Cracking the Sulfur Code: Garlic Bioactive Molecules as Multi-Target Blueprints for Drug Discovery
Abstract
1. Introduction
2. Pharmacological Activities
2.1. Cardiovascular Health
2.1.1. Blood Pressure Regulation
2.1.2. Lipid Profile Improvement
2.1.3. Antithrombotic Effects
2.2. Cancer Prevention
2.2.1. Breast Cancer
2.2.2. Colorectal Carcinoma
2.2.3. Pancreatic Carcinoma
2.2.4. Lung Cancer
2.3. Antimicrobial Activity
2.4. Metabolic Disorders
2.5. Neuroprotection
3. Formulations of Organosulfur Compounds
3.1. Nanoemulsions and High Internal Phase Emulsions (HIPEs)
3.2. Liposomes
3.3. Solid Lipid Nanoparticles and Related Lipid Carriers
3.4. Polymeric Nanoparticles and pH-Responsive Matrices
3.5. Cyclodextrin Inclusion Complexes
3.6. Hydrogels, Films, and Nanofibers
3.7. Ethosomes and Niosomes
4. Computational Insights
4.1. Molecular Docking
4.2. Molecular Dynamics Simulation
4.3. Network Pharmacology
4.4. Quantitative Structure–Activity Relationships (QSAR)
4.5. Density Functional Theory Computations
4.6. ADMET Studies
5. Safety Considerations and Drug Interactions
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El-Saadony, M.T.; Saad, A.M.; Korma, S.A.; Salem, H.M.; El-Mageed, T.A.A.; Alkafaas, S.S.; Elsalahaty, M.I.; Elkafas, S.S.; Mosa, W.F.A.; Ahmed, A.E.; et al. Garlic bioactive substances and their therapeutic applications for improving human health: A comprehensive review. Front. Immunol. 2024, 15, 1277074. [Google Scholar] [CrossRef]
- Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic: A review of potential therapeutic effects. Avicenna J. Phytomed. 2014, 4, 1–14. [Google Scholar]
- Tattelman, E. Health effects of garlic. Am. Fam. Physician 2005, 72, 103–106. [Google Scholar]
- Tsai, C.-W.; Chen, H.-W.; Sheen, L.-Y.; Lii, C.-K. Garlic: Health benefits and actions. BioMedicine 2012, 2, 17–29. [Google Scholar] [CrossRef]
- Cavallito, C.J.; Bailey, J.H. Allicin, the Antibacterial Principle of Allium sativum. I. Isolation, Physical Properties and Antibacterial Action. J. Am. Chem. Soc. 1944, 66, 1950–1951. [Google Scholar] [CrossRef]
- Seki, T.; Hosono, T. Functionality of garlic sulfur compounds (Review). Biomed. Rep. 2025, 23, 124. [Google Scholar] [CrossRef] [PubMed]
- Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.H.; Nwachukwu, I.D.; Slusarenko, A.J. Allicin: Chemistry and biological properties. Molecules 2014, 19, 12591–12618. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Tang, G.-Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef]
- Khan, M.M.U.; Khalilullah, H.; Eid, E.E.M.; Azam, F.; Khan, M.A.; Khan, A.; Siddiqui, N.A.; Mahmood, T.; Ahsan, F.; Khan, W.U.; et al. A Dig Deep to Scout the Pharmacological and Clinical Facet of Garlic (Allium sativum). Curr. Tradit. Med. 2022, 8, 1–19. [Google Scholar] [CrossRef]
- Saadh, M.J.; Kariem, M.; Shukla, M.; Ballal, S.; Kumar, A.; Chahar, M.; Saini, S.; Kapila, I.; Hasaanzadeh, S. Effects of aged garlic extract on blood pressure in hypertensive patients: A systematic review and meta-analysis of randomized controlled trials. Prostaglandins Other Lipid Mediat. 2024, 175, 106914. [Google Scholar] [CrossRef]
- Bashiri, S.; TaghipourSheshdeh, F.; Foshati, S.; Askarpour, M.; Ahmadi, A.; Babajafari, S. The Effect of Aged Garlic Supplementation on Blood Pressure and Lipid Profile: A Dose-Response Grade-Assessed Systematic Review and Meta-Analysis of Randomized Controlled Trials. In Phytotherapy Research; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2025. [Google Scholar] [CrossRef]
- Ansary, J.; Forbes-Hernández, T.; Gil, E.; Cianciosi, D.; Zhang, J.; Elexpuru-Zabaleta, M.; Simal-Gándara, J.; Giampieri, F.; Battino, M. Potential Health Benefit of Garlic Based on Human Intervention Studies: A Brief Overview. Antioxidants 2020, 9, 619. [Google Scholar] [CrossRef] [PubMed]
- Tudu, C.K.; Dutta, T.; Ghorai, M.; Biswas, P.; Samanta, D.; Olekšák, P.; Jha, N.; Kumar, M.; Radha; Proćków, J.; et al. Traditional uses, phytochemistry, pharmacology and toxicology of garlic (Allium sativum), a storehouse of diverse phytochemicals: A review of research from the last decade focusing on health and nutritional implications. Front. Nutr. 2022, 9, 949554. [Google Scholar] [CrossRef] [PubMed]
- Saikat, A.S.M.; Hossain, R.; Mina, F.; Das, S.; Khan, I.; Mubarak, M.; Islam, M. Antidiabetic Effect of Garlic. Rev. Bras. Farm. 2021, 32, 1–11. [Google Scholar] [CrossRef]
- Farhat, Z.; Hershberger, P.; Freudenheim, J.; Mammen, M.; Blair, R.H.; Aga, D.; Mu, L. Types of garlic and their anticancer and antioxidant activity: A review of the epidemiologic and experimental evidence. Eur. J. Nutr. 2021, 60, 3585–3609. [Google Scholar] [CrossRef]
- Sobenin, I.; Myasoedova, V.; Iltchuk, M.; Zhang, D.-W.; Orekhov, A. Therapeutic effects of garlic in cardiovascular atherosclerotic disease. Chin. J. Nat. Med. 2019, 17, 721–728. [Google Scholar] [CrossRef]
- Sleiman, C.; Daou, R.-M.; Al Hazzouri, A.; Hamdan, Z.; Ghadieh, H.E.; Harbieh, B.; Romani, M. Garlic and Hypertension: Efficacy, Mechanism of Action, and Clinical Implications. Nutrients 2024, 16, 2895. [Google Scholar] [CrossRef]
- Zhou, Y.-Y.; Li, X.; Luo, W.; Zhu, J.; Zhao, J.; Wang, M.; Sang, L.; Chang, B.; Wang, B.-Y. Allicin in Digestive System Cancer: From Biological Effects to Clinical Treatment. Front. Pharmacol. 2022, 13, 903259. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yun, W.; Wang, G.; Li, A.; Gao, J.; He, Q.-Y. Roles and mechanisms of garlic and its extracts on atherosclerosis: A review. Front. Pharmacol. 2022, 13, 954938. [Google Scholar] [CrossRef] [PubMed]
- Thakur, P.; Dhiman, A.; Kumar, S.; Suhag, R. Garlic (Allium sativum L.): A review on bio-functionality, allicin’s potency and drying methodologies. S. Afr. J. Bot. 2024, 171, 129–146. [Google Scholar] [CrossRef]
- Ryu, J.; Kang, D. Physicochemical Properties, Biological Activity, Health Benefits, and General Limitations of Aged Black Garlic: A Review. Molecules 2017, 22, 919. [Google Scholar] [CrossRef]
- Lu, X.; Wang, C.; Zhao, M.; Wu, J.; Niu, Z.; Zhang, X.; Simal-Gándara, J.; Süntar, I.; Jafari, S.; Qiao, X.; et al. Improving the bioavailability and bioactivity of garlic bioactive compounds via nanotechnology. Crit. Rev. Food Sci. Nutr. 2021, 62, 8467–8496. [Google Scholar] [CrossRef]
- Ozma, M.A.; Abbasi, A.; Rezaee, A.; Hosseini, H.; Hosseinzadeh, N.; Sabahi, S.; Noori, S.; Sepordeh, S.; Khodadadi, E.; Lahouty, M.; et al. A Critical Review on the Nutritional and Medicinal Profiles of Garlic’s (Allium sativum L.) Bioactive Compounds. Food Rev. Int. 2022, 39, 6324–6361. [Google Scholar] [CrossRef]
- Ahmed, T.; Wang, C.-K. Black Garlic and Its Bioactive Compounds on Human Health Diseases: A Review. Molecules 2021, 26, 5028. [Google Scholar] [CrossRef] [PubMed]
- Molski, M. Density Functional Theory Studies on the Chemical Reactivity of Allyl Mercaptan and Its Derivatives. Molecules 2024, 29, 668. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, Y.; Liu, Y.; Liu, X.; Qi, Z. Garlic-Derived Allicin Attenuates Parkinson’s Disease via PKA/p-CREB/BDNF/DAT Pathway Activation and Apoptotic Inhibition. Molecules 2025, 30, 3265. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Bai, Y.; Feng, M.; Wang, X.; Ni, L.; Cai, L.; Cao, Y. The synergistic antibacterial effects of allicin nanoemulsion and ε-polylysine against Escherichia coli in both planktonic and biofilm forms. Food Chem. 2025, 472, 142949. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Saleem, M.F.; Hassanzadeh, H. Optimization of solvent evaporation method in liposomal nanocarriers loaded-garlic essential oil (Allium sativum): Based on the encapsulation efficiency, antioxidant capacity, and instability. IET Nanobiotechnol. 2023, 17, 438–449. [Google Scholar] [CrossRef]
- Tavares, L.; Santos, L.; Noreña, C.P.Z. Bioactive compounds of garlic: A comprehensive review of encapsulation technologies, characterization of the encapsulated garlic compounds and their industrial applicability. Trends Food Sci. Technol. 2021, 114, 232–244. [Google Scholar] [CrossRef]
- Zhou, Y.; Feng, J.; Peng, H.; Guo, T.; Xiao, J.; Zhu, W.; Qian, W.; Zhang, J.; Wu, L. Allicin inclusions with α-cyclodextrin effectively masking its odor: Preparation, characterization, and olfactory and gustatory evaluation. J. Food Sci. 2021, 86, 4026–4036. [Google Scholar] [CrossRef]
- Gaikwad, A.R.; Borse, S.L. A Comprehensive Review on Garlic Oil as an Anti-inflammatory Nanoemulsion. Curr. Nanomed. 2025, 15, 485–491. [Google Scholar] [CrossRef]
- Deng, Y.; Ho, C.-T.; Lan, Y.; Xiao, J.; Lu, M. Bioavailability, Health Benefits, and Delivery Systems of Allicin: A Review. J. Agric. Food Chem. 2023, 71, 19207–19220. [Google Scholar] [CrossRef]
- Mondal, A.; Banerjee, S.; Bose, S.; Mazumder, S.; Haber, R.A.; Farzaei, M.H.; Bishayee, A. Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacol. Res. 2022, 175, 105837. [Google Scholar] [CrossRef] [PubMed]
- Bataduwaarachchi, V.R.; Liyanage, D.C.J.; Hansanie, S.M.N.; Perera, H.; D’Cruz, L.G. Therapeutic potential of Garlic (Allium sativum L.) on new models of asthma immune pathobiology: A review. Phytomed. Plus 2025, 5, 100749. [Google Scholar] [CrossRef]
- Wang, C.; Han, N.; Mao, C.; Chen, J.; Cheng, N.; Zhao, J.; Song, Y.; Sun, X. The Therapeutic Potential of Garlic-Derived Organic Polysulfides for Ischemia-Reperfusion Injury. Int. J. Mol. Sci. 2025, 26, 8257. [Google Scholar] [CrossRef]
- Agostinelli, E.; Marzaro, G.; Gambari, R.; Finotti, A. Potential applications of components of aged garlic extract in mitigating pro-inflammatory gene expression linked to human diseases (Review). Exp. Ther. Med. 2025, 30, 134. [Google Scholar] [CrossRef] [PubMed]
- Behrouz, V.; Zahroodi, M.; Clark, C.C.T.; Mir, E.; Atashi, N.; Rivaz, R. Effects of Garlic Supplementation on Cardiovascular Risk Factors in Adults: A Comprehensive Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Rev. 2025, nuaf090. [Google Scholar] [CrossRef]
- Stępień, A.E.; Trojniak, J.; Tabarkiewicz, J. Anti-Cancer and Anti-Inflammatory Properties of Black Garlic. Int. J. Mol. Sci. 2024, 25, 1801. [Google Scholar] [CrossRef]
- Ezeorba, T.P.C.; Chukwudozie, K.I.; Ezema, C.A.; Anaduaka, E.G.; Nweze, E.J.; Okeke, E.S. Potentials for health and therapeutic benefits of garlic essential oils: Recent findings and future prospects. Pharmacol. Res. Mod. Chin. Med. 2022, 3, 100075. [Google Scholar] [CrossRef]
- Bhatwalkar, S.B.; Mondal, R.; Krishna, S.B.N.; Adam, J.K.; Govender, P.; Anupam, R. Antibacterial Properties of Organosulfur Compounds of Garlic (Allium sativum). Front. Microbiol. 2021, 12, 613077. [Google Scholar] [CrossRef]
- Okoro, B.C.; Dokunmu, T.M.; Okafor, E.; Sokoya, I.A.; Israel, E.N.; Olusegun, D.O.; Bella-Omunagbe, M.; Ebubechi, U.M.; Ugbogu, E.A.; Iweala, E.E.J. The ethnobotanical, bioactive compounds, pharmacological activities and toxicological evaluation of garlic (Allium sativum): A review. Pharmacol. Res. Mod. Chin. Med. 2023, 8, 100273. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; García-Recio, E.; Ruiz, C.; De Luna-Bertos, E.; Illescas-Montes, R.; Costela-Ruiz, V.J. Biological properties and therapeutic applications of garlic and its components. Food Funct. 2022, 13, 2415–2426. [Google Scholar] [CrossRef]
- Morales-González, J.A.; Madrigal-Bujaidar, E.; Sánchez-Gutiérrez, M.; Izquierdo-Vega, J.A.; Valadez-Vega, M.D.; Álvarez-González, I.; Morales-González, Á.; Madrigal-Santillán, E. Garlic (Allium sativum L.): A Brief Review of Its Antigenotoxic Effects. Foods 2019, 8, 343. [Google Scholar] [CrossRef]
- Kawasaki, H.; Nussbaum, G. Therapeutic potential of garlic, aged garlic extract and garlic-derived compounds on pancreatic cancer (Review). Biomed. Rep. 2025, 22, 54. [Google Scholar] [CrossRef] [PubMed]
- Mandge, H.M.; Rehal, J.; Goswami, D.; Choudhary, A.; Kaur, P. Unraveling phytochemistry and biofunctionality of black garlic: A systematic review. Food Sci. Biotechnol. 2025. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, B.; Qin, G.; Liang, S.; Yin, J.; Jiang, H.; Liu, M.; Li, X. Therapeutic potentials of allicin in cardiovascular disease: Advances and future directions. Chin. Med. 2024, 19, 93. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, H.; Jia, J. The effect of garlic on the lowering of blood pressure in the patients with hypertension: An updated meta-analysis and trial sequential analysis. Asian Biomed. 2025, 19, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Mathew, B.; Biju, R. Neuroprotective effects of garlic a review. Libyan J. Med. 2008, 3, 23–33. [Google Scholar] [CrossRef]
- Sendl, A.; Elbl, G.; Steinke, B.; Redl, K.; Breu, W.; Wagner, H. Comparative pharmacological investigations of Allium ursinum and Allium sativum. Planta Med. 1992, 58, 1–7. [Google Scholar] [CrossRef]
- Benavides, G.A.; Squadrito, G.L.; Mills, R.W.; Patel, H.D.; Isbell, T.S.; Patel, R.P.; Darley-Usmar, V.M.; Doeller, J.E.; Kraus, D.W. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl. Acad. Sci. USA 2007, 104, 17977–17982. [Google Scholar] [CrossRef] [PubMed]
- Gadidala, S.K.; Johny, E.; Thomas, C.; Nadella, M.; Undela, K.; Adela, R. Effect of garlic extract on markers of lipid metabolism and inflammation in coronary artery disease (CAD) patients: A systematic review and meta-analysis. Phyther. Res. 2023, 37, 2242–2254. [Google Scholar] [CrossRef]
- Ried, K. Garlic lowers blood pressure in hypertensive subjects, improves arterial stiffness and gut microbiota: A review and meta-analysis. Exp. Ther. Med. 2020, 19, 1472–1478. [Google Scholar] [CrossRef]
- Singh, N.; Gusain, A.; Nigam, M.; Mishra, A.P. The pharmacological and therapeutic versatility of Allium species: A comprehensive exploration of bioactive constituents and biological activities. Discov. Appl. Sci. 2025, 7, 349. [Google Scholar] [CrossRef]
- Xiang, L.; Qiu, Z.; Qiao, X.; Zhang, B.; Li, L.; Chen, H.; Zheng, Z.; Sun-Waterhouse, D. Synthesis of a garlic protein-derived ACE inhibitory peptide and exploration of its antihypertensive mechanisms using integrated network pharmacology, transcriptomics, and in vitro cellular experiments. J. Future Foods 2025. [Google Scholar] [CrossRef]
- Gao, X.; Xue, Z.; Ma, Q.; Guo, Q.; Xing, L.; Santhanam, R.K.; Zhang, M.; Chen, H. Antioxidant and antihypertensive effects of garlic protein and its hydrolysates and the related mechanism. J. Food Biochem. 2020, 44, e13126. [Google Scholar] [CrossRef]
- Gupta, N.; Porter, T.D. Garlic and garlic-derived compounds inhibit human squalene monooxygenase. J. Nutr. 2001, 131, 1662–1667. [Google Scholar] [CrossRef]
- Gebhardt, R.; Beck, H.; Wagner, K.G. Inhibition of cholesterol biosynthesis by allicin and ajoene in rat hepatocytes and HepG2 cells. Biochim. Biophys. Acta 1994, 1213, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.K.; Porter, T.D. Inhibition of sterol 4alpha-methyl oxidase is the principal mechanism by which garlic decreases cholesterol synthesis. J. Nutr. 2006, 136, 759S–764S. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yeh, Y.Y. Water-soluble organosulfur compounds of garlic inhibit fatty acid and triglyceride syntheses in cultured rat hepatocytes. Lipids 2001, 36, 395–400. [Google Scholar] [CrossRef]
- Liu, L.; Yeh, Y.Y. Inhibition of cholesterol biosynthesis by organosulfur compounds derived from garlic. Lipids 2000, 35, 197–203. [Google Scholar] [CrossRef]
- Sobenin, I.A.; Andrianova, I.V.; Demidova, O.N.; Gorchakova, T.; Orekhov, A.N. Lipid-lowering effects of time-released garlic powder tablets in double-blinded placebo-controlled randomized study. J. Atheroscler. Thromb. 2008, 15, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Vargas, R.; Gotzkowsky, S.; McMahon, F.G. Can garlic reduce levels of serum lipids? A controlled clinical study. Am. J. Med. 1993, 94, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, R.T.; Mulrow, C.D.; Ramirez, G.; Gardner, C.D.; Morbidoni, L.; Lawrence, V.A. Garlic shows promise for improving some cardiovascular risk factors. Arch. Intern. Med. 2001, 161, 813–824. [Google Scholar] [CrossRef]
- Neil, H.A.; Silagy, C.A.; Lancaster, T.; Hodgeman, J.; Vos, K.; Moore, J.W.; Jones, L.; Cahill, J.; Fowler, G.H. Garlic powder in the treatment of moderate hyperlipidaemia: A controlled trial and meta-analysis. J. R. Coll. Physicians Lond. 1996, 30, 329–334. [Google Scholar] [CrossRef]
- Berthold, H.K.; Sudhop, T.; von Bergmann, K. Effect of a garlic oil preparation on serum lipoproteins and cholesterol metabolism: A randomized controlled trial. JAMA 1998, 279, 1900–1902. [Google Scholar] [CrossRef] [PubMed]
- Steiner, M.; Khan, A.H.; Holbert, D.; Lin, R.I. A double-blind crossover study in moderately hypercholesterolemic men that compared the effect of aged garlic extract and placebo administration on blood lipids. Am. J. Clin. Nutr. 1996, 64, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.; Mølgaard, C.; Marckmann, P. Effect of garlic (Allium sativum) powder tablets on serum lipids, blood pressure and arterial stiffness in normo-lipidaemic volunteers: A randomised, double-blind, placebo-controlled trial. Br. J. Nutr. 2004, 92, 701–706. [Google Scholar] [CrossRef]
- Apitz-Castro, R.; Ledezma, E.; Escalante, J.; Jain, M.K. The molecular basis of the antiplatelet action of ajoene: Direct interaction with the fibrinogen receptor. Biochem. Biophys. Res. Commun. 1986, 141, 145–150. [Google Scholar] [CrossRef]
- Allison, G.L.; Lowe, G.M.; Rahman, K. Aged garlic extract inhibits platelet activation by increasing intracellular cAMP and reducing the interaction of GPIIb/IIIa receptor with fibrinogen. Life Sci. 2012, 91, 1275–1280. [Google Scholar] [CrossRef]
- Clark-Montoya, I.; Milán-Segovia, R.D.; Lemus-Rojero, O.; Jaramillo-Morales, O.A.; Júarez-Flores, B.; Terán-Figueroa, Y. Preclinical Evaluation of the Anticoagulant Effect of an Aqueous Extract of Snow Mountain Garlic. Medicina 2025, 61, 429. [Google Scholar] [CrossRef]
- Sobenin, I.A.; Pryanishnikov, V.V.; Kunnova, L.M.; Rabinovich, Y.A.; Martirosyan, D.M.; Orekhov, A.N. The effects of time-released garlic powder tablets on multifunctional cardiovascular risk in patients with coronary artery disease. Lipids Health Dis. 2010, 9, 119. [Google Scholar] [CrossRef]
- Tian, H.; Sun, S.; Qiu, X.; Wang, J.; Gao, Y.; Chen, J.; Han, X.; Bao, Z.; Guo, X.; Sun, Y.; et al. Diallyl Trisulfide From Garlic Regulates RAB18 Phase Separation to Inhibit Lipophagy and Induce Cuproptosis in Hepatic Stellate Cells for Antifibrotic Effects. Adv. Sci. 2025, 12, 2415325. [Google Scholar] [CrossRef]
- Ali, M.; Angelo-Khattar, M.; Farid, A.; Hassan, R.A.; Thulesius, O. Aqueous extracts of garlic (Allium sativum) inhibit prostaglandin synthesis in the ovine ureter. Prostaglandins. Leukot. Essent. Fat. Acids 1993, 49, 855–859. [Google Scholar] [CrossRef]
- Ali, M. Mechanism by which garlic (Allium sativum) inhibits cyclooxygenase activity. Effect of raw versus boiled garlic extract on the synthesis of prostanoids. Prostaglandins. Leukot. Essent. Fat. Acids 1995, 53, 397–400. [Google Scholar] [CrossRef]
- Rahman, K.; Lowe, G.M.; Smith, S. Aged Garlic Extract Inhibits Human Platelet Aggregation by Altering Intracellular Signaling and Platelet Shape Change. J. Nutr. 2016, 146, 410S–415S. [Google Scholar] [CrossRef]
- Rahman, K. Effects of garlic on platelet biochemistry and physiology. Mol. Nutr. Food Res. 2007, 51, 1335–1344. [Google Scholar] [CrossRef]
- Lu, X.; Li, N.; Qiao, X.; Qiu, Z.; Liu, P. Composition analysis and antioxidant properties of black garlic extract. J. Food Drug Anal. 2017, 25, 340–349. [Google Scholar] [CrossRef]
- Qiao, J.; Arthur, J.F.; Gardiner, E.E.; Andrews, R.K.; Zeng, L.; Xu, K. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol. 2018, 14, 126–130. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Z.; Liu, L.; Mu, D.; Wu, J.; Li, X.; Wu, X. Changes of Physicochemical Properties in Black Garlic during Fermentation. Fermentation 2022, 8, 653. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Qin, L.; Lin, S. Garlic-derived compounds: Epigenetic modulators and their antitumor effects. Phyther. Res. 2024, 38, 1329–1344. [Google Scholar] [CrossRef]
- Bhuker, S.; Kaur, A.; Rajauria, K.; Tuli, H.S.; Saini, A.K.; Saini, R.V.; Gupta, M. Allicin: A promising modulator of apoptosis and survival signaling in cancer. Med. Oncol. 2024, 41, 210. [Google Scholar] [CrossRef] [PubMed]
- Saini, A.; Saini, V.; Deswal, G.; Chopra, B.; Grewal, A.S.; Dhingra, A.K. Harnessing Therapeutic Potential of Allicin Against Cancer: An Exploratory Review. Anti-Cancer Agents Med. Chem. 2025, 25, 589–602. [Google Scholar] [CrossRef] [PubMed]
- Zurani, N.; Tukiran, N.A.; Yazik, A. The Benefit of Garlic from Islamic Perspective and Malay Practise. Malays. J. Health Sci. Sains Kesihat. Malays. 2024, 22, 117–123. [Google Scholar] [CrossRef]
- Sugiura, R.; Satoh, R.; Takasaki, T. ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021, 10, 2509. [Google Scholar] [CrossRef]
- Liu, K.; Zheng, M.; Lu, R.; Du, J.; Zhao, Q.; Li, Z.; Li, Y.; Zhang, S. The role of CDC25C in cell cycle regulation and clinical cancer therapy: A systematic review. Cancer Cell Int. 2020, 20, 213. [Google Scholar] [CrossRef]
- Yan, J.-Y.; Tian, F.-M.; Hu, W.-N.; Zhang, J.-H.; Cai, H.-F.; Li, N. Apoptosis of human gastric cancer cells line SGC 7901 induced by garlic-derived compound S-allylmercaptocysteine (SAMC). Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 745–751. [Google Scholar]
- Kang, J.S.; Kim, S.O.; Kim, G.-Y.; Hwang, H.J.; Kim, B.W.; Chang, Y.-C.; Kim, W.-J.; Kim, C.M.; Yoo, Y.H.; Choi, Y.H. An exploration of the antioxidant effects of garlic saponins in mouse-derived C2C12 myoblasts. Int. J. Mol. Med. 2016, 37, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, H.-Y.; Zhang, Z.-H.; Bian, H.-L.; Lin, G. Garlic-derived compound S-allylmercaptocysteine inhibits cell growth and induces apoptosis via the JNK and p38 pathways in human colorectal carcinoma cells. Oncol. Lett. 2014, 8, 2591–2596. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, X.; Li, A.; Sun, Y.; Liu, Y.; Sun, X.; Feng, X.; Li, S.; Zhao, Z. S-allylmercaptocysteine suppresses the growth of human gastric cancer xenografts through induction of apoptosis and regulation of MAPK and PI3K/Akt signaling pathways. Biochem. Biophys. Res. Commun. 2017, 491, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Xia, Q.; Li, J.; Wang, Z. Allicin suppresses growth and metastasis of gastric carcinoma: The key role of microRNA-383-5p-mediated inhibition of ERBB4 signaling. Biosci. Biotechnol. Biochem. 2020, 84, 1997–2004. [Google Scholar] [CrossRef]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef]
- Hirsch, K.; Danilenko, M.; Giat, J.; Miron, T.; Rabinkov, A.; Wilchek, M.; Mirelman, D.; Levy, J.; Sharoni, Y. Effect of purified allicin, the major ingredient of freshly crushed garlic, on cancer cell proliferation. Nutr. Cancer 2000, 38, 245–254. [Google Scholar] [CrossRef]
- Rosas-González, V.C.; Téllez-Bañuelos, M.C.; Hernández-Flores, G.; Bravo-Cuellar, A.; Aguilar-Lemarroy, A.; Jave-Suárez, L.F.; Haramati, J.; Solorzano-Ibarra, F.; Ortiz-Lazareno, P.C. Differential effects of alliin and allicin on apoptosis and senescence in luminal A and triple-negative breast cancer: Caspase, ΔΨm, and pro-apoptotic gene involvement. Fundam. Clin. Pharmacol. 2020, 34, 671–686. [Google Scholar] [CrossRef]
- Surapaneni, S.K.; Bhat, Z.R.; Tikoo, K. MicroRNA-941 regulates the proliferation of breast cancer cells by altering histone H3 Ser 10 phosphorylation. Sci. Rep. 2020, 10, 17954. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Khan, F.; Alshammari, N.; Saeed, A.; Aqil, F.; Saeed, M. Updates on the anticancer potential of garlic organosulfur compounds and their nanoformulations: Plant therapeutics in cancer management. Front. Pharmacol. 2023, 14, 1154034. [Google Scholar] [CrossRef] [PubMed]
- Na, H.-K.; Kim, E.-H.; Choi, M.-A.; Park, J.-M.; Kim, D.-H.; Surh, Y.-J. Diallyl trisulfide induces apoptosis in human breast cancer cells through ROS-mediated activation of JNK and AP-1. Biochem. Pharmacol. 2012, 84, 1241–1250. [Google Scholar] [CrossRef]
- Song, D.; Lian, Y.; Zhang, L. The potential of activator protein 1 (AP-1) in cancer targeted therapy. Front. Immunol. 2023, 14, 1224892. [Google Scholar] [CrossRef]
- Jikihara, H.; Qi, G.; Nozoe, K.; Hirokawa, M.; Sato, H.; Sugihara, Y.; Shimamoto, F. Aged garlic extract inhibits 1,2-dimethylhydrazine-induced colon tumor development by suppressing cell proliferation. Oncol. Rep. 2015, 33, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Fleischauer, A.T.; Poole, C.; Arab, L. Garlic consumption and cancer prevention: Meta-analyses of colorectal and stomach cancers. Am. J. Clin. Nutr. 2000, 72, 1047–1052. [Google Scholar] [CrossRef]
- Bat-Chen, W.; Golan, T.; Peri, I.; Ludmer, Z.; Schwartz, B. Allicin purified from fresh garlic cloves induces apoptosis in colon cancer cells via Nrf2. Nutr. Cancer 2010, 62, 947–957. [Google Scholar] [CrossRef]
- Cahyadi, A.; Ugrasena, I.D.G.; Andarsini, M.R.; Larasati, M.C.S.; Aryati, A.; Arumsari, D.K. Relationship between Bax and Bcl-2 Protein Expression and Outcome of Induction Phase Chemotherapy in Pediatric Acute Lymphoblastic Leukemia. Asian Pac. J. Cancer Prev. 2022, 23, 1679–1685. [Google Scholar] [CrossRef]
- Huang, W.-L.; Wu, S.-F.; Xu, S.-T.; Ma, Y.-C.; Wang, R.; Jin, S.; Zhou, S. Allicin enhances the radiosensitivity of colorectal cancer cells via inhibition of NF-κB signaling pathway. J. Food Sci. 2020, 85, 1924–1931. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, B.; Peng, J.; Tang, H.; Wang, S.; Peng, S.; Ye, F.; Wang, J.; Ouyang, K.; Li, J.; et al. Inhibition of NF-κB signaling unveils novel strategies to overcome drug resistance in cancers. Drug Resist. Updates 2024, 73, 101042. [Google Scholar] [CrossRef]
- Shirin, H.; Pinto, J.T.; Kawabata, Y.; Soh, J.W.; Delohery, T.; Moss, S.F.; Murty, V.; Rivlin, R.S.; Holt, P.R.; Weinstein, I.B. Antiproliferative effects of S-allylmercaptocysteine on colon cancer cells when tested alone or in combination with sulindac sulfide. Cancer Res. 2001, 61, 725–731. [Google Scholar] [PubMed]
- Chung, J.G.; Lu, H.F.; Yeh, C.C.; Cheng, K.C.; Lin, S.S.; Lee, J.H. Inhibition of N-acetyltransferase activity and gene expression in human colon cancer cell lines by diallyl sulfide. Food Chem. Toxicol. 2004, 42, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, P.; Wu, Y.; Liu, D.; Ji, M.; Li, H.; Wang, Y. Association and mechanism of garlic consumption with gastrointestinal cancer risk: A systematic review and meta-analysis. Oncol. Lett. 2022, 23, 125. [Google Scholar] [CrossRef]
- Roshandel, G.; Ghasemi-Kebria, F.; Malekzadeh, R. Colorectal Cancer: Epidemiology, Risk Factors, and Prevention. Cancers 2024, 16, 1530. [Google Scholar] [CrossRef]
- Hu, J.-Y.; Hu, Y.-W.; Zhou, J.-J.; Zhang, M.-W.; Li, D.; Zheng, S. Consumption of garlic and risk of colorectal cancer: An updated meta-analysis of prospective studies. World J. Gastroenterol. 2014, 20, 15413–15422. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Sun, H.; Liu, J.; Lin, Y.; Zhu, Z.; Han, X.; Sun, X.; Li, X.; Zhang, H.; Tang, Z. Effects of garlic oil on pancreatic cancer cells. Asian Pac. J. Cancer Prev. 2013, 14, 5905–5910. [Google Scholar] [CrossRef]
- Rauf, A.; Abu-Izneid, T.; Thiruvengadam, M.; Imran, M.; Olatunde, A.; Shariati, M.A.; Bawazeer, S.; Naz, S.; Shirooie, S.; Sanches-Silva, A.; et al. Garlic (Allium sativum L.): Its Chemistry, Nutritional Composition, Toxicity, and Anticancer Properties. Curr. Top. Med. Chem. 2022, 22, 957–972. [Google Scholar] [CrossRef]
- Chan, J.M.; Wang, F.; Holly, E.A. Vegetable and fruit intake and pancreatic cancer in a population-based case-control study in the San Francisco bay area. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2093–2097. [Google Scholar] [CrossRef]
- Ishikawa, H.; Saeki, T.; Otani, T.; Suzuki, T.; Shimozuma, K.; Nishino, H.; Fukuda, S.; Morimoto, K. Aged garlic extract prevents a decline of NK cell number and activity in patients with advanced cancer. J. Nutr. 2006, 136, 816S–820S. [Google Scholar] [CrossRef] [PubMed]
- Myneni, A.A.; Chang, S.-C.; Niu, R.; Liu, L.; Swanson, M.K.; Li, J.; Su, J.; Giovino, G.A.; Yu, S.; Zhang, Z.-F.; et al. Raw Garlic Consumption and Lung Cancer in a Chinese Population. Cancer Epidemiol. Biomark. Prev. 2016, 25, 624–633. [Google Scholar] [CrossRef]
- Jin, Z.-Y.; Wu, M.; Han, R.-Q.; Zhang, X.-F.; Wang, X.-S.; Liu, A.-M.; Zhou, J.-Y.; Lu, Q.-Y.; Zhang, Z.-F.; Zhao, J.-K. Raw garlic consumption as a protective factor for lung cancer, a population-based case-control study in a Chinese population. Cancer Prev. Res. 2013, 6, 711–718. [Google Scholar] [CrossRef]
- Gao, X.; Santhanam, R.K.; Huang, Z.; Liu, M.; Hou, S.; Song, A.; Ren, T.; Zhao, Q. Allicin-Mediated Cell Cycle Regulation Reverses Taxol Resistance in NSCLC: Molecular Insights and Therapeutic Potentia. J. Food Biochem. 2023, 2023, 9910431. [Google Scholar] [CrossRef]
- Ankri, S.; Mirelman, D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999, 1, 125–129. [Google Scholar] [CrossRef]
- Tsao, S.; Hsu, C.; Yin, M. Garlic extract and two diallyl sulphides inhibit methicillin-resistant Staphylococcus aureus infection in BALB/cA mice. J. Antimicrob. Chemother. 2003, 52, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Tsao, S.-M.; Yin, M.-C. In-vitro antimicrobial activity of four diallyl sulphides occurring naturally in garlic and Chinese leek oils. J. Med. Microbiol. 2001, 50, 646–649. [Google Scholar] [CrossRef] [PubMed]
- O’Gara, E.A.; Hill, D.J.; Maslin, D.J. Activities of garlic oil, garlic powder, and their diallyl constituents against Helicobacter pylori. Appl. Environ. Microbiol. 2000, 66, 2269–2273. [Google Scholar] [CrossRef]
- Jakobsen, T.H.; van Gennip, M.; Phipps, R.K.; Shanmugham, M.S.; Christensen, L.D.; Alhede, M.; Skindersoe, M.E.; Rasmussen, T.B.; Friedrich, K.; Uthe, F.; et al. Ajoene, a Sulfur-Rich Molecule from Garlic, Inhibits Genes Controlled by Quorum Sensing. Antimicrob. Agents Chemother. 2012, 56, 2314–2325. [Google Scholar] [CrossRef]
- Zhi, T.; Di, G.; Jiayue, T.; Jing, W.; Siqi, L.; Qiaoxia, W.; Feng, X.; Shengyuan, X.; Rufeng, W. Synergistic Antibacterial Effect and Mechanism of Allicin and an Enterobacter cloacae Bacteriophage. Microbiol. Spectr. 2022, 11, e0315522. [Google Scholar] [CrossRef]
- Xin, Y.; Shuang, B.; Jiamin, W.; Yunlong, F.; Yuekun, Z.; Zhikuan, X.; Junhong, A.; Tong, C.; Mingwang, Z.; Rongya, Y. Antifungal Activity and Potential Action Mechanism of Allicin against Trichosporon asahii. Microbiol. Spectr. 2023, 11, e00907–e00923. [Google Scholar] [CrossRef]
- Nakamoto, M.; Kunimura, K.; Suzuki, J.-I.; Kodera, Y. Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides. Exp. Ther. Med. 2020, 19, 1550–1553. [Google Scholar] [CrossRef]
- Wallock-Richards, D.; Doherty, C.J.; Doherty, L.; Clarke, D.J.; Place, M.; Govan, J.R.W.; Campopiano, D.J. Garlic revisited: Antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex. PLoS ONE 2014, 9, e112726. [Google Scholar] [CrossRef] [PubMed]
- Mašková, L.; Závišová, L.; Kašpar, O.; Knejzlík, Z.; Rimpelová, S.; Tokárová, V. Design and evaluation of composite films for in situ synthesis and antibacterial activity of allicin vapour. J. Mater. Sci. 2024, 59, 13614–13631. [Google Scholar] [CrossRef]
- Leontiev, R.; Hohaus, N.; Jacob, C.; Gruhlke, M.C.H.; Slusarenko, A.J. A Comparison of the Antibacterial and Antifungal Activities of Thiosulfinate Analogues of Allicin. Sci. Rep. 2018, 8, 6763. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, R.; Wang, C.; Zhang, C.; Chu, C.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W.; Zhang, H.; et al. Effects of garlic supplementation on non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods 2022, 99, 105294. [Google Scholar] [CrossRef]
- Soleimani, D.; Paknahad, Z.; Askari, G.; Iraj, B.; Feizi, A. Effect of garlic powder consumption on body composition in patients with nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled trial. Adv. Biomed. Res. 2016, 5, 2. [Google Scholar] [CrossRef]
- Soleimani, D.; Paknahad, Z.; Rouhani, M.H. Therapeutic Effects of Garlic on Hepatic Steatosis in Nonalcoholic Fatty Liver Disease Patients: A Randomized Clinical Trial. Diabetes. Metab. Syndr. Obes. 2020, 13, 2389–2397. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, X.; Lan, H.; Wang, W. Effect of garlic supplement in the management of type 2 diabetes mellitus (T2DM): A meta-analysis of randomized controlled trials. Food Nutr. Res. 2017, 61, 1377571. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Uyanga, V.A.; Wang, X.; Jiao, H.; Zhao, J.; Zhou, Y.; Li, H.; Lin, H. Allicin Promotes Glucose Uptake by Activating AMPK through CSE/H(2)S-Induced S-Sulfhydration in a Muscle-Fiber Dependent Way in Broiler Chickens. Mol. Nutr. Food Res. 2024, 68, e2300622. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, K.-A.; Kwon, K.-B.; Kim, E.-K.; Lee, Y.-R.; Song, M.-Y.; Koo, J.-H.; Ka, S.-O.; Park, J.-W.; Park, B.-H. Diallyl disulfide accelerates adipogenesis in 3T3-L1 cells. Int. J. Mol. Med. 2007, 20, 59–64. [Google Scholar] [CrossRef]
- Tsuzuki, T.; Negishi, T.; Yukawa, K. Effects of diallyl disulfide administration on insulin resistance in high-fat diet-fed mice. Nutrition 2024, 118, 112292. [Google Scholar] [CrossRef]
- Chang, W.-T.; Wu, C.-H.; Hsu, C.-L. Diallyl trisulphide inhibits adipogenesis in 3T3-L1 adipocytes through lipogenesis, fatty acid transport, and fatty acid oxidation pathways. J. Funct. Foods 2015, 16, 414–422. [Google Scholar] [CrossRef]
- Liu, C.-T.; Hse, H.; Lii, C.-K.; Chen, P.-S.; Sheen, L.-Y. Effects of garlic oil and diallyl trisulfide on glycemic control in diabetic rats. Eur. J. Pharmacol. 2005, 516, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, S.; Mihaylova, M.M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y.-J.; et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011, 13, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Ettehad-Marvasti, F.; Ejtahed, H.-S.; Siadat, S.-D.; Soroush, A.-R.; Hoseini-Tavassol, Z.; Hasani-Ranjbar, S.; Larijani, B. Effect of garlic extract on weight loss and gut microbiota composition in obese women: A double-blind randomized controlled trial. Front. Nutr. 2022, 9, 1007506. [Google Scholar] [CrossRef]
- Luo, P.; Zheng, M.; Zhang, R.; Zhang, H.; Liu, Y.; Li, W.; Sun, X.; Yu, Q.; Tipoe, G.L.; Xiao, J. S-Allylmercaptocysteine improves alcoholic liver disease partly through a direct modulation of insulin receptor signaling. Acta Pharm. Sin. B 2021, 11, 668–679. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, M.A.; Zepeda-Morales, A.S.M.; Carrera-Quintanar, L.; Viveros-Paredes, J.M.; Franco-Arroyo, N.N.; Godínez-Rubí, M.; Ortuño-Sahagun, D.; López-Roa, R.I. Alliin, an Allium sativum Nutraceutical, ReducesMetaflammation Markers in DIO Mice. Nutrients 2020, 12, 624. [Google Scholar] [CrossRef]
- Ruderman, N.B.; Carling, D.; Prentki, M.; Cacicedo, J.M. AMPK, insulin resistance, and the metabolic syndrome. J. Clin. Investig. 2013, 123, 2764–2772. [Google Scholar] [CrossRef]
- Zhao, X.; Cheng, T.; Xia, H.; Yang, Y.; Wang, S. Effects of Garlic on Glucose Parameters and Lipid Profile: A Systematic Review and Meta-Analysis on Randomized Controlled Trials. Nutrients 2024, 16, 1692. [Google Scholar] [CrossRef]
- Kosuge, Y. Neuroprotective mechanisms of S-allyl-L-cysteine in neurological disease. Exp. Ther. Med. 2020, 19, 1565–1569. [Google Scholar] [CrossRef]
- Ashafaq, M.; Khan, M.M.; Raza, S.S.; Ahmad, A.; Khuwaja, G.; Javed, H.; Khan, A.; Islam, F.; Siddiqui, M.S.; Safhi, M.M.; et al. S-allyl cysteine mitigates oxidative damage and improves neurologic deficit in a rat model of focal cerebral ischemia. Nutr. Res. 2012, 32, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.B.; Rao, K.S.J. Anti-amyloidogenic activity of S-allyl-l-cysteine and its activity to destabilize Alzheimer’s β-amyloid fibrils in vitro. Neurosci. Lett. 2007, 429, 75–80. [Google Scholar] [CrossRef]
- Chen, Y.; Pang, J.; Chen, Y.; Liang, Y.; Zhang, Z.; Wang, Z. Diallyl trisulfide regulates PGK1/Nrf2 expression and reduces inflammation to alleviate neurological damage in mice after traumatic brain injury. Brain Res. 2024, 1843, 149116. [Google Scholar] [CrossRef]
- Ho, S.-C.; Su, M.-S. Evaluating the Anti-Neuroinflammatory Capacity of Raw and Steamed Garlic as Well as Five Organosulfur Compounds. Molecules 2014, 19, 17697–17714. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-J.; Chang, T.; Cai, W.-K.; Zhang, Z.; Yang, Y.-X.; Sun, C.; Li, Z.-Y.; Li, W.-X. Post-injury administration of allicin attenuates ischemic brain injury through sphingosine kinase 2: In vivo and in vitro studies. Neurochem. Int. 2015, 89, 92–100. [Google Scholar] [CrossRef]
- Nadeem, M.S.; Kazmi, I.; Ullah, I.; Muhammad, K.; Anwar, F. Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment. Antioxidants 2021, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, F.; Shi, X.; Qiao, S.; Liu, B.; Wang, Z.; Huo, H.; Liang, F.; Shen, L.; Zhu, L.; He, B.; et al. Allicin promotes functional recovery in ischemic stroke via glutathione peroxidase-1 activation of Src-Akt-Erk. Cell Death Discov. 2023, 9, 335. [Google Scholar] [CrossRef]
- Meng, J.; Wen, C.; Lu, Y.; Fan, X.; Dang, R.; Chu, J.; Jiang, P.; Han, W.; Feng, L. Alliin from garlic as a neuroprotective agent attenuates ferroptosis in vitro and in vivo via inhibiting ALOX15. Food Funct. 2025, 16, 5278–5300. [Google Scholar] [CrossRef]
- Song, H.; Cui, J.; Mossine, V.V.; Michael, C.G.; Fritsche, K.; Sun, Y.G.; Gu, Z. Bioactive components from garlic on brain resiliency against neuroinflammation and neurodegeneration (Review). Exp. Ther. Med. 2020, 19, 1554–1559. [Google Scholar] [CrossRef]
- Nillert, N.; Pannangrong, W.; Welbat, J.U.; Chaijaroonkhanarak, W.; Sripanidkulchai, K.; Sripanidkulchai, B. Neuroprotective Effects of Aged Garlic Extract on Cognitive Dysfunction and Neuroinflammation Induced by β-Amyloid in Rats. Nutrients 2017, 9, 24. [Google Scholar] [CrossRef]
- Sharif, A.H.; Iqbal, M.; Manhoosh, B.; Gholampoor, N.; Ma, D.; Marwah, M.; Sanchez-Aranguren, L. Hydrogen Sulphide-Based Therapeutics for Neurological Conditions: Perspectives and Challenges. Neurochem. Res. 2023, 48, 1981–1996. [Google Scholar] [CrossRef]
- Serafini, M.M.; Catanzaro, M.; Fagiani, F.; Simoni, E.; Caporaso, R.; Dacrema, M.; Romanoni, I.; Govoni, S.; Racchi, M.; Daglia, M. Modulation of Keap1/Nrf2/ARE signaling pathway by curcuma-and garlic-derived hybrids. Front. Pharmacol. 2020, 10, 1597. [Google Scholar] [CrossRef] [PubMed]
- Mo, M.; Li, S.; Dong, Z.; Li, C.; Sun, Y.; Li, A.; Zhao, Z. S-allylmercaptocysteine ameliorates lipopolysaccharide-induced acute lung injury in mice by inhibiting inflammation and oxidative stress via nuclear factor kappa B and Keap1/Nrf2 pathways. Int. Immunopharmacol. 2020, 81, 106273. [Google Scholar] [CrossRef]
- Zhan, X.; Peng, W.; Wang, Z.; Liu, X.; Dai, W.; Mei, Q.; Hu, X. Polysaccharides from garlic protect against liver injury in DSS-induced inflammatory bowel disease of mice via suppressing pyroptosis and oxidative damage. Oxid. Med. Cell. Longev. 2022, 2022, 2042163. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Tsuneyoshi, T.; Ogawa, T.; Morihara, N. Aged garlic extract enhances heme oxygenase-1 and glutamate-cysteine ligase modifier subunit expression via the nuclear factor erythroid 2–related factor 2–antioxidant response element signaling pathway in human endothelial cells. Nutr. Res. 2016, 36, 143–149. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Nakanishi, E.; Kuwata, H.; Chen, J.; Nakasone, Y.; He, X.; He, J.; Liu, X.; Zhang, S.; Zhang, B. Inhibitory effects and molecular mechanisms of garlic organosulfur compounds on the production of inflammatory mediators. Mol. Nutr. Food Res. 2013, 57, 2049–2060. [Google Scholar] [CrossRef]
- Hitchcock, J.K.; Mkwanazi, N.; Barnett, C.; Graham, L.M.; Katz, A.A.; Hunter, R.; Schäfer, G.; Kaschula, C.H. The garlic compound Z—Ajoene, S—Thiolates COX2 and STAT3 and dampens the inflammatory response in RAW264. 7 macrophages. Mol. Nutr. Food Res. 2021, 65, 2000854. [Google Scholar] [CrossRef]
- Du, M.; Zhao, K.; Chen, A.; Shi, D.; Wu, Z.; Yan, T.; Wang, Y.; Bai, B. Inhibitory mechanisms of lipoxygenase by garlic sulfides: “adsorption-embolism” effect of DAS and DADS and “quasi-domain-separation” effect of DATS and Allicin. Int. J. Biol. Macromol. 2025, 304, 140874. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.Y.; Ryu, J.H.; Shin, J.-H.; Kang, M.J.; Kang, J.R.; Han, J.; Kang, D. Comparison of anti-oxidant and anti-inflammatory effects between fresh and aged black garlic extracts. Molecules 2016, 21, 430. [Google Scholar] [CrossRef]
- Sadeghi, M.; Miroliaei, M.; Fateminasab, F.; Moradi, M. Screening cyclooxygenase-2 inhibitors from Allium sativum L. compounds: In silico approach. J. Mol. Model. 2022, 28, 24. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Chen, S.; Li, S.; Deng, L.; Li, Y.; Li, H. Effect of allicin against ischemia/hypoxia-induced H9c2 myoblast apoptosis via eNOS/NO pathway-mediated antioxidant activity. Evid. Based Complement. Altern. Med. 2018, 2018, 3207973. [Google Scholar] [CrossRef]
- Weiss, N.; Papatheodorou, L.; Morihara, N.; Hilge, R.; Ide, N. Aged garlic extract restores nitric oxide bioavailability in cultured human endothelial cells even under conditions of homocysteine elevation. J. Ethnopharmacol. 2013, 145, 162–167. [Google Scholar] [CrossRef]
- Kim, K.-M.; Chun, S.-B.; Koo, M.-S.; Choi, W.-J.; Kim, T.-W.; Kwon, Y.-G.; Chung, H.-T.; Billiar, T.R.; Kim, Y.-M. Differential regulation of NO availability from macrophages and endothelial cells by the garlic component S-allyl cysteine. Free Radic. Biol. Med. 2001, 30, 747–756. [Google Scholar] [CrossRef]
- Das, I.; Khan, N.S.; Sooranna, S.R. Nitric oxide synthase activation is a unique mechanism of garlic action. Biochem. Soc. Trans. 1995, 23, 136S. [Google Scholar] [CrossRef] [PubMed]
- Takashima, M.; Kanamori, Y.; Kodera, Y.; Morihara, N.; Tamura, K. Aged garlic extract exerts endothelium-dependent vasorelaxant effect on rat aorta by increasing nitric oxide production. Phytomedicine 2017, 24, 56–61. [Google Scholar] [CrossRef]
- Ho, C.; Weng, C.; Jhang, J.; Cheng, Y.; Huang, S.; Yen, G. Diallyl sulfide as a potential dietary agent to reduce TNF-α-and histamine-induced proinflammatory responses in A 7r5 cells. Mol. Nutr. Food Res. 2014, 58, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Lin, Q.; Li, X.; Nie, Y.; Sun, S.; Deng, X.; Wang, L.; Lu, J.; Tang, Y.; Luo, F. Alliin, a garlic organosulfur compound, ameliorates gut inflammation through MAPK-NF-κB/AP-1/STAT-1 inactivation and PPAR-γ activation. Mol. Nutr. Food Res. 2017, 61, 1601013. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, X.; He, W.; Chen, R.; Zhuang, R. Effects of alliin on LPS-induced acute lung injury by activating PPARγ. Microb. Pathog. 2017, 110, 375–379. [Google Scholar] [CrossRef]
- Yue, L.; Zhu, X.; Li, R.; Chang, H.; Gong, B.; Tian, C.; Liu, C.; Xue, Y.; Zhou, Q.; Xu, T. S-allyl-cysteine sulfoxide (alliin) alleviates myocardial infarction by modulating cardiomyocyte necroptosis and autophagy. Int. J. Mol. Med. 2019, 44, 1943–1951. [Google Scholar] [CrossRef]
- Ji, S.T.; Kim, M.-S.; Park, H.R.; Lee, E.; Lee, Y.; Jang, Y.J.; Kim, H.S.; Lee, J. Diallyl disulfide impairs hippocampal neurogenesis in the young adult brain. Toxicol. Lett. 2013, 221, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Soto, C.Y.; Rangel-López, E.; Galván-Arzate, S.; Colín-González, A.L.; Silva-Palacios, A.; Zazueta, C.; Pedraza-Chaverri, J.; Ramírez, J.; Chavarria, A.; Túnez, I. S-Allylcysteine protects against excitotoxic damage in rat cortical slices via reduction of oxidative damage, activation of Nrf2/ARE binding, and BDNF preservation. Neurotox. Res. 2020, 38, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, S.; Li, B.; Cheng, L.; Jiang, P.; Tian, Z.; Sun, S. Protective Effects of Garlic-Derived S-Allylmercaptocysteine on IL-1β-Stimulated Chondrocytes by Regulation of MMPs/TIMP-1 Ratio and Type II Collagen Expression via Suppression of NF-κB Pathway. Biomed. Res. Int. 2017, 2017, 8686207. [Google Scholar] [CrossRef]
- Shin, S.-S.; Song, J.-H.; Hwang, B.; Noh, D.-H.; Park, S.L.; Kim, W.T.; Park, S.-S.; Kim, W.-J.; Moon, S.-K. HSPA6 augments garlic extract-induced inhibition of proliferation, migration, and invasion of bladder cancer EJ cells; Implication for cell cycle dysregulation, signaling pathway alteration, and transcription factor-associated MMP-9 regulation. PLoS ONE 2017, 12, e0171860. [Google Scholar] [CrossRef]
- Aly, S.M.; Fetaih, H.A.; Hassanin, A.A.I.; Abomughaid, M.M.; Ismail, A.A. Protective effects of garlic and cinnamon oils on hepatocellular carcinoma in albino rats. Anal. Cell. Pathol. 2019, 2019, 9895485. [Google Scholar] [CrossRef] [PubMed]
- Maitisha, G.; Aimaiti, M.; An, Z.; Li, X. Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway. Mol. Biol. Rep. 2021, 48, 7261–7272. [Google Scholar] [CrossRef]
- Lee, W.S.; Yi, S.M.; Yun, J.W.; Jung, J.H.; Kim, D.H.; Kim, H.J.; Chang, S.-H.; Kim, G.; Ryu, C.H.; Shin, S.C. Polyphenols isolated from Allium cepa L. induces apoptosis by induction of p53 and suppression of Bcl-2 through inhibiting PI3K/Akt signaling pathway in AGS human cancer cells. J. Cancer Prev. 2014, 19, 14. [Google Scholar] [CrossRef]
- Roy, N.; Nazeem, P.A.; Babu, T.D.; Abida, P.S.; Narayanankutty, A.; Valsalan, R.; Valsala, P.A.; Raghavamenon, A.C. EGFR gene regulation in colorectal cancer cells by garlic phytocompounds with special emphasis on S-Allyl-L-Cysteine Sulfoxide. Interdiscip. Sci. Comput. Life Sci. 2018, 10, 686–693. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, X.; Gu, Y.; Chen, Y. Preventive effect of Diallyl Trisulfide on cutaneous toxicities induced by EGFR inhibitor. Int. Immunopharmacol. 2019, 69, 79–87. [Google Scholar] [CrossRef]
- Zhang, W.; Ha, M.; Gong, Y.; Xu, Y.; Dong, N.; Yuan, Y. Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways. Oncol. Rep. 2010, 24, 1585–1592. [Google Scholar] [CrossRef]
- Kanamori, Y.; Dalla Via, L.; Macone, A.; Canettieri, G.; Greco, A.; Toninello, A.; Agostinelli, E. Aged garlic extract and its constituent, S-allyl-L-cysteine, induce the apoptosis of neuroblastoma cancer cells due to mitochondrial membrane depolarization. Exp. Ther. Med. 2020, 19, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.A.; Cha, Y.Y.; Park, M.S.; Kim, J.M.; Lim, Y.C. Diallyl sulfide induces growth inhibition and apoptosis of anaplastic thyroid cancer cells by mitochondrial signaling pathway. Oral Oncol. 2010, 46, e15–e18. [Google Scholar] [CrossRef]
- Padiya, R.; Chowdhury, D.; Borkar, R.; Srinivas, R.; Pal Bhadra, M.; Banerjee, S.K. Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat. PLoS ONE 2014, 9, e94228. [Google Scholar] [CrossRef]
- Huang, L.; Song, Y.; Lian, J.; Wang, Z. Allicin inhibits the invasion of lung adenocarcinoma cells by altering tissue inhibitor of metalloproteinase/matrix metalloproteinase balance via reducing the activity of phosphoinositide 3-kinase/AKT signaling. Oncol. Lett. 2017, 14, 468–474. [Google Scholar] [CrossRef]
- Fujii, D.; Nango, H.; Ohtani, M. Aged garlic extract enhances the production of β-defensin 4 via activation of the Wnt/β-catenin pathway in mouse gingiva. Exp. Ther. Med. 2025, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; He, H.; Li, Y.-K.; Xia, H.; Liu, F.; Zeng, Y.; Zeng, X.; Ling, H.; Su, B.; Su, Q. Diallyl disulfide inhibits proliferation, epithelial-mesenchymal transition, and invasion through RORα-mediated downregulation of Wnt1/β-catenin pathway in gastric cancer cells. J. Food Drug Anal. 2022, 30, 479. [Google Scholar] [CrossRef]
- Li, X.; Meng, Y.; Xie, C.; Zhu, J.; Wang, X.; Li, Y.; Geng, S.; Wu, J.; Zhong, C.; Li, M. Diallyl Trisulfide inhibits breast cancer stem cells via suppression of Wnt/β-catenin pathway. J. Cell. Biochem. 2018, 119, 4134–4141. [Google Scholar] [CrossRef]
- Li, T.; Shi, H.-Y.; Hua, Y.-X.; Gao, C.; Xia, Q.; Yang, G.; Li, B. Effects of allicin on the proliferation and cell cycle of chondrocytes. Int. J. Clin. Exp. Pathol. 2015, 8, 12525. [Google Scholar]
- Jeong, J.-W.; Park, S.; Park, C.; Chang, Y.-C.; Moon, D.-O.; Kim, S.O.; Kim, G.-Y.; Cha, H.-J.; Kim, H.-S.; Choi, Y.-W. N-benzyl-N-methyldecan-1-amine, a phenylamine derivative isolated from garlic cloves, induces G2/M phase arrest and apoptosis in U937 human leukemia cells. Oncol. Rep. 2014, 32, 373–381. [Google Scholar] [CrossRef]
- Xu, J.; Huang, J.; Yu, Y.; Hu, D.; Zhang, Y.; Dai, H.; You, L.; Xu, F.; Shen, J.; Wang, C. Garlic-derived nanoparticles inhibit tumor by activating tumor-infiltrating γδT cells. Nano Res. 2025, 18, 94907145. [Google Scholar] [CrossRef]
- Wan, X.; Li, D.; Lu, J.; Yan, Y.; He, Z.; Chen, J.; Jiao, Y.; Li, J.; Li, W. The construction of garlic diallyl disulfide nano-emulsions and their effect on the physicochemical properties and heterocyclic aromatic amines formation in roasted pork. Food Chem. 2023, 408, 135159. [Google Scholar] [CrossRef]
- Zhu, Y.; Peng, S.; Peng, S.; Chen, X.; Zou, L.; Liang, R.; Ruan, R.; Dai, L.; Liu, W. Fiber complex-stabilized high-internal-phase emulsion for allicin encapsulation: Microstructure, stability, and thermal-responsive properties. J. Sci. Food Agric. 2025, 105, 1116–1125. [Google Scholar] [CrossRef]
- Liu, M.; Guo, W.; Feng, M.; Bai, Y.; Huang, J.; Cao, Y. Antibacterial, anti-biofilm activity and underlying mechanism of garlic essential oil in water nanoemulsion against Listeria monocytogenes. LWT 2024, 196, 115847. [Google Scholar] [CrossRef]
- Hassan, K.A.M.; Mujtaba, M.D.A. Antibacterial efficacy of garlic oil nano-emulsion. AIMS Agric. Food 2019, 4, 194–205. [Google Scholar] [CrossRef]
- Lu, Q.; Lu, P.-M.; Piao, J.-H.; Xu, X.-L.; Chen, J.; Zhu, L.; Jiang, J.-G. Preparation and physicochemical characteristics of an allicin nanoliposome and its release behavior. LWT Food Sci. Technol. 2014, 57, 686–695. [Google Scholar] [CrossRef]
- Gunasekaran, K.; Vasamsetti, B.M.K.; Thangavelu, P.; Natesan, K.; Mujyambere, B.; Sundaram, V.; Jayaraj, R.; Kim, Y.-J.; Samiappan, S.; Choi, J.-W. Cytotoxic Effects of Nanoliposomal Cisplatin and Diallyl Disulfide on Breast Cancer and Lung Cancer Cell Lines. Biomedicines 2023, 11, 1021. [Google Scholar] [CrossRef]
- Alrumaihi, F.; Khan, M.A.; Babiker, A.Y.; Alsaweed, M.; Azam, F.; Allemailem, K.S.; Almatroudi, A.A.; Ahamad, S.R.; Alsugoor, M.H.; Alharbi, K.N.; et al. Lipid-Based Nanoparticle Formulation of Diallyl Trisulfide Chemosensitizes the Growth Inhibitory Activity of Doxorubicin in Colorectal Cancer Model: A Novel In Vitro, In Vivo and In Silico Analysis. Molecules 2022, 27, 2192. [Google Scholar] [CrossRef]
- Alrumaihi, F.; Khan, M.A.; Babiker, A.Y.; Alsaweed, M.; Azam, F.; Allemailem, K.S.; Almatroudi, A.A.; Ahamad, S.R.; AlSuhaymi, N.; Alsugoor, M.H.; et al. The Effect of Liposomal Diallyl Disulfide and Oxaliplatin on Proliferation of Colorectal Cancer Cells: In Vitro and In Silico Analysis. Pharmaceutics 2022, 14, 236. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.S.; Baliga, V.; Londhe, V.Y. Liposomal Formulations: A Recent Update. Pharmaceutics 2025, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Lv, J.; Zhu, S.; Wang, S.; Su, J.; Xu, C. Enzyme-responsive liposomes for controlled drug release. Drug Discov. Today 2024, 29, 104014. [Google Scholar] [CrossRef] [PubMed]
- Fidan, Y.; Muçaj, S.; Timur, S.S.; Gürsoy, R.N. Recent advances in liposome-based targeted cancer therapy. J. Liposome Res. 2024, 34, 316–334. [Google Scholar] [CrossRef]
- Chai, C.; Park, J. Food liposomes: Structures, components, preparations, and applications. Food Chem. 2024, 432, 137228. [Google Scholar] [CrossRef]
- Alyasiri, F.J.; Ghobeh, M.; Tabrizi, M.H. Preparation and Characterization of Allicin-Loaded Solid Lipid Nanoparticles Surface-Functionalized with Folic Acid-Bonded Chitosan: In Vitro Anticancer and Antioxidant Activities. Front. Biosci. 2023, 28, 135. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Roychowdhury, P.; Bhuyan, N.R.; Ko, Y.T.; Singh, S.K.; Dua, K.; Kuppusamy, G. Folic Acid Functionalized Diallyl Trisulfide–Solid Lipid Nanoparticles for Targeting Triple Negative Breast Cancer. Molecules 2023, 28, 1393. [Google Scholar] [CrossRef]
- Llaguno-Munive, M.; Vazquez-Lopez, M.I.; Garcia-Lopez, P. Solid Lipid Nanoparticles, an Alternative for the Treatment of Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2024, 25, 10712. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Garala, K.; Singh, S.; Prajapati, B.G.; Chittasupho, C. Lipid-Based Nanoparticles in Delivering Bioactive Compounds for Improving Therapeutic Efficacy. Pharmaceuticals 2024, 17, 329. [Google Scholar] [CrossRef]
- Khan, M.F.; Ahmad, N.; Alkholifi, F.K.; Ullah, Z.; Khalid, M.S.; Akhtar, S.; Farooqui, S.; Khan, N.; Chaudhary, A.A.; Alawam, A.S.; et al. Preparation of novel S-allyl cysteine chitosan based nanoparticles for use in ischemic brain treatment. RSC Adv. 2024, 14, 160–180. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, Y.; Yao, Y.; Li, X.; Wang, M. pH-responsive alliin delivery system: Sustained intestinal release. J. Food Eng. 2026, 402, 112670. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, J.-J.; Zhang, Q.-B.; Wang, Z.-X.; Yin, Z.-N.; Li, X.-X.; Chen, J.; Ye, L.-M. Release test of alliin/alliinase double-layer tablet by HPLC-Allicin determination. J. Pharm. Anal. 2013, 3, 187–192. [Google Scholar] [CrossRef]
- Patil, H.I.; Koshti, G.; Doijad, S.; Wadkar, K.A. The Inclusion Complex of Allicin with Β-Cyclodextrin as A Drug-Delivery System for Enhanced Solubility in the Treatment of Breast Cancer. Palest. Med. Pharm. J. 2025, 11, 1–10. [Google Scholar] [CrossRef]
- Qian, Y.L.; Hua, G.K.; Dung, J.K.S.; Qian, M. Encapsulation of garlic oil and diallyl disulfide with β-cyclodextrin for white rot control in Allium crops. Crop Prot. 2024, 178, 106597. [Google Scholar] [CrossRef]
- Piletti, R.; Zanetti, M.; Jung, G.; de Mello, J.M.M.; Dalcanton, F.; Soares, C.; Riella, H.G.; Fiori, M.A. Microencapsulation of garlic oil by β-cyclodextrin as a thermal protection method for antibacterial action. Mater. Sci. Eng. C 2019, 94, 139–149. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Liu, Y.; Qiu, H.; Gao, W.; Che, K.; Zhou, B.; Liu, R.; Hu, W. Characterization of garlic oil/β-cyclodextrin inclusion complexes and application. Front. Nutr. 2023, 10, 1308787. [Google Scholar] [CrossRef]
- Majd, H.; Gultekinoglu, M.; Bayram, C.; Karaosmanoğlu, B.; Taşkıran, E.Z.; Kart, D.; Erol, Ö.D.; Harker, A.; Edirisinghe, M. Biomedical Efficacy of Garlic-Extract-Loaded Core-Sheath Plasters for Natural Antimicrobial Wound Care. Macromol. Mater. Eng. 2024, 309, 2400014. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, X.; Fu, K.; Zhao, X.; Hu, X.; Cheng, S.; Jiang, R.; Dong, C.; Wang, L.; Wu, H.; et al. Allicin-loaded hydrogel enhances the viability of multiterritory perforator flap. Mater. Today Bio 2025, 33, 102026. [Google Scholar] [CrossRef] [PubMed]
- Subashini, R.; Tabbasum, M.T.D.; Dharshan, A.H.; Varsha, S.S. Development of collagen-based hydrogel derived from allicin-silver nanoparticles for wound healing. Naturwissenschaften 2025, 112, 67. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, B.R.; Prakash, S.N.J.; Kumar, S.; Bhagirathi; Ahuja, D.; Abhishek; Singh, P. Study of antimicrobial efficacy of garlic oil loaded ethosome against clinical microbial isolates of diverse origin. J. Herb. Med. 2024, 43, 100824. [Google Scholar] [CrossRef]
- Rana, M.; Kumar, A.; Raguvaran, R.; Kumar, R.; Kumar, P.; Prajapati, S.K.; Abhishek; Gupta, M.; Shukla, R. Evaluation of antidermatophytic and wound-healing effect of garlic essential oil-loaded ethosomes formulation. J. Drug Deliv. Sci. Technol. 2025, 113, 107328. [Google Scholar] [CrossRef]
- Moammeri, A.; Chegeni, M.M.; Sahrayi, H.; Ghafelehbashi, R.; Memarzadeh, F.; Mansouri, A.; Akbarzadeh, I.; Abtahi, M.S.; Hejabi, F.; Ren, Q. Current advances in niosomes applications for drug delivery and cancer treatment. Mater. Today Bio 2023, 23, 100837. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, P.; Tripathi, P.; Gupta, R.; Pandey, S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol. 2020, 56, 101581. [Google Scholar] [CrossRef]
- Gangwal, A.; Lavecchia, A. Artificial Intelligence in Natural Product Drug Discovery: Current Applications and Future Perspectives. J. Med. Chem. 2025, 68, 3948–3969. [Google Scholar] [CrossRef] [PubMed]
- Çağlar, Y.S. Molecular Docking and Reactive Sites Identification (Homo–Lumo, Mep) of Allicin and Diallyl Disulfide: Potential Anticancer Inhibitor TT—Allisin ve Diallil Disülfitin Moleküler Yerleştirme ve Reaktif Bölgelerinin Tanımlanması (Homo–Lumo, Mep): Potansiy. Karadeniz Fen. Bilim. Derg. 2023, 13, 1523–1539. [Google Scholar] [CrossRef]
- Almansoori, A.K.K.; Maaroof, R.J.A.; Al-Oudah, G.A.; Hindi, N.K.K.; Yu, L.H.; Jasim, H.M.; Adnan, M.; Abdullah, M.H. Novel Molecular Mechanism of Allicin-Mediated Inhibition of Bacterial Topoisomerase IV: A Combined Computational and Experimental Analysis. Nat. Prod. Commun. 2025, 20, 1934578X251368993. [Google Scholar] [CrossRef]
- Gao, T.; Gao, S.; Wang, H.; Wang, S.; Li, L.; Hu, J.; Yan, S.; Zhang, R.; Zhou, Y.; Dong, H. Garlic ameliorates atherosclerosis by regulating ferroptosis pathway: An integrated strategy of network pharmacology, bioinformatic and experimental verification. Front. Pharmacol. 2024, 15, 1388540. [Google Scholar] [CrossRef]
- Sarkar, D.; Maiti, A.K. Virtual screening and molecular docking studies with organosulfur and flavonoid compounds of garlic targeting the estrogen receptor protein for the therapy of breast cancer. Biointerface Res. Appl. Chem. 2023, 13, 49. [Google Scholar]
- Bouamrane, S.; Khaldan, A.; Alaqarbeh, M.; Sbai, A.; Ajana, M.A.; Bouachrine, M.; Lakhlifi, T.; Maghat, H. Garlic as an effective antifungal inhibitor: A combination of reverse docking, molecular dynamics simulation, ADMET screening, DFT, and retrosynthesis studies. Arab. J. Chem. 2024, 17, 105642. [Google Scholar] [CrossRef]
- Yazdani, M.; Beihaghi, M.; Ataee, N.; Zabetian, M.; Khaksar, S.; Nasrizadeh, H.; Chaboksavar, M. Anti-quorum sensing effects of SidA protein on Escherichia coli receptors: In silico analysis. J. Biomol. Struct. Dyn. 2024, 43, 7235–7246. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef]
- Azam, F.; Almahmoud, S.A.; Ali, A.; Ali, A. Targeting Mitochondrial Drp1 Dynamics in Neurodegenerative Diseases: A Comprehensive Drug Design Approach Using AutoDock Vina-GPU, DFT, and Molecular Dynamics Simulations. ChemistrySelect 2025, 10, e202406041. [Google Scholar] [CrossRef]
- Gupta, A.; Parveen, D.; Azam, F.; Shaquiquzzaman, M.; Akhter, M.; Jaremko, M.; Emwas, A.-H.; Khan, M.A.; Parvez, S.; Khanna, S.; et al. Mechanistic insights into novel cyano-pyrimidine pendant chalcone derivatives as LSD1 inhibitors by docking, ADMET, MM/GBSA, and molecular dynamics simulation. Biochem. Biophys. Rep. 2025, 41, 101937. [Google Scholar] [CrossRef]
- De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery. J. Med. Chem. 2016, 59, 4035–4061. [Google Scholar] [CrossRef]
- Bari, S.; Reza, N.; Marma, M.; Ahmed, S.; Hussain, M.; Jabed, M.; Hossain, M.; Manzoor, M.; Alam, M. Computational analysis of Allium sativum compounds to identify thermol abile hemolysin inhibitors against Vibrio alginolyticus in shrimp. J. Adv. Biotechnol. Exp. Ther. 2025, 8, 1–17. [Google Scholar] [CrossRef]
- Padmini, R.; Maheshwari, V.U.; Saravanan, P.; Lee, K.W.; Razia, M.; Alwahibi, M.S.; Ravindran, B.; Elshikh, M.S.; Kim, Y.O.; Kim, H.; et al. Identification of novel bioactive molecules from garlic bulbs: A special effort to determine the anticancer potential against lung cancer with targeted drugs. Saudi J. Biol. Sci. 2020, 27, 3274–3289. [Google Scholar] [CrossRef]
- Ahmad, S.R.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Dawria, A.; Ahmad, M.F.; Salih, A. Allium sativum-Derived Alliin and Allicin Stably Bind to α-Synuclein and Prevent Its Cytotoxic Aggregation. Proteins 2025, 93, 1905–1920. [Google Scholar] [CrossRef]
- Li, T.; Cheng, B. Analysis of the mechanism of alliin and allicin against SARS-CoV-2S/ACE2 and SARS-CoV-2 Mpro based on molecular docking and molecular dynamics. In Proceedings of the 2023 4th International Symposium on Artificial Intelligence for Medicine Science, Chengdu, China, 27–29 October 2023; Association for Computing Machinery: New York, NY, USA, 2024; pp. 1325–1331. [Google Scholar]
- Parashar, A.; Shukla, A.; Sharma, A.; Behl, T.; Goswami, D.; Mehta, V. Reckoning γ-Glutamyl-S-allylcysteine as a potential main protease (mpro) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation. Drug Dev. Ind. Pharm. 2021, 47, 699–710. [Google Scholar] [CrossRef]
- Nan, B.; Yang, C.; Li, L.; Ye, H.; Yan, H.; Wang, M.; Yuan, Y. Allicin alleviated acrylamide-induced NLRP3 inflammasome activation via oxidative stress and endoplasmic reticulum stress in Kupffer cells and SD rats liver. Food Chem. Toxicol. 2021, 148, 111937. [Google Scholar] [CrossRef]
- Papi, C.; Gasparello, J.; Marzaro, G.; Macone, A.; Zurlo, M.; Di Padua, F.; Fino, P.; Agostinelli, E.; Gambari, R.; Finotti, A. Aged garlic extract major constituent S-1-propenyl-l-cysteine inhibits proinflammatory mRNA expression in bronchial epithelial IB3-1 cells exposed to the BNT162b2 vaccine. Exp. Ther. Med. 2025, 30, 153. [Google Scholar] [CrossRef]
- Cheng, B.; Li, T.; Li, F. Use of Network Pharmacology to Investigate the Mechanism by Which Allicin Ameliorates Lipid Metabolism Disorder in HepG2 Cells. Evid. Based Complement. Alternat. Med. 2021, 2021, 3956504. [Google Scholar] [CrossRef]
- Cheng, B.; Li, T.; Li, F. Study on the multitarget mechanism of alliin activating autophagy based on network pharmacology and molecular docking. J. Cell. Mol. Med. 2022, 26, 5590–5601. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Lv, D.; Tao, Y.; Wang, J. The therapeutic effects of natural organosulfur compounds on atherosclerosis and their potential mechanisms: A comprehensive review. Front. Cardiovasc. Med. 2025, 12, 1599154. [Google Scholar] [CrossRef]
- Gao, S.; Gao, T.; Li, L.; Wang, S.; Hu, J.; Zhang, R.; Zhou, Y.; Dong, H. Exploring the therapeutic potential of garlic in alcoholic liver disease: A network pharmacology and experimental validation study. Genes Nutr. 2024, 19, 13. [Google Scholar] [CrossRef]
- Teng, L.; Chen, H. Network pharmacology and experimental verification reveals the anti-growth and anti-migration roles of allicin in non-small cell lung cancer. Lett. Drug Des. Discov. 2025, 22, 100098. [Google Scholar] [CrossRef]
- Li, W.-R.; Ma, Y.-K.; Shi, Q.-S.; Xie, X.-B.; Sun, T.-L.; Peng, H.; Huang, X.-M. Diallyl disulfide from garlic oil inhibits Pseudomonas aeruginosa virulence factors by inactivating key quorum sensing genes. Appl. Microbiol. Biotechnol. 2018, 102, 7555–7564. [Google Scholar] [CrossRef]
- Li, N.; Zhang, J.; Yu, F.; Ye, F.; Tan, W.; Hao, L.; Li, S.; Deng, J.; Hu, X. Garlic-Derived Quorum Sensing Inhibitors: A Novel Strategy Against Fungal Resistance. Drug Des. Dev. Ther. 2024, 18, 6413–6426. [Google Scholar] [CrossRef]
- Wang, J.-R.; Hu, Y.-M.; Zhou, H.; Li, A.-P.; Zhang, S.-Y.; Luo, X.-F.; Zhang, B.-Q.; An, J.-X.; Zhang, Z.-J.; Liu, Y.-Q. Allicin-Inspired Heterocyclic Disulfides as Novel Antimicrobial Agents. J. Agric. Food Chem. 2022, 70, 11782–11791. [Google Scholar] [CrossRef]
- Zhu, M.; Li, Y.; Long, X.; Wang, C.; Ouyang, G.; Wang, Z. Antibacterial Activity of Allicin-Inspired Disulfide Derivatives against Xanthomonas axonopodis pv. citri. Int. J. Mol. Sci. 2022, 23, 11947. [Google Scholar] [CrossRef]
- Hosono, T.; Sato, A.; Nakaguchi, N.; Ozaki-Masuzawa, Y.; Seki, T. Diallyl Trisulfide Inhibits Platelet Aggregation through the Modification of Sulfhydryl Groups. J. Agric. Food Chem. 2020, 68, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Das, R.; Emran, T.B.; Labib, R.K.; Tabassum, N.E.; Islam, F.; Sharma, R.; Ahmad, I.; Nainu, F.; Chidambaram, K.; et al. Diallyl Disulfide: A Bioactive Garlic Compound with Anticancer Potential. Front. Pharmacol. 2022, 13, 943967. [Google Scholar] [CrossRef]
- Novakovic, J.; Muric, M.; Bradic, J.; Ramenskaya, G.; Jakovljevic, V.; Jeremic, N. Diallyl Trisulfide and Cardiovascular Health: Evidence and Potential Molecular Mechanisms. Int. J. Mol. Sci. 2024, 25, 9831. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.-R.; Hu, C.-H. Computational Study of H2S Release in Reactions of Diallyl Polysulfides with Thiols. J. Phys. Chem. B 2017, 121, 6359–6366. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, C. Theoretical studies on the dehydration reaction of the allicin radical cation in the gas phase. Comput. Theor. Chem. 2011, 972, 75–80. [Google Scholar] [CrossRef]
- Mozafari, E.S.; Baei, M.T.; Lemeski, E.T. Computational study of the therapeutic properties of allicin and its nanocomplexes using DFT and molecular docking techniques. Sci. Rep. 2025, 15, 23034. [Google Scholar] [CrossRef]
- Spera, M.B.M.; Quintão, F.A.; Ferraresi, D.K.D.; Lustri, W.R.; Magalhães, A.; Formiga, A.L.B.; Corbi, P.P. Palladium(II) complex with S-allyl-L-cysteine: New solid-state NMR spectroscopic measurements, molecular modeling and antibacterial assays. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 78, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Arroio, A.; Honório, K.M.; de Mello, P.H.; Weber, K.C.; da Silva, A.B.F. A density functional theory study on the role of electronic properties in the antioxidant activity of the ajoene molecule. Internet Electron. J. Mol. Des. 2004, 3, 308–315. [Google Scholar]
- Bouyahya, A.; Kamari, F.; El Omari, N.; Touhtouh, J.; Mssillou, I.; Aanniz, T.; Benali, T.; Khalid, A.; Abdalla, A.N.; Iesa, M.A.M.; et al. Unlocking the natural chemical sources, nutritional properties, biological effects, and molecular actions of Ajoene. J. Funct. Foods 2025, 127, 106714. [Google Scholar] [CrossRef]
- Alessandrini, S.; Ye, H.; Biczysko, M.; Puzzarini, C. Describing the Disulfide Bond: From the Density Functional Theory and Back through the “Lego Brick” Approach. J. Phys. Chem. A 2024, 128, 9383–9397. [Google Scholar] [CrossRef] [PubMed]
- Galano, A.; Francisco-Marquez, M. Peroxyl-radical-scavenging activity of garlic: 2-propenesulfenic acid versus allicin. J. Phys. Chem. B 2009, 113, 16077–16081. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019, 35, 1067–1069. [Google Scholar] [CrossRef]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [PubMed]
- Ouma, S.; Kagia, R.; Kamakia, F. Determination of pharmacological activity of bioactives in Allium sativum using computational analysis. F1000Research 2023, 12, 151. [Google Scholar] [CrossRef]
- Ramirez, D.A.; Federici, M.F.; Altamirano, J.C.; Camargo, A.B.; Luco, J.M. Permeability Data of Organosulfur Garlic Compounds Estimated by Immobilized Artificial Membrane Chromatography: Correlation Across Several Biological Barriers. Front. Chem. 2021, 9, 690707. [Google Scholar] [CrossRef]
- Gadaleta, D.; Serrano-Candelas, E.; Ortega-Vallbona, R.; Colombo, E.; Lomana, M.G.D.; Biava, G.; Aparicio-Sánchez, P.; Roncaglioni, A.; Gozalbes, R.; Benfenati, E. Comprehensive benchmarking of computational tools for predicting toxicokinetic and physicochemical properties of chemicals. J. Cheminform. 2024, 16, 145. [Google Scholar] [CrossRef] [PubMed]
- Hitl, M.; Kladar, N.; Gavarić, N.; Čonić, B.S.; Božin, B. Garlic burn injuries—A systematic review of reported cases. Am. J. Emerg. Med. 2021, 44, 5–10. [Google Scholar] [CrossRef]
- Lazo, O.L.E.; White, P.F.; Lee, C.; Eng, H.C.; Matin, J.M.; Lin, C.; Cid, F.D.; Yumul, R. Use of herbal medication in the perioperative period: Potential adverse drug interactions. J. Clin. Anesth. 2024, 95, 111473. [Google Scholar] [CrossRef]
- Salehi, B.; Zucca, P.; Orhan, I.; Azzini, E.; Adetunji, C.; Mohammed, S.; Banerjee, S.; Sharopov, F.; Rigano, D.; Rad, J.S.; et al. Allicin and health: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 502–516. [Google Scholar] [CrossRef]
- Silano, V.; Bolognesi, C.; Castle, L.; Chipman, K.; Cravedi, J.-P.; Engel, K.-H.; Fowler, P.; Franz, R.; Grob, K.; Gürtler, R.; et al. Scientific Opinion on Flavouring Group Evaluation 74, Revision 4 (FGE.74Rev4): Consideration of aliphatic sulphides and thiols evaluated by JECFA (53rd and 61st meeting) structurally related to aliphatic and alicyclic mono-, di-, tri- and polysulphides with or without additional oxygenated functional groups from chemical group 20 evaluated by EFSA in FGE.08Rev5. EFSA J. 2018, 16, e05167. [Google Scholar] [CrossRef]
- Maged, Y.; Gabriele, A.; Laurence, C.; Karl-Heinz, E.; Paul, F.; Fernandez, F.; Jose, M.; Peter, F.; Ursula, G.-R.; Rainer, G.; et al. Scientific Opinion on Flavouring Group Evaluation 91, Revision 3 (FGE.91Rev3): Consideration of aliphatic, aromatic and α,β-unsaturated sulfides and thiols evaluated by JECFA (53rd, 61st, 68th and 76th meetings), structurally related to substances in FGE.08Rev5. EFSA J. 2020, 18, e06154. [Google Scholar] [CrossRef]
- Wu, Z.; Tu, B.; Li, S.; Chen, J.; Shen, P.; Zhou, W.; Ma, Z.; Tang, X.; Xiao, C.; Wang, Y.; et al. Safety assessment and exploration of the mechanism of toxic effects of diallyl trisulfide: Based on acute and subacute toxicity and proteomics experiments. J. Ethnopharmacol. 2025, 338, 119102. [Google Scholar] [CrossRef]
- Lina, S.A.; Yee, C.H.; Yap, Y.C. Unforeseen sequela of a traditional remedy: A garlic burn case report. Malays. Fam. Physician 2025, 20, 30. [Google Scholar] [CrossRef] [PubMed]
- Hamadi, W.Y.; Casale, T.B. Self-reported garlic allergy. World Allergy Organ. J. 2024, 17, 100959. [Google Scholar] [CrossRef] [PubMed]
- Armentia, A.; Martín-Armentia, S.; Pineda, F.; Martín-Armentia, B.; Castro, M.; Fernández, S.; Moro, A.; Castillo, M. Allergic hypersensitivity to garlic and onion in children and adults. Allergol. Immunopathol. 2020, 48, 232–236. [Google Scholar] [CrossRef]
- Scharbert, G.; Kalb, M.L.; Duris, M.; Marschalek, C.; Kozek-Langenecker, S.A. Garlic at Dietary Doses Does Not Impair Platelet Function. Anesth. Analg. 2007, 105, 1214–1218. [Google Scholar] [CrossRef]
- Cummings, K.C.; Keshock, M.; Ganesh, R.; Sigmund, A.; Kashiwagi, D.; Devarajan, J.; Grant, P.J.; Urman, R.D.; Mauck, K.F. Preoperative Management of Surgical Patients Using Dietary Supplements: Society for Perioperative Assessment and Quality Improvement (SPAQI) Consensus Statement. Mayo Clin. Proc. 2021, 96, 1342–1355. [Google Scholar] [CrossRef] [PubMed]
- Apitz-Castro, R.; Badimon, J.J.; Badimon, L. Effect of ajoene, the major antiplatelet compound from garlic, on platelet thrombus formation. Thromb. Res. 1992, 68, 145–155. [Google Scholar] [CrossRef]
- Macan, H.; Uykimpang, R.; Alconcel, M.; Takasu, J.; Razon, R.; Amagase, H.; Niihara, Y. Aged garlic extract may be safe for patients on warfarin therapy. J. Nutr. 2006, 136, 793S–795S. [Google Scholar] [CrossRef]
- Piscitelli, S.C.; Burstein, A.H.; Welden, N.; Gallicano, K.D.; Falloon, J. The Effect of Garlic Supplements on the Pharmacokinetics of Saquinavir. Clin. Infect. Dis. 2002, 34, 234–238. [Google Scholar] [CrossRef]
- Shaikh, S.A.; Tischer, S.; Choi, E.K.; Fontana, R.J. Good for the lung but bad for the liver? Garlic-induced hepatotoxicity following liver transplantation. J. Clin. Pharm. Ther. 2017, 42, 646–648. [Google Scholar] [CrossRef]
- Rana, S.V.; Pal, R.; Vaiphei, K.; Singh, K. Garlic hepatotoxicity: Safe dose of garlic. Trop. Gastroenterol. 2006, 27, 26–30. [Google Scholar]















| S.No. | Molecular Targets/Pathway | Study Type | Main Findings | References |
|---|---|---|---|---|
| 1. | Keap1/Nrf2/ARE signaling | In vitro (SH-SY5Y Cell) | Curcuma- and garlic-derived hybrids exhibited antioxidant action by stimulating the Nrf2 signaling pathway and increasing ARE-regulated expression of downstream target genes, such as heme oxygenase-1 (HO-1) and NQO1, while having no effect on miR-125b-5p microRNA expression. | [154] |
| In vivo (LPS-induced acute lung injury) | Garlic-derived SAMC (10, 30, or 60 mg/kg) reversed lipopolysaccharide-induced lung injury in BALB/c mice by activating the Keap1/Nrf2 pathway, which increased HO-1 and NQO1 expression, suppressed pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, iNOS, and COX2), and inhibited the NF-κB signaling pathway. | [155] | ||
| In vivo (DSS-induced IBS and SLI) | Garlic polysaccharides (PSG) reduced secondary liver injury (SLI) and inflammatory bowel disease (IBD) in mice. PSG suppressed pyroptosis by downregulating IL-1β, IL-18, NLRP3, gasdermin D, caspase-1, ASC, TLR4, MyD88, NF-κB, and phospho-NF-κB, increased anti-inflammatory responses through IL-10 production, and alleviated oxidative stress by activating the Keap1/Nrf2/ARE signaling pathway. | [156] | ||
| In vitro (Human umbilical vein endothelial cells) | Aged garlic extract (AGE) enhances cellular antioxidant defenses by activating the Nrf2-ARE pathway, leading to increased expression of HO-1 and glutamate-cysteine ligase modifier subunit (GCLM) in human umbilical vein endothelial cells. | [157] | ||
| 2. | Cyclooxygenase (COX2) and lipoxygenase (LOX) | In vivo (Paw edema in rats) & In vitro (RAW264.7 cells) | Diallyl trisulfide, an OSC derived from garlic, inhibited cyclooxygenase and inducible nitric oxide synthase by suppressing the AKT1/TGF-β-driven activation of the MAPK/NF-κB signaling pathway in LPS-induced paw edema in rats and RAW264.7 macrophage cells. | [158] |
| In vitro (RAW264.7 macrophage cells) | Garlic bioactive constituents, such as allicin and Z-ajoene, inhibited the phosphorylation and nuclear translocation of Signal Transducer and Activator of Transcription 3 (STAT3) and suppressed COX2 activity in RAW264.7 murine macrophages. | [159] | ||
| In vitro | Diallyl monosulfide and diallyl disulfide inhibit LOX by creating an adsorption embolism within the enzyme’s substrate channel, whereas diallyl trisulfide, and allicin disrupt its function by interfering with interactions between the N- and C-terminal domains. | [160] | ||
| In vivo (Rabbits platelets, lung, and aorta) | Raw garlic extract inhibited COX activity more effectively than cooked garlic extract, showing a stronger effect on platelet COX activity. | [74] | ||
| In vitro (RAW264.7 cells) | Aged black garlic extract showed greater antioxidant activity in ABTS and DPPH radical scavenging assays but exhibited weaker anti-inflammatory effects, as revealed by reduced inhibition of cyclooxygenase-2 and 5-lipoxygenase, compared with fresh raw garlic extract in LPS-activated RAW264.7 cells. | [161] | ||
| In silico (Molecular docking and dynamics simulation) | Alliin exhibited the greatest binding affinity and improved stability in the COX-2 active site as compared to celecoxib using the MM/PBSA methods. | [162] | ||
| 3. | eNOS/NO pathway | In vitro (H9c2 myoblast cells) | Allicin protects H9c2 cells from ischemic hypoxia-induced apoptosis by stimulating the eNOS/NO pathway and exerting antioxidant effects via increased expression of Nrf2 and heme oxygenase-1 (HO-1) proteins. | [163] |
| In vitro (EA.hy 926 cells) | Endothelial cells treated with aged garlic extract (5 mg/mL) prevented HAT/MET-induced endothelial dysfunction by restoring nitric oxide levels and preserving tetrahydrobiopterin from oxidative damage, even in high-Hcy environments. | [164] | ||
| In vitro (Mouse macrophage cell line) | Garlic extract and SAC increased NO in endothelial cells by preventing the activation of NF-κB signaling in LPS and IFNγ-stimulated RAW264.7 cells, while also reducing the generation of hydroxyl free radicals and controlling NO production by blocking iNOS expression in macrophages. | [165] | ||
| In vitro (Platelets and human placental villous tissue) | Garlic extracts in a 1% alcohol solution induced concentration-dependent nitric oxide (NO) production by activating calcium-dependent nitric oxide synthase in both platelets and human placental villous tissue. | [166] | ||
| In vitro (Aortic rings of rat) | Aged garlic extract produced dose-dependent vasorelaxation of the aortic endothelium by increasing NO generation in norepinephrine-pretreated cells, which was reversed by NOS inhibitors and NO scavengers. | [167] | ||
| 4. | PPAR-γ/NF-κB signaling | In vitro (Aortic smooth muscle cells, A7r5) | Garlic-derived diallyl sulfide inhibited ROS-driven PI3K/Akt signaling by stimulating Nrf2 pathway and downstream NF-κB and AP-1 activation through the dissociation of TRADD and TRAF2 in rat A7r5 cells. | [168] |
| In vivo (DSS-induced colitis in mice) & In vitro (LPS-stimulated RAW264.7 cells) | Alliin effectively attenuates inflammation in both DSS-induced colitis in mice and LPS-stimulated RAW264.7 macrophages by inhibiting MAPK signaling, suppressing PPAR-γ phosphorylation, and blocking the downstream activation of AP-1, NF-κB, and STAT-1. | [169] | ||
| In vivo (LPS-induced ALI) | Alliin mitigates LPS-induced lung inflammation and injury in BALB/c mice by activating PPARγ and inhibiting NF-κB signaling. | [170] | ||
| In vivo (LAD-induced MI in C57BL/6 mice) & In vitro (Isolated cardiomyocyte) | Alliin (100 mg/kg, intraperitoneal) protected C57BL/6 mice from LAD-induced myocardial infarctions. It inhibited necroptosis by reducing the expression of RIP1, RIP3, and TRAF2, while boosting autophagy through elevation of PPARγ expression in hypoxia-induced necroptosis in H9C2 cells. | [171] | ||
| 5. | MAPK–CREB–BDNF axis | In vitro (6-OHDA treated SH-SY5Y cells) & In silico (Network pharmacology and molecular docking) | Allicin (ALC; 10, 50, and 100 μM) reduced 6-OHDA-induced cytotoxicity in SH-SY5Y cells by increasing dopamine transporter (DAT) levels and Bcl-2 expression, while decreasing Bax expression, primarily through activation of the PKA/p-CREB/BDNF signaling pathway. In silico analysis further revealed that ALC exerts its effects via 19 molecular targets, including components of the PI3K-Akt, MAPK, and cAMP signaling pathways. | [26] |
| In vitro (NP cells) & In vivo (C57BL/6 mice) | Diallyl disulfide (DADS; 10 mg/kg) may negatively influence hippocampal neurogenesis and cognitive function by disrupting ERK and BDNF-CREB signaling. It also showed reduced proliferation neural progenitor cells (NPC) in the dentate gyrus. | [172] | ||
| In vitro (Cortical slices of rats) | SAC (100 μM) ameliorates quinolinic acid–induced excitotoxic oxidative damage in isolated rat cortical slices through its anti-inflammatory and antioxidant effects, mediated by activation of the Nrf2/ARE pathway, which suppresses TNF-α and increases BDNF levels. | [173] | ||
| 6. | Tissue remodeling factors (MMP-9) | In vitro (Chondrocyte model of OA) | In an IL-1β-induced OA model, SAMC from garlic exhibits anti-inflammatory and chondroprotective effects by suppressing NF-κB signaling, restoring cartilage matrix balance (through reduced MMP activity and increased TIMP-1 expression), and lowering TNF-α mRNA expression in cell supernatants. | [174] |
| In vitro (EJ bladder cancer cells) | Garlic extract exerts potent anti-tumor effects on EJ bladder carcinoma cells by inducing cell cycle arrest, modulating key signaling pathways, and suppressing invasion-related transcriptional activity, including the downregulation of MMP-9 and reduced binding activities of AP-1, Sp-1, and NF-κB, ultimately leading to decreased tumor invasion. | [175] | ||
| 7. | P53 gene | In vivo (DENA and 2-AAF-induced hepatic cancer in rats) | Garlic oil pretreatment partially corrected the architectural changes induced by diethylnitrosamine (DENA) and 2-acetylaminofluorene (2-AAF) in rat hepatic cancer through its antioxidant effects and by suppressing p53 gene expression. | [176] |
| In vitro (MCF-7 and MD-MBA-231 cells) | Allicin reduces cell viability and induces apoptosis and cell cycle arrest in breast cancer cells by boosting the mRNA expression of A1BG and THBS1 while suppressing the expression of TPM4 via p53 activation. | [177] | ||
| In vitro (Human AGS cells) | The polyphenolic extract of lyophilized garlic displayed a dose-dependent anticancer impact via raising p53 expression, resulting in a rise in the pro-apoptotic protein (Bax activity), a decrease in the anti-apoptotic protein (Bcl-2), and suppression of the PI3K/Akt pathway. | [178] | ||
| 8. | Growth factors (EGFR) | In vitro (Colorectal cancer cells) & In silico (Discovery Studio 4.0) | Alliin, S-allyl-L-cysteine-sulfoxide derivative from garlic demonstrated an inhibitory effect on Epidermal Growth Factor Receptor (EGFR), attributed to its higher binding affinity, which led to a reduction in the viability of colorectal cancer cells. | [179] |
| In vivo (Erlotinib-induced skin toxicity in mice) | Diallyl trisulfide (DATS) alleviates EGFR inhibitor (erlotinib)-induced skin toxicities by suppressing inflammatory cytokines such as TNF-α and IL-6, which in turn reduces follicle count, keratin hyperplasia, and neutrophil infiltration in mice. | [180] | ||
| 9. | Intrinsic (mitochondrial) apoptotic pathway | In vitro (Gastric cancer cells) | Allicin decreased the viability of SGC-7901 gastric cancer cells in a dose- and time-dependent fashion by triggering apoptosis through mitochondrial cytochrome c release, activating caspases-3, -8, and -9, and enhancing Bax and Fas expression via modulating both intrinsic and extrinsic apoptotic pathways. | [181] |
| In vitro (Human cancer cells and rat liver mitochondria) | Aged garlic extract (AGE) and S-allyl-L-cysteine (SAC) induce cytotoxicity in tumor cells by triggering mitochondrial permeability transition (MPT) in human cancer cell lines and in rat liver mitochondria. | [182] | ||
| In vitro (ATC cells) | Diallyl sulfide (DAS) inhibits growth and triggers apoptosis in anaplastic thyroid carcinoma (ATC) cells by downregulating Bcl-2 and upregulating Bax, promoting cytochrome c release, activating caspase-9 and caspase-3, and cleaving PARP via the mitochondrial signaling pathway. | [183] | ||
| 10. | PI3K/Akt pathway | In vivo (Fructose fed diabetic rats) | Raw garlic homogenate (250 mg/kg/day) reverses NF-κB activity and reduces cardiac oxidative stress markers (catalase, GPx, and GSH) by activating the PI3K/Akt/Nrf2 pathway and downregulating Keap1 levels in fructose-induced diabetic rats. | [184] |
| In vitro (Lung adenocarcinoma cells) | Allicin suppresses lung adenocarcinoma cell adhesion, migration, and invasion in a dose-dependent manner by modulating MMP/TIMP expression and inhibiting PI3K/AKT signaling, primarily through the suppression of AKT phosphorylation without affecting AKT protein expression. | [185] | ||
| 11. | Wnt/β-catenin | In vivo (mice) & In vitro (GE1 cells) | Aged garlic extract (2 g/kg/day) inhibited the progression of periodontal disease in rats by upregulating Defb4 mRNA expression in gingival tissue via activation of the Wnt/β-catenin signaling pathway. | [186] |
| In vitro (Gastric carcinoma cells) | Diallyl disulfide (DADS) inhibits the proliferation, transition, migration, and invasion of gastric carcinoma cells by downregulating the expression of target genes such as Axin, c-Jun, and c-Myc through the Wnt/β-catenin signaling pathway, while simultaneously enhancing the interaction between RORα and β-catenin. | [187] | ||
| In vitro (Breast cancer stem cells) | The suppression of lithium chloride-induced Wnt/β-catenin signaling activation by diallyl trisulfide (DATS) resulted in the reduction in the expression of CSC markers (CD44, ALDH1A1, Nanog, and Oct4) and the formation of tumor spheres in breast cancer stem cells. | [188] | ||
| 12. | Cyclin/CDK | In vitro (Chondrocyte cells) | Allicin promoted chondrocyte proliferation by upregulating the expression of cyclin D1, CDK4, and CDK6 at both the mRNA and protein levels, facilitating the G1-to-S phase transition of the cell cycle, and increasing cell viability in a dose-dependent manner. | [189] |
| In vitro (U937 cells) | N-benzyl-N-methyldecan-1-amine (NBNMA), a phenylamine derivative of garlic, exhibits potent anticancer activity by restricting cell growth and cell cycle progression, as well as by inducing apoptosis through caspase-3 activation, PARP destruction, an elevated Bax/Bad to Bcl-2/Bcl-xL ratio, and the inhibition of mitochondrial proteins XIAP and cIAP-1. | [190] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azam, F.; Anwar, M.J.; Kahfi, J.; Almahmoud, S.A.; Emwas, A.-H. Cracking the Sulfur Code: Garlic Bioactive Molecules as Multi-Target Blueprints for Drug Discovery. Pharmaceuticals 2025, 18, 1766. https://doi.org/10.3390/ph18111766
Azam F, Anwar MJ, Kahfi J, Almahmoud SA, Emwas A-H. Cracking the Sulfur Code: Garlic Bioactive Molecules as Multi-Target Blueprints for Drug Discovery. Pharmaceuticals. 2025; 18(11):1766. https://doi.org/10.3390/ph18111766
Chicago/Turabian StyleAzam, Faizul, Md Jamir Anwar, Jordan Kahfi, Suliman A. Almahmoud, and Abdul-Hamid Emwas. 2025. "Cracking the Sulfur Code: Garlic Bioactive Molecules as Multi-Target Blueprints for Drug Discovery" Pharmaceuticals 18, no. 11: 1766. https://doi.org/10.3390/ph18111766
APA StyleAzam, F., Anwar, M. J., Kahfi, J., Almahmoud, S. A., & Emwas, A.-H. (2025). Cracking the Sulfur Code: Garlic Bioactive Molecules as Multi-Target Blueprints for Drug Discovery. Pharmaceuticals, 18(11), 1766. https://doi.org/10.3390/ph18111766

