Advancing PROTAC Discovery Through Artificial Intelligence: Opportunities, Challenges, and Future Directions
Abstract
1. Introduction
2. PROTAC Discovery Pipeline: Opportunities for AI Integration
2.1. Overview of the PROTAC Discovery Workflow
2.2. Critical Bottlenecks: From Target Selection to PROTAC Optimization
3. Current Applications of AI in PROTAC Discovery
3.1. Ternary Complex Prediction
3.2. Degradability Prediction
3.3. Linker Design and Optimization
3.4. ADME Properties Prediction
4. Emerging and Transferable AI Models for PROTAC Discovery
4.1. Sequence- and Transcriptome-Based E3 Ligase Identification
4.2. Predicting Ligase–Substrate Specificity
4.3. Flow-Based Generative Modeling
4.4. Physics-Informed Neural Networks
4.5. Transcriptome-Based Modeling of Chemical Perturbation Responses
5. Challenges and Limitations of Current AI Approaches
5.1. Data Scarcity and Standardization in PROTAC Datasets
5.2. Limited Generalization Across Targets and Ligases
5.3. Lack of Interpretability
5.4. The Missing Experimental Feedback Loop
6. Future Perspectives: Toward AI-Driven PROTAC Design
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Liu, Y.; Li, G.; Yang, Z.; Han, C.; Sun, X.; Sheng, C.; Ding, K.; Rao, Y. Targeting the undruggables—The power of protein degraders. Sci. Bull. 2024, 69, 1776–1797. [Google Scholar] [CrossRef]
- Xie, X.; Yu, T.; Li, X.; Zhang, N.; Foster, L.J.; Peng, C.; Huang, W.; He, G. Recent advances in targeting the “undruggable” proteins: From drug discovery to clinical trials. Signal Transduct. Target. Ther. 2023, 8, 335. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, J.; Zhong, K.; Tong, A.; Jia, D. Targeted protein degradation: Mechanisms, strategies and application. Signal Transduct. Target. Ther. 2022, 7, 113. [Google Scholar] [CrossRef]
- Békés, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov. 2022, 21, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Dale, B.; Cheng, M.; Park, K.S.; Kaniskan, H.Ü.; Xiong, Y.; Jin, J. Advancing targeted protein degradation for cancer therapy. Nat. Rev. Cancer 2021, 21, 638–654. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Chang, X.; Xie, W.; Zhou, X. Targeted protein degradation: Advances in drug discovery and clinical practice. Signal Transduct. Target. Ther. 2024, 9, 308. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, M.; Yang, Y.; Du, C.; Zhou, H.; Liu, C.; Chen, Y.; Fan, L.; Ma, H.; Gong, Y.; et al. An overview of PROTACs: A promising drug discovery paradigm. Mol. Biomed. 2022, 3, 46. [Google Scholar] [CrossRef]
- Vetma, V.; O’Connor, S.; Ciulli, A. Development of PROTAC degrader drugs for cancer. Annu. Rev. Cancer Biol. 2024, 9, 119–140. [Google Scholar] [CrossRef]
- Gough, S.M.; Flanagan, J.J.; Teh, J.; Andreoli, M.; Rousseau, E.; Pannone, M.; Bookbinder, M.; Willard, R.; Davenport, K.; Bortolon, E.; et al. Oral estrogen receptor PROTAC vepdegestrant (ARV-471) is highly efficacious as monotherapy and in combination with CDK4/6 or PI3K/mTOR pathway inhibitors in preclinical ER+ breast cancer models. Clin. Cancer Res. 2024, 30, 3549–3563. [Google Scholar] [CrossRef]
- Tran, N.L.; Leconte, G.A.; Ferguson, F.M. Targeted protein degradation: Design considerations for PROTAC development. Curr. Protoc. 2022, 2, e611. [Google Scholar] [CrossRef] [PubMed]
- Schwalm, M.P.; Krämer, A.; Dölle, A.; Weckesser, J.; Yu, X.; Jin, J.; Saxena, K.; Knapp, S. Tracking the PROTAC degradation pathway in living cells highlights the importance of ternary complex measurement for PROTAC optimization. Cell Chem. Biol. 2023, 30, 753–765. [Google Scholar] [CrossRef]
- Crowe, C.; Nakasone, M.; Chandler, S.; Tatham, M.; Makukhin, N.; Hay, R.; Ciulli, A. Mechanism of Degrader-Targeted Protein Ubiquitinability. Sci. Adv. 2024, 10, eado6492. [Google Scholar] [CrossRef]
- Hasselgren, C.; Oprea, T.I. Artificial intelligence for drug discovery: Are we there yet? Annu. Rev. Pharmacol. Toxicol. 2024, 64, 527–550. [Google Scholar] [CrossRef]
- Ferreira, F.J.; Carneiro, A.S. AI-Driven Drug Discovery: A Comprehensive Review. ACS Omega 2025, 10, 23889–23903. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Ke, L.; Chen, L.; Dou, B.; Zhu, Y.; Liu, J.; Zhang, B.; Zhou, T.; Wei, G.W. Transformer technology in molecular science. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2024, 14, e1725. [Google Scholar] [CrossRef]
- Zhang, O.; Lin, H.; Zhang, X.; Wang, X.; Wu, Z.; Ye, Q.; Zhao, W.; Wang, J.; Ying, K.; Kang, Y.; et al. Graph Neural Networks in Modern AI-aided Drug Discovery. Chem. Rev. 2025, 125, 10001–10103. [Google Scholar] [CrossRef]
- Alakhdar, A.; Poczos, B.; Washburn, N. Diffusion models in de novo drug design. J. Chem. Inf. Model. 2024, 64, 7238–7256. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.K.; Liu, Y.; Xie, L. Reinforcement learning for systems pharmacology-oriented and personalized drug design. Expert Opin. Drug Discov. 2022, 17, 849–863. [Google Scholar] [CrossRef]
- Yu, X.; Li, D.; Kottur, J.; Shen, Y.; Kim, H.S.; Park, K.S.; Tsai, Y.H.; Gong, W.; Wang, J.; Suzuki, K.; et al. A selective WDR5 degrader inhibits acute myeloid leukemia in patient-derived mouse models. Sci. Transl. Med. 2021, 13, eabj1578. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA 2001, 98, 8554–8559. [Google Scholar] [CrossRef]
- Burslem, G.M.; Crews, C.M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 2020, 181, 102–114. [Google Scholar] [CrossRef]
- Madan, J.; Ahuja, V.K.; Dua, K.; Samajdar, S.; Ramchandra, M.; Giri, S. PROTACs: Current trends in protein degradation by proteolysis-targeting chimeras. BioDrugs 2022, 36, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Nalawansha, D.A.; Crews, C.M. PROTACs: An emerging therapeutic modality in precision medicine. Cell Chem. Biol. 2020, 27, 998–1014. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.J.; Winkler, S.; Hughes, S.J.; Whitworth, C.; Galant, M.; Farnaby, W.; Rumpel, K.; Ciulli, A. SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate. ACS Chem. Biol. 2019, 14, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.C.; Crews, C.M. Induced protein degradation: An emerging drug discovery paradigm. Nat. Rev. Drug Discov. 2017, 16, 101–114. [Google Scholar] [CrossRef]
- Xue, F.; Zhang, M.; Li, S.; Gao, X.; Wohlschlegel, J.A.; Huang, W.; Yang, Y.; Deng, W. SE (3)-equivariant ternary complex prediction towards target protein degradation. Nat. Commun. 2025, 16, 5514. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Li, F.; Hu, Q.; Zhang, X.; Sun, R.; Liu, Z.; Wu, S.; Tian, S.; Ma, X.; Dai, Z.; Yang, X.; et al. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs. Nat. Commun. 2022, 13, 7133. [Google Scholar] [CrossRef]
- Ribes, S.; Nittinger, E.; Tyrchan, C.; Mercado, R. Modeling PROTAC degradation activity with machine learning. Artif. Intell. Life Sci. 2024, 6, 100104. [Google Scholar] [CrossRef]
- Zhang, W.; Roy Burman, S.S.; Chen, J.; Donovan, K.A.; Cao, Y.; Shu, C.; Zhang, B.; Zeng, Z.; Gu, S.; Zhang, Y.; et al. Machine learning modeling of protein-intrinsic features predicts tractability of targeted protein degradation. Genom. Proteom. Bioinform. 2022, 20, 882–898. [Google Scholar] [CrossRef]
- Liu, J.; Roy, M.J.; Isbel, L.; Li, F. Accurate PROTAC-targeted degradation prediction with DegradeMaster. Bioinformatics 2025, 41, i342–i351. [Google Scholar] [CrossRef]
- Xie, L.; Xie, L. Elucidation of genome-wide understudied proteins targeted by PROTAC-induced degradation using interpretable machine learning. PLoS Comput. Biol. 2023, 19, e1010974. [Google Scholar] [CrossRef]
- Imrie, F.; Bradley, A.R.; van der Schaar, M.; Deane, C.M. Deep generative models for 3D linker design. J. Chem. Inf. Model. 2020, 60, 1983–1995. [Google Scholar] [CrossRef]
- Huang, Y.; Peng, X.; Ma, J.; Zhang, M. 3DLinker: An E (3) Equivariant Variational Autoencoder for Molecular Linker Design. In Proceedings of the International Conference on Machine Learning, PMLR, Baltimore, MD, USA, 17–23 July 2022; pp. 9280–9294. [Google Scholar]
- Guo, J.; Knuth, F.; Margreitter, C.; Janet, J.P.; Papadopoulos, K.; Engkvist, O.; Patronov, A. Link-INVENT: Generative linker design with reinforcement learning. Digit. Discov. 2023, 2, 392–408. [Google Scholar] [CrossRef]
- Neeser, R.M.; Akdel, M.; Kovtun, D.; Naef, L. Reinforcement Learning-Driven Linker Design via Fast Attention-based Point Cloud Alignment. In Proceedings of the ICML 2023 Workshop on Structured Probabilistic Inference & Generative Modeling, Honolulu, HI, USA, 23–29 July 2023. [Google Scholar]
- Zheng, S.; Tan, Y.; Wang, Z.; Li, C.; Zhang, Z.; Sang, X.; Chen, H.; Yang, Y. Accelerated rational PROTAC design via deep learning and molecular simulations. Nat. Mach. Intell. 2022, 4, 739–748. [Google Scholar] [CrossRef]
- Li, F.; Hu, Q.; Zhou, Y.; Yang, H.; Bai, F. DiffPROTACs is a deep learning-based generator for proteolysis targeting chimeras. Briefings Bioinform. 2024, 25, bbae358. [Google Scholar] [CrossRef]
- Song, Z.; Meng, Z.; Hernández-Lobato, J.M. Domain-Adapted Diffusion Model for PROTAC Linker Design Through the Lens of Density Ratio in Chemical Space. In Proceedings of the Forty-second International Conference on Machine Learning, Vancouver, BC, Canada, 13–19 July 2025. [Google Scholar]
- Peteani, G.; Huynh, M.T.D.; Gerebtzoff, G.; Rodríguez-Pérez, R. Application of machine learning models for property prediction to targeted protein degraders. Nat. Commun. 2024, 15, 5764. [Google Scholar] [CrossRef] [PubMed]
- Poongavanam, V.; Kölling, F.; Giese, A.; Göller, A.H.; Lehmann, L.; Meibom, D.; Kihlberg, J. Predictive modeling of PROTAC cell permeability with machine learning. ACS Omega 2023, 8, 5901–5916. [Google Scholar] [CrossRef] [PubMed]
- Drummond, M.L.; Williams, C.I. In silico modeling of PROTAC-mediated ternary complexes: Validation and application. J. Chem. Inf. Model. 2019, 59, 1634–1644. [Google Scholar] [CrossRef] [PubMed]
- Zaidman, D.; Prilusky, J.; London, N. PRosettaC: Rosetta based modeling of PROTAC mediated ternary complexes. J. Chem. Inf. Model. 2020, 60, 4894–4903. [Google Scholar] [CrossRef]
- Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein Data Bank (PDB): The single global macromolecular structure archive. Protein Crystallogr. Methods Protoc. 2017, 1607, 627–641. [Google Scholar]
- Ge, J.; Li, S.; Weng, G.; Wang, H.; Fang, M.; Sun, H.; Deng, Y.; Hsieh, C.Y.; Li, D.; Hou, T. PROTAC-DB 3.0: An updated database of PROTACs with extended pharmacokinetic parameters. Nucleic Acids Res. 2025, 53, D1510–D1515. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 2023, 379, 1123–1130. [Google Scholar] [CrossRef]
- Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rehawi, G.; Wang, Y.; Jones, L.; Gibbs, T.; Feher, T.; Angerer, C.; Steinegger, M.; et al. Prottrans: Toward understanding the language of life through self-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 7112–7127. [Google Scholar] [CrossRef]
- Zhou, J.; Theesfeld, C.L.; Yao, K.; Chen, K.M.; Wong, A.K.; Troyanskaya, O.G. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat. Genet. 2018, 50, 1171–1179. [Google Scholar] [CrossRef]
- Avsec, Ž.; Agarwal, V.; Visentin, D.; Ledsam, J.R.; Grabska-Barwinska, A.; Taylor, K.R.; Assael, Y.; Jumper, J.; Kohli, P.; Kelley, D.R. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 2021, 18, 1196–1203. [Google Scholar] [CrossRef]
- Linder, J.; Srivastava, D.; Yuan, H.; Agarwal, V.; Kelley, D.R. Predicting RNA-seq coverage from DNA sequence as a unifying model of gene regulation. Nat. Genet. 2025, 57, 949–961. [Google Scholar] [CrossRef]
- Avsec, Ž.; Latysheva, N.; Cheng, J.; Novati, G.; Taylor, K.R.; Ward, T.; Bycroft, C.; Nicolaisen, L.; Arvaniti, E.; Pan, J.; et al. AlphaGenome: Advancing regulatory variant effect prediction with a unified DNA sequence model. bioRxiv 2025, 2025-06. [Google Scholar] [CrossRef]
- Palomba, T.; Baroni, M.; Cross, S.; Cruciani, G.; Siragusa, L. ELIOT: A platform to navigate the E3 pocketome and aid the design of new PROTACs. Chem. Biol. Drug Des. 2023, 101, 69–86. [Google Scholar] [CrossRef]
- Liu, L.; Damerell, D.R.; Koukouflis, L.; Tong, Y.; Marsden, B.D.; Schapira, M. UbiHub: A data hub for the explorers of ubiquitination pathways. Bioinformatics 2019, 35, 2882–2884. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, J.; Wang, T.; Luo, M.; Chen, Y.; Chen, C.; Ronai, Z.; Zhou, Y.; Ruppin, E.; Han, L. Expanding PROTACtable genome universe of E3 ligases. Nat. Commun. 2023, 14, 6509. [Google Scholar] [CrossRef]
- Wurz, R.P.; Rui, H.; Dellamaggiore, K.; Ghimire-Rijal, S.; Choi, K.; Smither, K.; Amegadzie, A.; Chen, N.; Li, X.; Banerjee, A.; et al. Affinity and cooperativity modulate ternary complex formation to drive targeted protein degradation. Nat. Commun. 2023, 14, 4177. [Google Scholar] [CrossRef] [PubMed]
- Gainza, P.; Sverrisson, F.; Monti, F.; Rodola, E.; Boscaini, D.; Bronstein, M.M.; Correia, B.E. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 2020, 17, 184–192. [Google Scholar] [CrossRef]
- Wu, L.; Tian, Y.; Huang, Y.; Li, S.; Lin, H.; Chawla, N.V.; Li, S.Z. Mape-ppi: Towards effective and efficient protein-protein interaction prediction via microenvironment-aware protein embedding. arXiv 2024, arXiv:2402.14391. [Google Scholar]
- Lipman, Y.; Chen, R.T.; Ben-Hamu, H.; Nickel, M.; Le, M. Flow Matching for Generative Modeling. In Proceedings of the The Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Li, J.; Cheng, C.; Wu, Z.; Guo, R.; Luo, S.; Ren, Z.; Peng, J.; Ma, J. Full-Atom Peptide Design based on Multi-modal Flow Matching. In Proceedings of the International Conference on Machine Learning, PMLR, Vienna, Austria, 21–27 July 2024; pp. 27615–27640. [Google Scholar]
- Zhang, Z.; Wang, M.; Liu, Q. Flexsbdd: Structure-based drug design with flexible protein modeling. Adv. Neural Inf. Process. Syst. 2024, 37, 53918–53944. [Google Scholar]
- Jing, B.; Stärk, H.; Jaakkola, T.; Berger, B. Generative modeling of molecular dynamics trajectories. Adv. Neural Inf. Process. Syst. 2024, 37, 40534–40564. [Google Scholar]
- Jin, Y.; Huang, Q.; Song, Z.; Zheng, M.; Teng, D.; Shi, Q. P2dflow: A protein ensemble generative model with se (3) flow matching. J. Chem. Theory Comput. 2025, 21, 3288–3296. [Google Scholar] [CrossRef]
- Moon, S.; Zhung, W.; Yang, S.; Lim, J.; Kim, W.Y. PIGNet: A physics-informed deep learning model toward generalized drug–target interaction predictions. Chem. Sci. 2022, 13, 3661–3673. [Google Scholar] [CrossRef]
- Orlando, G.; Serrano, L.; Schymkowitz, J.; Rousseau, F. Integrating physics in deep learning algorithms: A force field as a PyTorch module. Bioinformatics 2024, 40, btae160. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 2017, 171, 1437–1452. [Google Scholar] [CrossRef]
- Zhang, J.; Ubas, A.A.; de Borja, R.; Svensson, V.; Thomas, N.; Thakar, N.; Lai, I.; Winters, A.; Khan, U.; Jones, M.G.; et al. Tahoe-100m: A giga-scale single-cell perturbation atlas for context-dependent gene function and cellular modeling. bioRxiv 2025, 2025-02. [Google Scholar]
- Qi, X.; Zhao, L.; Tian, C.; Li, Y.; Chen, Z.L.; Huo, P.; Chen, R.; Liu, X.; Wan, B.; Yang, S.; et al. Predicting transcriptional responses to novel chemical perturbations using deep generative model for drug discovery. Nat. Commun. 2024, 15, 9256. [Google Scholar] [CrossRef]
- Lotfollahi, M.; Klimovskaia Susmelj, A.; De Donno, C.; Hetzel, L.; Ji, Y.; Ibarra, I.L.; Srivatsan, S.R.; Naghipourfar, M.; Daza, R.M.; Martin, B.; et al. Predicting cellular responses to complex perturbations in high-throughput screens. Mol. Syst. Biol. 2023, 19, e11517. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Zhang, Y.; Wang, Y.; Zhang, Y.; Jing, J.; Zhang, Y.; Xu, G.; Teng, H.; Wang, T.; Fu, L.; et al. TPDdb: The comprehensive database of targeted protein degrader. Nucleic Acids Res. 2025, gkaf996. [Google Scholar] [CrossRef]
- Schapira, M.; Calabrese, M.F.; Bullock, A.N.; Crews, C.M. Targeted protein degradation: Expanding the toolbox. Nat. Rev. Drug Discov. 2019, 18, 949–963. [Google Scholar] [CrossRef]
- Mostofian, B.; Martin, H.J.; Razavi, A.; Patel, S.; Allen, B.; Sherman, W.; Izaguirre, J.A. Targeted protein degradation: Advances, challenges, and prospects for computational methods. J. Chem. Inf. Model. 2023, 63, 5408–5432. [Google Scholar] [CrossRef]
- Tan, S.; Chen, Z.; Lu, R.; Liu, H.; Yao, X. Rational Proteolysis Targeting Chimera Design Driven by Molecular Modeling and Machine Learning. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2025, 15, e70013. [Google Scholar] [CrossRef]
- Nahal, Y.; Menke, J.; Martinelli, J.; Heinonen, M.; Kabeshov, M.; Janet, J.P.; Nittinger, E.; Engkvist, O.; Kaski, S. Human-in-the-loop active learning for goal-oriented molecule generation. J. Cheminform. 2024, 16, 138. [Google Scholar] [CrossRef]
- Xu, Z.; Ren, F.; Wang, P.; Cao, J.; Tan, C.; Ma, D.; Zhao, L.; Dai, J.; Ding, Y.; Fang, H.; et al. A generative AI-discovered TNIK inhibitor for idiopathic pulmonary fibrosis: A randomized phase 2a trial. Nat. Med. 2025, 31, 2602–2610. [Google Scholar] [CrossRef]
- Song, T.; Luo, M.; Zhang, X.; Chen, L.; Huang, Y.; Cao, J.; Zhu, Q.; Liu, D.; Zhang, B.; Zou, G.; et al. A Multiagent-Driven Robotic AI Chemist Enabling Autonomous Chemical Research On Demand. J. Am. Chem. Soc. 2025, 147, 12534–12545. [Google Scholar] [CrossRef]






| Application Area | Model Name | Architecture | Input | Output | Key Features | Ref. |
|---|---|---|---|---|---|---|
| Ternary Complex Prediction | DeepTernary | SE(3)-equivariant GNN | PROTAC molecular graph + POI/E3 pocket graph with 3D coordinates | 3D ternary complex | Predicted BSA indicates degradability | [26] |
| AlphaFold3 | Diffusion Transformer | Protein sequence + ligand SMILES | 3D ternary complex | Diffusion-based multimodal model predicting 3D complexes of proteins, ligands, and nucleic acids | [27] | |
| Degradability Prediction | DeepPROTACs | GNN + RNN + MLP | PROTAC molecular graph + POI/E3 pocket graph | PROTAC degradability (high/low) | Joint molecule–protein modeling for degradation prediction | [28] |
| Ribes et al. | Pretrained embedding models + linear classifier | PROTAC SMILES + POI/E3 sequence + cell-line metadata | PROTAC degradability (high/low) | Incorporated cell line context for degradation prediction | [29] | |
| MAPD | RF | Protein features (PTMs, PPI, length, etc.) | Protein degradability (tractable/ non-tractable) | Protein-level degradability prediction from intrinsic features | [30] | |
| DegradeMaster | E(3)-equivariant GNN | 3D molecule graphs of PROTAC and POI/E3 | PROTAC degradability (high/low) | Mutual-attention pooling and pseudo-labeling | [31] | |
| PrePROTAC | RF | PLM embedding of protein sequence | CRBN-specific protein degradability | Protein-level degradability prediction and key residues identification by eSHAP | [32] | |
| Linker Design & Generation | DeLinker | GNN | Anchor fragments (warhead + E3 ligand) in graph with 3D structural info | 3D linker structures | Distance/angle constrained fragment linking | [33] |
| 3DLinker | E(3)-equivariant graph VAE | Anchor fragments (warhead + E3 ligand) in graph with 3D coordinates | 3D linker structures | generates physically consistent linkers with accurate spatial alignment | [34] | |
| Link-INVENT | RNN + RL | Anchor fragments (warhead + E3 ligand) as SMILES | Optimized linker SMILES | Multi-parameter optimization | [35] | |
| ShapeLinker | RNN + RL with 3D point cloud alignment | Anchor fragments (warhead + E3 ligand) as SMILES | Optimized linker SMILES | Geometry-conditioned method based on Link-INVENT | [36] | |
| PROTAC-RL | Transformer + RL | Anchor fragments (warhead + E3 ligand) as SMILES | Full PROTAC molecules with generated linker | Pretrained on quasi-PROTACs; RL optimizes PK; prospective validation | [37] | |
| DiffPROTACs | Diffusion + O(3)-equivariant graph Transformer | Anchor fragments (warhead + E3 ligand) as molecular graphs with 3D coordinates | Full PROTAC molecules with generated linker | Diffusion refines noisy linker atoms into valid 3D structures; high validity and structural realism | [38] | |
| DAD-PROTAC | Domain-adapted diffusion | Anchor fragments (warhead + E3 ligand) as molecular graphs with 3D coordinates | Full PROTAC molecules with generated linker | Corrects distribution gap between small molecules and PROTACs via density-ratio guided score adjustment; efficient fine-tuning and reduced overfitting | [39] | |
| ADME & Permeability | Peteani et al. | MTL GNN + DNN | PROTAC SMILES | ADME-related properties (solubility, permeability, stability, etc.) | Used transfer learning to adapt QSPR models to degraders | [40] |
| Poongavanam et al. | kNN + RF | 17 physicochemical descriptors | Permeability classes | Size and lipophilicity dominate; strong blind accuracy on VHL set | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, K.-S.; Jeon, M. Advancing PROTAC Discovery Through Artificial Intelligence: Opportunities, Challenges, and Future Directions. Pharmaceuticals 2025, 18, 1793. https://doi.org/10.3390/ph18121793
Park K-S, Jeon M. Advancing PROTAC Discovery Through Artificial Intelligence: Opportunities, Challenges, and Future Directions. Pharmaceuticals. 2025; 18(12):1793. https://doi.org/10.3390/ph18121793
Chicago/Turabian StylePark, Kwang-Su, and Minji Jeon. 2025. "Advancing PROTAC Discovery Through Artificial Intelligence: Opportunities, Challenges, and Future Directions" Pharmaceuticals 18, no. 12: 1793. https://doi.org/10.3390/ph18121793
APA StylePark, K.-S., & Jeon, M. (2025). Advancing PROTAC Discovery Through Artificial Intelligence: Opportunities, Challenges, and Future Directions. Pharmaceuticals, 18(12), 1793. https://doi.org/10.3390/ph18121793

