Metformin Mitigates Diabetes-Driven Renal Senescence via Immunomodulation and the FABP4/FOXO1 Axis
Abstract
1. Introduction
2. Results
2.1. Effects of Metformin Treatment on Metabolic and DN Biomarkers
2.1.1. Effects of Metformin on Blood Glucose Levels
2.1.2. Effects of Metformin on Body Weight and Kidney-Weight-to-Body-Weight Ratio
2.1.3. Effects of Metformin on the Levels of Lipid Profile Parameters
2.2. Effects of Metformin on Diabetic Kidney Biomarkers
2.3. Renal Effects of Metformin in Diabetic Rats Evaluated Using Hematoxylin and Eosin- and Periodic Acid–Schiff-Stained Kidney Tissue Sections
2.4. Metformin Effects on STZ-Induced Changes in the Inflammatory Biomarkers Levels of Experimental Diabetic Rats
2.5. Effects of Metformin Treatment on Immunometabolic Markers in Diabetic Rats
2.6. Effects of Metformin Treatment on Kidney Senescence and Macrophages in Rats with Diabetes
2.7. Metformin Effects on FABP4 and FOXO1 Expression in Experimental Diabetic Rats
3. Discussion
Study Limitations and Future Directions
4. Materials and Methods
4.1. Drugs, Chemicals, and Antibodies
4.2. Experimental Animals
4.3. Induction of T2DM
4.4. Experimental Design
4.5. Biochemical and Molecular Analysis
4.5.1. Determination of Serum Glucose Levels
4.5.2. Determination of DN Biomarkers
4.5.3. Measurement of Lipid TG, Total Cholesterol, and HDL Profiles
4.5.4. Determination of Inflammatory Markers
4.5.5. Determination of Immunometabolic Markers
4.5.6. Quantification of FOXO1 and FABP4 Protein Expression Levels Using ELISA
4.5.7. Histological Examination
4.5.8. Immunohistochemistry
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DN | Diabetic nephropathy |
| FABP4 | Fatty acid-binding protein 4 |
| FOXO1 | Forkhead box protein O1 |
| SDH | Succinate dehydrogenase |
| ACLY | ATP-citrate lyase |
| IL | Interleukin |
| BUN | Blood urea nitrogen |
| CKD | Chronic kidney disease |
| ROS | Reactive oxygen species |
| AGEs | Advanced glycation end products |
| SASPs | Senescence-associated secretory phenotypes |
| A-FABP | Adipose fatty acid-binding protein |
| T2DM | Type 2 diabetes mellitus |
| STZ | Streptozotocin |
| HFD | High-fat diet |
| NC | Normal control |
| MC | Metformin control |
| DC | Diabetic control |
| MD | Diabetic + metformin |
| H&E | Hematoxylin and eosin |
| PAS | Periodic acid–Schiff |
| TNF-α | Tumor necrosis factor-alpha |
| CD | Cluster of differentiation |
| MCP-1 | Monocyte chemoattractant protein-1 |
| AMPK | Adenosine monophosphate-activated protein kinase |
| TAME | Targeting Aging with Metformin |
| MILES | Metformin in Longevity Study |
| NF-kB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| AP-1 | Activating protein-1 |
| SIRT1 | NAD-dependent protein deacetylase sirtuin-1 |
| HMGB1 | High-mobility group box 1 |
| KW:BW | Kidney-weight-to-body-weight ratio |
| PBS | Phosphate-Buffered Saline |
| i.p. | Intraperitoneally |
| ELISA | Enzyme-linked immunosorbent assay |
| TG | Triglycerides |
| HIF-1α | Hypoxia inducible factor alpha |
| IL-1β | Interleukin-1 beta |
| ABC | ATP-binding cassette |
| P53 | Tumor protein p53 |
References
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Zhou, B.; Wan, Y.; Chen, R.; Zhang, C.; Li, X.; Meng, F.; Glaser, S.; Wu, N.; Zhou, T.; Li, S.; et al. The emerging role of cellular senescence in renal diseases. J. Cell. Mol. Med. 2020, 24, 2087–2097. [Google Scholar] [CrossRef]
- McHugh, D.; Gil, J. Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol. 2018, 217, 65–77. [Google Scholar] [CrossRef]
- Burton, D.G.A.; Faragher, R.G.A. Obesity and type-2 diabetes as inducers of premature cellular senescence and ageing. Biogerontology 2018, 19, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Rout, P.; Jialal, I. Diabetic nephropathy. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Shafaati, T.; Gopal, K. Forkhead box O1 transcription factor; a therapeutic target for diabetic cardiomyopathy. J. Pharm. Pharm. Sci. 2024, 27, 13193. [Google Scholar] [CrossRef]
- Guo, J.; Zheng, H.J.; Zhang, W.; Lou, W.; Xia, C.; Han, X.T.; Huang, W.J.; Zhang, F.; Wang, Y.; Liu, W.J. Accelerated kidney aging in diabetes mellitus. Oxid. Med. Cell. Longev. 2020, 2020, 1234059. [Google Scholar] [CrossRef]
- Schmitt, R.; Susnik, N.; Melk, A. Molecular aspects of renal senescence. Curr. Opin. Organ. Transplant. 2015, 20, 412–416. [Google Scholar] [CrossRef]
- Prattichizzo, F.; De Nigris, V.; Mancuso, E.; Spiga, R.; Giuliani, A.; Matacchione, G.; Lazzarini, R.; Marcheselli, F.; Recchioni, R.; Testa, R.; et al. Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages. Redox Biol. 2018, 15, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, D.; Iida, T.; Nakase, H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 2017, 19, 92. [Google Scholar] [CrossRef]
- Chi, M.; Tian, Z.; Ma, K.; Li, Y.; Wang, L.; Nasser, M.I.; Liu, C. The diseased kidney: Aging and senescent immunology. Immun. Ageing 2022, 19, 58. [Google Scholar] [CrossRef] [PubMed]
- Li, H.D.; You, Y.K.; Shao, B.Y.; Wu, W.F.; Wang, Y.F.; Guo, J.B.; Meng, X.M.; Chen, H. Roles and crosstalks of macrophages in diabetic nephropathy. Front. Immunol. 2022, 13, 1015142. [Google Scholar] [CrossRef] [PubMed]
- Bertelli, P.M.; Pedrini, E.; Hughes, D.; McDonnell, S.; Pathak, V.; Peixoto, E.; Guduric-Fuchs, J.; Stitt, A.W.; Medina, R.J. Long term high glucose exposure induces premature senescence in retinal endothelial cells. Front. Physiol. 2022, 13, 929118. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.J.; Childs, B.G.; Durik, M.; Wijers, M.E.; Sieben, C.J.; Zhong, J.; Saltness, R.A.; Jeganathan, K.B.; Verzosa, G.C.; Pezeshki, A.; et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 2016, 530, 184–189. [Google Scholar] [CrossRef]
- Jin, R.; Hao, J.; Yi, Y.; Sauter, E.; Li, B. Regulation of macrophage functions by FABP-mediated inflammatory and metabolic pathways. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 158964. [Google Scholar] [CrossRef]
- Furuhashi, M.; Saitoh, S.; Shimamoto, K.; Miura, T. Fatty acid-binding protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol. 2014, 8 (Suppl. S3), 23–33. [Google Scholar] [CrossRef]
- Smathers, R.L.; Petersen, D.R. The human fatty acid-binding protein family: Evolutionary divergences and functions. Human Genom. 2011, 5, 170–191. [Google Scholar] [CrossRef]
- Shaker, A.M.; Mohamed, M.E.; Ramzy, T.; Ali, M.I. Serum fatty acid-binding protein 4 as a biomarker for early detection of diabetic nephropathy in type 2 diabetes. Egypt. J. Intern. Med. 2023, 35, 22. [Google Scholar] [CrossRef]
- Lu, H.; Huang, H. FOXO1: A potential target for human diseases. Curr. Drug Targets 2011, 12, 1235–1244. [Google Scholar] [CrossRef]
- Rong, S.J.; Yang, C.L.; Wang, F.X.; Sun, F.; Luo, J.H.; Yue, T.T.; Yang, P.; Yu, Q.; Zhang, S.; Wang, C.Y. The essential role of FoxO1 in the regulation of macrophage function. BioMed Res. Int. 2022, 2022, 1068962. [Google Scholar] [CrossRef]
- Yan, K.; Da, T.T.; Bian, Z.H.; He, Y.; Liu, M.C.; Liu, Q.Z.; Long, J.; Li, L.; Gao, C.Y.; Yang, S.H.; et al. Multi-omics analysis identifies FoxO1 as a regulator of macrophage function through metabolic reprogramming. Cell Death Dis. 2020, 11, 800. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Zheng, H. Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative diseases. Cell Biosci. 2021, 11, 188. [Google Scholar] [CrossRef]
- Corcoran, C.; Jacobs, T.F. Metformin. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Chen, S.; Gan, D.; Lin, S.; Zhong, Y.; Chen, M.; Zou, X.; Shao, Z.; Xiao, G. Metformin in aging and aging-related diseases: Clinical applications and relevant mechanisms. Theranostics 2022, 12, 2722–2740. [Google Scholar] [CrossRef]
- Rybina, O.Y.; Symonenko, A.V.; Pasyukova, E.G. Compound combinations targeting longevity: Challenges and perspectives. Ageing Res. Rev. 2023, 85, 101851. [Google Scholar] [CrossRef]
- Mohammed, I.; Hollenberg, M.D.; Ding, H.; Triggle, C.R. A critical review of the evidence that metformin is a putative anti-aging drug that enhances healthspan and extends lifespan. Front. Endocrinol. 2021, 12, 718942. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Chen, W.; Ni, X.; Little, P.J.; Xu, S.; Tang, L.; Weng, J. Metformin, macrophage dysfunction and atherosclerosis. Front. Immunol. 2021, 12, 682853. [Google Scholar] [CrossRef] [PubMed]
- Al-Qabbaa, S.M.; Qaboli, S.I.; Alshammari, T.K.; Alamin, M.A.; Alrajeh, H.M.; Almuthnabi, L.A.; Alotaibi, R.R.; Alonazi, A.S.; Bin Dayel, A.F.; Alrasheed, N.M.; et al. Sitagliptin mitigates diabetic nephropathy in a rat model of streptozotocin-induced type 2 diabetes: Possible role of PTP1B/JAK-STAT pathway. Int. J. Mol. Sci. 2023, 24, 6532. [Google Scholar] [CrossRef] [PubMed]
- Hoogeveen, E.K. The epidemiology of diabetic kidney disease. Kidney Dial. 2022, 2, 433–442. [Google Scholar] [CrossRef]
- Al-Shahrani, S.M.; Shaher, B.M.; Alragea, Y.M.; Ali Alqahtani, F.M.; Binghamiah, A.S.M.; Alqahtani, M.A.M.; Mufrrih, S.A. Prevalence and risk factors of diabetic nephropathy among type 2 diabetes patients in family medicine clinic AFHSR Khamis Mushait. J. Fam. Med. Prim. Care 2025, 14, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Sawaf, H.; Thomas, G.; Taliercio, J.J.; Nakhoul, G.; Vachharajani, T.J.; Mehdi, A. Therapeutic advances in diabetic nephropathy. J. Clin. Med. 2022, 11, 378. [Google Scholar] [CrossRef]
- Wang, Y.B.; Li, T.; Wang, F.Y.; Yao, X.; Bai, Q.X.; Su, H.W.; Liu, J.; Wang, L.; Tan, R.Z. The dual role of cellular senescence in macrophages: Unveiling the hidden driver of Age-related inflammation in kidney disease. Int. J. Biol. Sci. 2025, 21, 632–657. [Google Scholar] [CrossRef]
- Xiao, Y.; Shu, L.; Wu, X.; Liu, Y.; Cheong, L.Y.; Liao, B.; Xiao, X.; Hoo, R.L.; Zhou, Z.; Xu, A. Fatty acid binding protein 4 promotes autoimmune diabetes by recruitment and activation of pancreatic islet macrophages. JCI Insight 2021, 6, e141814. [Google Scholar] [CrossRef]
- Wang, B.; Xu, J.; Ren, Q.; Cheng, L.; Guo, F.; Liang, Y.; Yang, L.; Tan, Z.; Fu, P.; Ma, L. Fatty acid-binding protein 4 is a therapeutic target for septic acute kidney injury by regulating inflammatory response and cell apoptosis. Cell Death Dis. 2022, 13, 333. [Google Scholar] [CrossRef]
- Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013, 496, 238–242. [Google Scholar] [CrossRef]
- Postler, T.S.; Peng, V.; Bhatt, D.M.; Ghosh, S. Metformin selectively dampens the acute inflammatory response through an AMPK-dependent mechanism. Sci. Rep. 2021, 11, 18721. [Google Scholar] [CrossRef]
- Kelly, B.; Tannahill, G.M.; Murphy, M.P.; O’Neill, L.A.J. Metformin inhibits the production of reactive oxygen species from NADH:Ubiquinone oxidoreductase to limit induction of interleukin-1β (IL-1β) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages. J. Biol. Chem. 2015, 290, 20348–20359. [Google Scholar] [CrossRef]
- Wang, F.; Sun, H.; Zuo, B.; Shi, K.; Zhang, X.; Zhang, C.; Sun, D. Metformin attenuates renal tubulointerstitial fibrosis via upgrading autophagy in the early stage of diabetic nephropathy. Sci. Rep. 2021, 11, 16362. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Zhao, J.; Yuan, J.; Qin, Y.; Zhu, Z.; Liu, J.; Sun, S. Delaying renal aging: Metformin holds promise as a potential treatment. Aging Dis. 2024, 16, 1397–1413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhou, L.; Makarczyk, M.J.; Feng, P.; Zhang, J. The anti-aging mechanism of metformin: From molecular insights to clinical applications. Molecules 2025, 30, 816. [Google Scholar] [CrossRef]
- Sun, T.; Liu, J.; Xie, C.; Yang, J.; Zhao, L.; Yang, J. Metformin attenuates diabetic renal injury via the AMPK-autophagy axis. Exp. Ther. Med. 2021, 21, 578. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, X.Y.; Han, J.Y.; Yang, M.; Lv, C.; Shao, Y.; Wang, Y.L.; Kang, J.Y.; Wang, Q.Y. Metformin regulates inflammation and fibrosis in diabetic kidney disease through TNC/TLR4/NF-κB/miR-155-5p inflammatory loop. World J. Diabetes 2021, 12, 19–46. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, M.; Ishimura, S.; Ota, H.; Hayashi, M.; Nishitani, T.; Tanaka, M.; Yoshida, H.; Shimamoto, K.; Hotamisligil, G.S.; Miura, T. Serum fatty acid-binding protein 4 is a predictor of cardiovascular events in end-stage renal disease. PLoS ONE 2011, 6, e27356. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Shao, Y.; Wu, C.; Ma, X.; Lv, C.; Wang, Q. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol. Cell. Endocrinol. 2020, 500, 110628. [Google Scholar] [CrossRef]
- Guo, X.; Li, X.; Yang, W.; Liao, W.; Shen, J.Z.; Ai, W.; Pan, Q.; Sun, Y.; Zhang, K.; Zhang, R.; et al. Metformin targets FOXO1 to control glucose homeostasis. Biomolecules 2021, 11, 873. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, J.; Zhang, Z.; Shi, H.; Sun, W.; Yi, Q. The role of AMPK in macrophage metabolism, function and polarisation. J. Transl. Med. 2023, 21, 892. [Google Scholar] [CrossRef] [PubMed]
- Lauterbach, M.A.; Hanke, J.E.; Serefidou, M.; Mangan, M.S.J.; Kolbe, C.C.; Hess, T.; Rothe, M.; Kaiser, R.; Hoss, F.; Gehlen, J.; et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity 2019, 51, 997–1011.e7. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Norouzian, D.; Mehrabi, M.R.; Jamshidi, S.; Farhangi, A.; Verdi, A.A.; Mofidian, S.M.; Rad, B.L. Induction of diabetes by streptozotocin in rats. Indian. J. Clin. Biochem. 2007, 22, 60–64. [Google Scholar] [CrossRef]
- Kraynak, A.R.; Storer, R.D.; Jensen, R.D.; Kloss, M.W.; Soper, K.A.; Clair, J.H.; DeLuca, J.G.; Nichols, W.W.; Eydelloth, R.S. Extent and persistence of streptozotocin-induced DNA damage and cell proliferation in rat kidney as determined by in vivo alkaline elution and BrdUrd labeling assays. Toxicol. Appl. Pharmacol. 1995, 135, 279–286. [Google Scholar] [CrossRef]
- King, G.L.; Loeken, M.R. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem. Cell Biol. 2004, 122, 333–338. [Google Scholar] [CrossRef]
- Wei, M.; Ong, L.; Smith, M.T.; Ross, F.B.; Schmid, K.; Hoey, A.J.; Burstow, D.; Brown, L. The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart Lung Circ. 2003, 12, 44–50. [Google Scholar] [CrossRef]
- Mazzocco, Y.L.; Bergero, G.; Del Rosso, S.; Cejas Gallardo, Z.M.; Canalis, A.M.; Baigorri, R.E.; Mezzano, L.; Mladin, J.J.; Díaz-Gerevini, G.T.; Martínez Benavidez, C.; et al. A novel mouse model for studying complications related to type 2 diabetes using a medium-fat diet, fructose, and streptozotocin. Sci. Rep. 2025, 15, 20861. [Google Scholar] [CrossRef]
- Sanaye, M.; Sathyapal, G.; Kulkarni, Y.A. Effect of Costus pictus per se and in combination with metformin and enalapril in streptozotocin induced diabetic nephropathy in rats. J. Diabetes Metab. Disord. 2022, 21, 1349–1358. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, Y.; Wang, F.; Sun, L.; Ding, M.; Zhang, L.; Wu, B.; Zhang, X. High glucose promotes macrophage switching to the M1 phenotype via the downregulation of STAT-3 mediated autophagy. PLoS ONE 2024, 19, e0314974. [Google Scholar] [CrossRef] [PubMed]
- Nna, V.U.; Abu Bakar, A.B.; Zakaria, Z.; Othman, Z.A.; Jalil, N.A.C.; Mohamed, M. Malaysian propolis and metformin synergistically mitigate kidney oxidative stress and inflammation in streptozotocin-induced diabetic rats. Molecules 2021, 26, 3441. [Google Scholar] [CrossRef] [PubMed]
- Abdulmalek, S.A.; Balbaa, M. Synergistic effect of nano-selenium and metformin on type 2 diabetic rat model: Diabetic complications alleviation through insulin sensitivity, oxidative mediators and inflammatory markers. PLoS ONE 2019, 14, e0220779. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Q.; He, J.; Li, Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front. Immunol. 2022, 13, 958790. [Google Scholar] [CrossRef]
- Tesch, G.H. MCP-1/CCL2: A new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 2008, 294, F697–F701. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhou, L. The signaling of cellular senescence in diabetic nephropathy. Oxid. Med. Cell. Longev. 2019, 2019, 7495629. [Google Scholar] [CrossRef]
- Yu, S.; Cheng, Y.; Li, B.; Xue, J.; Yin, Y.; Gao, J.; Gong, Z.; Wang, J.; Mu, Y. M1 macrophages accelerate renal glomerular endothelial cell senescence through reactive oxygen species accumulation in streptozotocin-induced diabetic mice. Int. Immunopharmacol. 2020, 81, 106294. [Google Scholar] [CrossRef]
- Wen, Y.; Crowley, S.D. The varying roles of macrophages in kidney injury and repair. Curr. Opin. Nephrol. Hypertens. 2020, 29, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yang, H.; Zhang, D.; Zhang, Y.; Liu, B.; Wang, Y.; Zhou, H.; Xu, Z.X.; Wang, Y. The role of macrophages in fibrosis of chronic kidney disease. Biomed. Pharmacother. 2024, 177, 117079. [Google Scholar] [CrossRef]
- Shi, M.; Ma, L.; Fu, P. Role of fatty acid binding Protein 4 (FABP4) in kidney disease. Curr. Med. Chem. 2020, 27, 3657–3664. [Google Scholar] [CrossRef]
- Tanaka, M.; Furuhashi, M.; Moniwa, N.; Maeda, T.; Takizawa, H.; Matsumoto, M.; Sakai, A.; Higashiura, Y.; Gocho, Y.; Koyama, M.; et al. Significance of urinary fatty acid-binding protein 4 level as a possible biomarker for the identification of minimal change disease in patents with nephrotic-range proteinuria. BMC Nephrol. 2020, 21, 459. [Google Scholar] [CrossRef]
- Furuhashi, M. Fatty acid-binding Protein 4 in cardiovascular and metabolic diseases. J. Atheroscler. Thromb. 2019, 26, 216–232. [Google Scholar] [CrossRef]
- Wang, Y.; He, W. Improving the dysregulation of FoxO1 activity is a potential therapy for alleviating diabetic kidney disease. Front. Pharmacol. 2021, 12, 630617. [Google Scholar] [CrossRef]
- Su, D.; Coudriet, G.M.; Hyun Kim, D.; Lu, Y.; Perdomo, G.; Qu, S.; Slusher, S.; Tse, H.M.; Piganelli, J.; Giannoukakis, N.; et al. FoxO1 links insulin resistance to proinflammatory cytokine IL-1beta production in macrophages. Diabetes 2009, 58, 2624–2633. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, H.; Yu, X.; Wu, Y.; Sui, D. Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Exp. Ther. Med. 2017, 14, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Al Za’abi, M.; Ali, B.H.; Al Suleimani, Y.; Adham, S.A.; Ali, H.; Manoj, P.; Ashique, M.; Nemmar, A. The effect of metformin in diabetic and non-diabetic rats with experimentally-induced chronic kidney disease. Biomolecules 2021, 11, 814. [Google Scholar] [CrossRef] [PubMed]
- Vasamsetti, S.B.; Karnewar, S.; Kanugula, A.K.; Thatipalli, A.R.; Kumar, J.M.; Kotamraju, S. Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: Potential role in atherosclerosis. Diabetes 2015, 64, 2028–2041. [Google Scholar] [CrossRef] [PubMed]
- Song, A.; Zhang, C.; Meng, X. Mechanism and application of metformin in kidney diseases: An update. Biomed. Pharmacother. 2021, 138, 111454. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J. Endoplasmic reticulum (ER) stress and its role in pancreatic β-cell dysfunction and senescence in type 2 diabetes. Int. J. Mol. Sci. 2022, 23, 4843. [Google Scholar] [CrossRef]
- Murakami, T.; Inagaki, N.; Kondoh, H. Cellular senescence in diabetes mellitus: Distinct senotherapeutic strategies for adipose tissue and pancreatic β cells. Front. Endocrinol. 2022, 13, 869414. [Google Scholar] [CrossRef]
- Safwan-Zaiter, H.; Wagner, N.; Wagner, K.D. P16INK4A-more than a senescence marker. Life 2022, 12, 1332. [Google Scholar] [CrossRef]
- Trojnar, M.; Patro-Małysza, J.; Kimber-Trojnar, Ż.; Leszczyńska-Gorzelak, B.; Mosiewicz, J. Associations between fatty acid-binding protein 4-A proinflammatory adipokine and insulin resistance, gestational and type 2 diabetes mellitus. Cells 2019, 8, 227. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, I.Y.; Fatma, F.A.; Elshymaa, A.A.-H.; Zahra, S.A.-R.S. Pathophysiological mechanisms of type 2 diabetes mellitus and the effects of metformin treatment in adult male albino rats. Minia J. Med. Res. 2023, 34, 209–214. [Google Scholar] [CrossRef]
- Ghasemi, A.; Jeddi, S. Streptozotocin as a tool for induction of rat models of diabetes: A practical guide. Excli J. 2023, 22, 274–294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Lv, X.Y.; Li, J.; Xu, Z.G.; Chen, L. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp. Diabetes Res. 2008, 2008, 704045. [Google Scholar] [CrossRef]
- Magalhães, D.A.D.; Kume, W.T.; Correia, F.S.; Queiroz, T.S.; Allebrandt Neto, E.W.; Santos, M.P.D.; Kawashita, N.H.; França, S.A.D. High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: A new proposal. An. Acad. Bras. Cienc. 2019, 91, e20180314. [Google Scholar] [CrossRef]
- Quaile, M.P.; Melich, D.H.; Jordan, H.L.; Nold, J.B.; Chism, J.P.; Polli, J.W.; Smith, G.A.; Rhodes, M.C. Toxicity and toxicokinetics of metformin in rats. Toxicol. Appl. Pharmacol. 2010, 243, 340–347. [Google Scholar] [CrossRef]
- Al-Rasheed, N.M.; Al-Rasheed, N.M.; Bassiouni, Y.A.; Hasan, I.H.; Al-Amin, M.A.; Al-Ajmi, H.N.; Mahmoud, A.M. Simvastatin ameliorates diabetic nephropathy by attenuating oxidative stress and apoptosis in a rat model of streptozotocin-induced type 1 diabetes. Biomed. Pharmacother. 2018, 105, 290–298. [Google Scholar] [CrossRef]
- Lu, R.; Zheng, Z.; Yin, Y.; Jiang, Z. Genistein prevents bone loss in type 2 diabetic rats induced by streptozotocin. Food Nutr. Res. 2020, 64. [Google Scholar] [CrossRef]
- Premilovac, D.; Gasperini, R.J.; Sawyer, S.; West, A.; Keske, M.A.; Taylor, B.V.; Foa, L. A new method for targeted and sustained induction of type 2 diabetes in rodents. Sci. Rep. 2017, 7, 14158. [Google Scholar] [CrossRef] [PubMed]
- Deeds, M.C.; Anderson, J.M.; Armstrong, A.S.; Gastineau, D.A.; Hiddinga, H.J.; Jahangir, A.; Eberhardt, N.L.; Kudva, Y.C. Single dose streptozotocin-induced diabetes: Considerations for study design in islet transplantation models. Lab. Anim. 2011, 45, 131–140. [Google Scholar] [CrossRef]
- Allain, C.C.; Poon, L.S.; Chan, C.S.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef]
- Burstein, M.; Scholnick, H.R.; Morfin, R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J. Lipid Res. 1970, 11, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Gu, R.; Bai, J.; Ling, L.; Ding, L.; Zhang, N.; Ye, J.; Ferro, A.; Xu, B. Increased expression of integrin-linked kinase improves cardiac function and decreases mortality in dilated cardiomyopathy model of rats. PLoS ONE 2012, 7, e31279. [Google Scholar] [CrossRef] [PubMed]







| Parameters/Groups | NC | MC | DC | MD |
|---|---|---|---|---|
| Initial Glucose (mg/dL) | 102.1 ± 1.20 | 106.0 ± 2.30 | 104.4 ± 1.29 | 104.1 ± 1.59 |
| Final Glucose (mg/dL) | 70.35 ± 7.28 | 39.19 ± 4.09 ## | 343.0 ± 27.94 $$$ | 62.72 ± 5.67 *** |
| KD/BW (mg/g) | 3.15 ± 0.17 | 4.12 ± 0.27 | 6.99 ± 0.14 $$$ | 3.60 ± 0.23 *** |
| Initial BW (g) | 286.1 ± 9.68 | 260.4 ± 5.93 | 291.4 ± 7.48 | 258.8 ± 6.73 * |
| Final BW (g) | 172.6 ± 11.39 | 181.1 ± 3.02 | 235.6 ± 4.20 $$$ | 208.7 ± 7.96 *** |
| Total Cholesterol (mg/dL) | 53.13 ± 4.38 | 44.00 ± 5.36 | 116.4 ± 6.95 $$$ | 49.14 ± 3.74 *** |
| HDL (mg/dL) | 33.74 ± 2.93 | 33.04 ± 2.44 | 19.72 ± 1.25 $ | 39.89 ± 4.34 *** |
| LDL (mg/dL) | 34.00 ± 2.58 | 32.00 ± 4.29 | 122.0 ± 23.65 $$$ | 39.13 ± 1.63 *** |
| TG (mg/dL) | 64.84 ± 4.23 | 53.60 ± 2.74 | 186.2 ± 13.94 $$$ | 69.64 ± 3.09 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrasheed, N.M.; Almuthanbi, L.A.; Alotaibi, R.R.; Alonazi, A.S.; Alamin, M.A.; Alshammari, T.K.; Alkhelb, D.A.; Bin Dayel, A.F.; Alomar, H.A.; Elnagar, D.M.; et al. Metformin Mitigates Diabetes-Driven Renal Senescence via Immunomodulation and the FABP4/FOXO1 Axis. Pharmaceuticals 2025, 18, 1834. https://doi.org/10.3390/ph18121834
Alrasheed NM, Almuthanbi LA, Alotaibi RR, Alonazi AS, Alamin MA, Alshammari TK, Alkhelb DA, Bin Dayel AF, Alomar HA, Elnagar DM, et al. Metformin Mitigates Diabetes-Driven Renal Senescence via Immunomodulation and the FABP4/FOXO1 Axis. Pharmaceuticals. 2025; 18(12):1834. https://doi.org/10.3390/ph18121834
Chicago/Turabian StyleAlrasheed, Nawal M., Lama A. Almuthanbi, Rana R. Alotaibi, Asma S. Alonazi, Maha A. Alamin, Tahani K. Alshammari, Dalal A. Alkhelb, Anfal F. Bin Dayel, Hatun A. Alomar, Doaa M. Elnagar, and et al. 2025. "Metformin Mitigates Diabetes-Driven Renal Senescence via Immunomodulation and the FABP4/FOXO1 Axis" Pharmaceuticals 18, no. 12: 1834. https://doi.org/10.3390/ph18121834
APA StyleAlrasheed, N. M., Almuthanbi, L. A., Alotaibi, R. R., Alonazi, A. S., Alamin, M. A., Alshammari, T. K., Alkhelb, D. A., Bin Dayel, A. F., Alomar, H. A., Elnagar, D. M., & Alrasheed, N. M. (2025). Metformin Mitigates Diabetes-Driven Renal Senescence via Immunomodulation and the FABP4/FOXO1 Axis. Pharmaceuticals, 18(12), 1834. https://doi.org/10.3390/ph18121834

