Y.; Kinnman, N. VX-509 (Decernotinib), an Oral Selective JAK-3 Inhibitor, in Combination With Methotrexate in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2016, 68, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Tanaka, Y.; Iwasaki, M.; Ishikura, H.; Saeki, S.; Kaneko, Y. Efficacy and safety of the oral Janus kinase inhibitor peficitinib (ASP015K) monotherapy in patients with moderate to severe rheumatoid arthritis in Japan: A 12-week, randomised, double-blind, placebo-controlled phase IIb study. Ann. Rheum. Dis. 2016, 75, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M.C.; Greenwald, M.; Codding, C.; Zubrzycka-Sienkiewicz, A.; Kivitz, A.J.; Wang, A.; Shay, K.; Wang, X.; Garg, J.P.; Cardiel, M.H. Peficitinib, a JAK Inhibitor, in Combination with Limited Conventional Synthetic Disease-Modifying Antirheumatic Drugs in the Treatment of Moderate-to-Severe Rheumatoid Arthritis. Arthritis Rheumatol. 2017, 69, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Kivitz, A.J.; Gutierrez-Ureña, S.R.; Poiley, J.; Genovese, M.C.; Kristy, R.; Shay, K.; Wang, X.; Garg, J.P.; Zubrzycka-Sienkiewicz, A. Peficitinib, a JAK Inhibitor, in the Treatment of Moderate-to-Severe Rheumatoid Arthritis in Patients with an Inadequate Response to Methotrexate. Arthritis Rheumatol. 2017, 69, 709–719. [Google Scholar] [CrossRef]
- Takeuchi, T.; Tanaka, Y.; Tanaka, S.; Kawakami, A.; Iwasaki, M.; Katayama, K.; Rokuda, M.; Izutsu, H.; Ushijima, S.; Kaneko, Y.; et al. Efficacy and safety of peficitinib (ASP015K) in patients with rheumatoid arthritis and an inadequate response to methotrexate: Results of a phase III randomised, double-blind, placebo-controlled trial (RAJ4) in Japan. Ann. Rheum. Dis. 2019, 78, 1305–1319. [Google Scholar] [CrossRef]
- Tanaka, Y.; Takeuchi, T.; Tanaka, S.; Kawakami, A.; Iwasaki, M.; Song, Y.W.; Chen, Y.H.; Wei, J.C.; Lee, S.H.; Rokuda, M.; et al. Efficacy and safety of peficitinib (ASP015K) in patients with rheumatoid arthritis and an inadequate response to conventional DMARDs: A randomised, double-blind, placebo-controlled phase III trial (RAJ3). Ann. Rheum. Dis. 2019, 78, 1320–1332. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, A.; Kremer, J.; Ponce, L.; Cseuz, R.; Reshetko, O.V.; Stanislavchuk, M.; Greenwald, M.; Van der Aa, A.; Vanhoutte, F.; Tasset, C.; et al. Filgotinib (GLPG0634/GS-6034), an oral selective JAK1 inhibitor, is effective as monotherapy in patients with active rheumatoid arthritis: Results from a randomised, dose-finding study (DARWIN 2). Ann. Rheum. Dis. 2017, 76, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Westhovens, R.; Taylor, P.C.; Alten, R.; Pavlova, D.; Enríquez-Sosa, F.; Mazur, M.; Greenwald, M.; Van der Aa, A.; Vanhoutte, F.; Tasset, C.; et al. Filgotinib (GLPG0634/GS-6034), an oral JAK1 selective inhibitor, is effective in combination with methotrexate (MTX) in patients with active rheumatoid arthritis and insufficient response to MTX: Results from a randomised, dose-finding study (DARWIN 1). Ann. Rheum. Dis. 2017, 76, 998–1008. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, F.; Mazur, M.; Voloshyn, O.; Stanislavchuk, M.; Van der Aa, A.; Namour, F.; Galien, R.; Meuleners, L.; van ‘t Klooster, G. Efficacy, Safety, Pharmacokinetics, and Pharmacodynamics of Filgotinib, a Selective JAK-1 Inhibitor, After Short-Term Treatment of Rheumatoid Arthritis: Results of Two Randomized Phase IIa Trials. Arthritis Rheumatol. 2017, 69, 1949–1959. [Google Scholar] [CrossRef]
- Genovese, M.C.; Kalunian, K.; Gottenberg, J.E.; Mozaffarian, N.; Bartok, B.; Matzkies, F.; Gao, J.; Guo, Y.; Tasset, C.; Sundy, J.S.; et al. Effect of Filgotinib vs Placebo on Clinical Response in Patients With Moderate to Severe Rheumatoid Arthritis Refractory to Disease-Modifying Antirheumatic Drug Therapy: The FINCH 2 Randomized Clinical Trial. JAMA 2019, 322, 315–325. [Google Scholar] [CrossRef]
- Westhovens, R.; Rigby, W.F.C.; van der Heijde, D.; Ching, D.W.T.; Stohl, W.; Kay, J.; Chopra, A.; Bartok, B.; Matzkies, F.; Yin, Z.; et al. Filgotinib in combination with methotrexate or as monotherapy versus methotrexate monotherapy in patients with active rheumatoid arthritis and limited or no prior exposure to methotrexate: The phase 3, randomised controlled FINCH 3 trial. Ann. Rheum. Dis. 2021, 80, 727–738. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency: EMEA/H/C/005113-2020-Summary of Product Characteristics [Updated 2020]. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/jyseleca (accessed on 22 September 2024).
- Pope, J.; Sawant, R.; Tundia, N.; Du, E.X.; Qi, C.Z.; Song, Y.; Tang, P.; Betts, K.A. Comparative Efficacy of JAK Inhibitors for Moderate-To-Severe Rheumatoid Arthritis: A Network Meta-Analysis. Adv. Ther. 2020, 37, 2356–2372. [Google Scholar] [CrossRef]
- Winthrop, K.L. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol. 2017, 13, 234–243. [Google Scholar] [CrossRef]
- Maneiro, J.R.; Souto, A.; Gomez-Reino, J.J. Risks of malignancies related to tofacitinib and biological drugs in rheumatoid arthritis: Systematic review, meta-analysis, and network meta-analysis. Semin. Arthritis Rheum. 2017, 47, 149–156. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
Author Name | Trial Registration Number | Country | Duration of Disease | Number of Groups | Number Randomized | Mean Age (Years) | Sex (Male%) | Race (%) | Intervention (mg) |
---|---|---|---|---|---|---|---|---|---|
Kremer J.M. et al., 2009 [12] | NCT00147498 | Multi | 9.6 | 4 | 264 | 50.5 | 56.5 | White > 50% | Tofacitinib *−5, 15, 30 |
Tanaka Y. et al., 2011 [13] | NCT00603512 | Japan | 7.64 | 5 | 140 | 51.3 | 86.18 | Tofacitinib *−1, 3, 5, 10 | |
van Vollenhoven R.F. et al., 2012 [14] | NCT00853385 | Multi | 7.8 | 3 | 717 | 53 | 20 | White > 50% | Tofacitinib *−5, 10 |
Fleischmann R. et al., 2012 (a) [15] | NCT00550446 | Multi | 9 | 6 | 386 | 53 | 14 | White > 50% | Tofacitinib *−1, 3, 5, 10, 15 |
Fleischmann R. et al., 2012 (b) [16] | NCT00814307 | Multi | 8.1 | 3 | 611 | 52.1 | 14 | White > 50% | Tofacitinib *−5, 10 |
Kremer J.M. et al., 2012 [17] | NCT00413660 | Multi | 12 | 7 | 507 | 53 | 19.9 | White > 50% | Tofacitinib *−1, 3, 5, 10, 15, 20 |
Burmester G.R. et al., 2013 [18] | NCT00960440 | Multi | 12 | 3 | 399 | 55 | 16 | NR | Tofacitinib *−5, 10 |
Kremer JM et al., 2013 [19] | NCT00856544 | Multi | 24 | 3 | 792 | 51.8 | 18.4 | NR | Tofacitinib *−5, 10 |
Heijde V. et al., 2013 [20] | NCT00847613 | Multi | 24 | 3 | 797 | 52.7 | 14.7 | NR | Tofacitinib *−5, 10 |
Boyle D.L. et al., 2014 [21] | NCT00976599 | Multi | 4 | 2 | 29 | 53.3 | 10.3 | NR | Tofacitinib *−10 |
Tanaka Y. et al., 2015 [22] | NCT00687193 | Japan | 12 | 6 | 317 | 53.3 | 16.7 | NR | Tofacitinib *−1, 3, 5, 10, 15 |
Keystone E.C. et al., 2015 [23] | NCT01185353 | Multi | 12 | 5 | 301 | 51.2 | 17.3 | White > 50% | Baricitinib ^−1, 2, 4, 8 |
Tanaka Y. et al., 2016 [24] | NCT01469013 | Japan | 12 | 5 | 145 | 53.6 | 27 | NR | Baricitinib ^−1, 2, 4, 8 |
NCT00902486 [25] | NCT00902486 | Multi | 12 | 4 | 127 | 55.8 | 19.7 | NR | Baricitinib ^−4, 7, 10 |
Genovese M.C. et al., 2016 (a) [26] | NCT01721044 | Multi | 24 | 3 | 527 | 55.7 | 18 | White > 50% | Baricitinib ^−2, 4 |
Taylor P.C. et al., 2017 [27] | NCT01710358 | Multi | 24 | 2 | 1307 | 53.3 | 22.7 | White > 50% | Baricitinib ^−4 |
Dougados M. et al., 2017 [28] | NCT01721057 | Multi | 24 | 3 | 684 | 51.8 | 18.1 | White > 50% | Baricitinib ^−2, 4 |
Li Z et al., 2020 [29] | NCT02265705 | Multi | 12 | 2 | 290 | 49.2 | 19.6 | White < 50% | Baricitinib^−4 |
Kremer J.M. et al., 2016 [30] | NCT01960855 | Multi | 12 | 5 | 276 | 57.3 | 19.9 | NR | Upadacitinib *−3, 6, 12, 18 |
Genovese M.C. et al., 2016 (b) [31] | NCT02066389 | Multi | 12 | 6 | 299 | 54.8 | 20.7 | White < 50% | Upadacitinib *−3, 6, 12, 18, 24 |
Burmester G.R. et al., 2018 [32] | NCT02675426 | Multi | 12 | 3 | 661 | 55.7 | 21.3 | White < 50% | Upadacitinib ^−15, 30 |
Genovese M.C. et al., 2018 [33] | NCT02706847 | Multi | 12 | 3 | 499 | 57.1 | 16.1 | White < 50% | Upadacitinib ^−15, 30 |
Fleischmann R. et al., 2019 [34] | NCT02629159 | Multi | 12 | 2 | 1304 | 53.9 | 20.7 | White < 50% | Upadacitinib ^−15 |
Kameda H. et al., 2020 [35] | NCT02720523 | Japan | 12 | 3 | 148 | 55.2 | 21.3 | NR | Upadacitinib ^−7.5, 15, 30 |
NCT02955212 [36] | NCT02955212 | Multi | 12 | 2 | 338 | 51.7 | 18.9 | <50 | Upadacitinib ^−15 |
Fleischmann R.M. et al., 2015 [37] | NCT01052194 | Multi | 12 | 5 | 204 | 56.2 | 18.3 | White < 50% | Decernotinib *−25, 50,100,150 |
Genovese M.C. et al., 2016 (c) [38] | NCT01754935 | Multi | 12 | 4 | 43 | NR | NR | NR | Decernotinib ^−100, 200, 300 |
Genovese M.C. et al., 2016 (d) [39] | NCT2011-004419-22 | Multi | 24 | 5 | 358 | NR | NR | NR | Decernotinib *−100^, 150, 200, 100 |
Takeuchi T. et al., 2016 [40] | NCT01649999 | Japan | 12 | 5 | 281 | 53 | 18.9 | NR | Peficitinib ^−25, 50, 100, 150 |
Genovese M.C. et al., 2017 (a) [41] | NCT01565655 | Multi | 12 | 5 | 289 | 53.8 | 18 | NR | Peficitinib ^−25, 50, 100, 150 |
Kivitz A.J. et al., 2017 [42] | NCT01554696 | Multi | 12 | 5 | 378 | 53 | 16.4 | NR | Peficitinib ^−25, 50, 100, 150 |
Takeuchi T. et al., 2019 [43] | NCT02305849 | Japan | 12 | 3 | 519 | 56.7 | 29.7 | NR | Peficitinib ^−100, 150 |
Tanaka Y. et al., 2019 [44] | NCT02308163 | Multi | 12 | 3 | 307 | 55.3 | 27.8 | NR | Peficitinib ^−100, 150 |
Kavanaugh A. et al., 2017 [45] | NCT01894516 | Multi | 24 | 4 | 283 | 52.2 | 81.6 | NR | Filgotinib ^−50, 100, 200 |
Westhovens R. et al., 2017 [46] | NCT01888874 | Multi | 24 | 7 | 594 | 53.4 | 19 | NR | Filgotinib−50 ^, 100 ^, 200 ^, 25 *, 100 *, 200 * |
Vanhoutte F. et al., 2017 [47] | NCT01384422 | Republic Maldova | 4 | 3 | 36 | NR | NR | NR | Filgotinib−200 *, 100 ^ |
Vanhoutte F. et al., 2017 [47] | NCT01668641 | Multi | 4 | 3 | 36 | NR | NR | NR | Filgotinib ^−75, 150, 300 |
Genovese M.C. et al., 2019 [48] | NCT02873936 | Multi | 24 | 3 | 449 | 56 | 19.6 | NR | Filgotinib−200 ^, 100 * |
Westhovens R. et al., 2021 [49] | NCT02886728 | Multi | 54 | 3 | 1252 | 53 | 23 | NR | Filgotinib ^−100, 200 |
ACR50 Response | |||||||
---|---|---|---|---|---|---|---|
ACR20 Response | Baricitinib | 0.48 (0.17–1.33) | 1.06 (0.56–2.01) | 0.86 (0.44–1.69) | 0.91 (0.48–1.73) | 0.82 (0.46–1.45) | 2.52 (1.65–3.86) |
0.68 (0.43–1.10) | Decernotinib | 2.23 (0.78–6.31) | 1.81 (0.63–5.24) | 1.90 (0.67–5.43) | 1.71 (0.63–4.68) | 5.28 (2.08–13.37) | |
1.14 (0.84–1.53) | 1.66 (1.02–2.71) | Filgotinib | 0.81 (0.40–1.63) | 0.85 (0.43–1.68) | 0.77 (0.42–1.41) | 2.37 (1.48–3.80) | |
0.89 (0.64–1.24) | 1.31 (0.79–2.17) | 0.79 (0.55–1.11) | Peficitinib | 1.05 (0.52–2.13) | 0.95 (0.50–1.80) | 2.92 (1.74–4.88) | |
0.89 (0.68–1.17) | 1.30 (0.81–2.08) | 0.78 (0.58–1.05) | 0.99 (0.72–1.38) | Tofacitinib | 0.90 (0.49–1.67) | 2.78 (1.71–4.51) | |
0.94 (0.71–1.23) | 1.37 (0.85–2.20) | 0.82 (0.61–1.11) | 1.05 (0.76–1.45) | 1.06 (0.81–1.38) | Upadacitinib | 3.08 (2.10–4.51) | |
1.79 (1.47–2.17) | 2.61 (1.70–4.03) | 1.57 (1.25–1.97) | 2.00 (1.54–2.61) | 2.02 (1.67–2.44) | 1.91 (1.58–2.31) | Placebo |
HAQ-DI Score | |||||||
---|---|---|---|---|---|---|---|
ACR70 Response | Baricitinib | −0.01 (−0.26–0.23) | 0.04 (−0.14–0.21) | 0.01 (−0.19–0.21) | −0.06 (−0.20–0.09) | 0.07 (−0.09–0.22) | −0.25 (−0.36–−0.13) |
0.54 (0.17–1.73) | Decernotinib | 0.05 (−0.21–0.31) | 0.02 (−0.26–0.30) | −0.04 (−0.28–0.20) | 0.08 (−0.17–0.33) | −0.23 (−0.45–−0.01) | |
1.98 (1.47–2.66) | 3.65 (1.16–11.51) | Filgotinib | −0.03 (−0.24–0.18) | −0.09 (−0.25–0.06) | 0.03 (−0.14–0.20) | −0.28 (−0.41–−0.15) | |
1.25 (0.73–2.14) | 2.31 (0.67–7.92) | 0.63 (0.38–1.05) | Peficitinib | −0.06 (−0.25–0.12) | 0.06 (−0.14–0.26) | −0.25 (−0.42–−0.09) | |
0.55 (0.30–1.01) | 1.01 (0.29–3.59) | 0.28 (0.15–0.50) | 0.44 (0.21–0.92) | Tofacitinib | 0.12 (−0.02–0.27) | −0.19 (−0.28–−0.10) | |
0.78 (0.56–1.11) | 1.45 (0.45–4.63) | 0.40 (0.29–0.54) | 0.63 (0.37–1.08) | 1.43 (0.78–2.63) | Upadacitinib | −0.31 (−0.42–−0.20) | |
3.49 (2.74–4.46) | 6.46 (2.08–20.08) | 1.77 (1.49–2.10) | 2.80 (1.73–4.53) | 6.36 (3.64–11.12) | 4.45 (3.48–5.70) | Placebo |
Serious ADRs | |||||||
---|---|---|---|---|---|---|---|
ADRs | Baricitinib | 0.64 (0.24–1.72) | 1.00 (0.60–1.67) | 0.99 (0.46–2.11) | 1.14 (0.67–1.96) | 0.55 (0.32–0.95) | 0.91 (0.66–1.26) |
0.94 (0.58–1.52) | Decernotinib | 1.56 (0.57–4.26) | 1.53 (0.48–4.85) | 1.78 (0.64–4.93) | 0.86 (0.31–2.38) | 1.42 (0.56–3.58) | |
0.98 (0.69–1.41) | 1.05 (0.62–1.76) | Filgotinib | 0.98 (0.44–2.17) | 1.14 (0.64–2.04) | 0.55 (0.31–0.98) | 0.91 (0.62–1.35) | |
1.00 (0.71–1.42) | 1.07 (0.65–1.78) | 1.02 (0.69–1.51) | Peficitinib | 1.16 (0.51–2.62) | 0.56 (0.25–1.26) | 0.93 (0.47–1.85) | |
1.15 (0.86–1.54) | 1.23 (0.77–1.98) | 1.17 (0.83–1.65) | 1.15 (0.83–1.59) | Tofacitinib | 0.48 (0.26–0.89) | 0.80 (0.52–1.23) | |
0.76 (0.55–1.06) | 0.81 (0.49–1.34) | 0.78 (0.53–1.13) | 0.76 (0.53–1.09) | 0.66 (0.48–0.90) | Upadacitinib | 1.66 (1.08–2.54) | |
1.14 (0.91–1.42) | 1.22 (0.79–1.88) | 1.16 (0.87–1.54) | 1.13 (0.87–1.48) | 0.99 (0.82–1.19) | 1.50 (1.16–1.92) | Placebo |
Discontinuation Due to ADRs | |||||||
---|---|---|---|---|---|---|---|
Death | Baricitinib | 0.67 (0.15–3.02) | 1.00 (0.41–2.45) | 1.50 (0.80–2.79) | 0.82 (0.49–1.36) | 0.81 (0.46–1.44) | 1.10 (0.74–1.64) |
0.07 (0.00–1.55) | Decernotinib | 1.49 (0.29–7.80) | 2.22 (0.48–10.23) | 1.21 (0.28–5.35) | 1.21 (0.27–5.45) | 1.63 (0.38–6.96) | |
0.04 (0.00–1.55) | 0.56 (0.01–20.60) | Filgotinib | 1.49 (0.59–3.78) | 0.81 (0.35–1.91) | 0.81 (0.33–1.98) | 1.09 (0.49–2.43) | |
0.12 (0.00–5.65) | 1.64 (0.04–75.16) | 2.95 (0.04–220.61) | Peficitinib | 0.55 (0.31–0.97) | 0.54 (0.29–1.02) | 0.74 (0.46–1.19) | |
0.37 (0.03–5.46) | 5.11 (0.37–71.34) | 9.20 (0.34–250.95) | 3.12 (0.09–07.41) | Tofacitinib | 1.00 (0.59–1.67) | 1.35 (0.98–1.84) | |
1.09 (0.02–52.65) | 15.00 (0.32–99.9) | 27.00 (0.36–50.81) | 9.16 (0.10–32.92) | 2.93 (0.08–02.77) | Upadacitinib | 1.35 (0.90–2.04) | |
0.36 (0.04–3.26) | 5.00 (0.59–42.07) | 9.00 (0.49–166.64) | 3.05 (0.13–73.37) | 0.98 (0.21–4.62) | 0.33 (0.01–8.17) | Placebo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almoallim, H.M.; Omair, M.A.; Ahmed, S.A.; Vidyasagar, K.; Sawaf, B.; Yassin, M.A. Comparative Efficacy and Safety of JAK Inhibitors in the Management of Rheumatoid Arthritis: A Network Meta-Analysis. Pharmaceuticals 2025, 18, 178. https://doi.org/10.3390/ph18020178
Almoallim HM, Omair MA, Ahmed SA, Vidyasagar K, Sawaf B, Yassin MA. Comparative Efficacy and Safety of JAK Inhibitors in the Management of Rheumatoid Arthritis: A Network Meta-Analysis. Pharmaceuticals. 2025; 18(2):178. https://doi.org/10.3390/ph18020178
Chicago/Turabian StyleAlmoallim, Hani M., Mohammed A. Omair, Sameh A. Ahmed, Kota Vidyasagar, Bisher Sawaf, and Mohamed A. Yassin. 2025. "Comparative Efficacy and Safety of JAK Inhibitors in the Management of Rheumatoid Arthritis: A Network Meta-Analysis" Pharmaceuticals 18, no. 2: 178. https://doi.org/10.3390/ph18020178
APA StyleAlmoallim, H. M., Omair, M. A., Ahmed, S. A., Vidyasagar, K., Sawaf, B., & Yassin, M. A. (2025). Comparative Efficacy and Safety of JAK Inhibitors in the Management of Rheumatoid Arthritis: A Network Meta-Analysis. Pharmaceuticals, 18(2), 178. https://doi.org/10.3390/ph18020178