Bioactive Compounds Derived from Plants and Their Medicinal Potential
Funding
Conflicts of Interest
References
- Sanjai, C.; Gaonkar, S.L.; Hakkimane, S.S. Harnessing Nature’s Toolbox: Naturally Derived Bioactive Compounds in Nanotechnology Enhanced Formulations. ACS Omega 2024, 9, 43302–43318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dincheva, I.; Badjakov, I.; Galunska, B. New Insights in the Research on Bioactive Compounds from Plant Origins with Nutraceutical and Pharmaceutical Potential II. Plants 2025, 14, 500. [Google Scholar] [CrossRef] [PubMed]
- Kciuk, M.; Garg, N.; Dhankhar, S.; Saini, M.; Mujwar, S.; Devi, S.; Chauhan, S.; Singh, T.G.; Singh, R.; Marciniak, B.; et al. Exploring the Comprehensive Neuroprotective and Anticancer Potential of Afzelin. Pharmaceuticals 2024, 17, 701. [Google Scholar] [CrossRef] [PubMed]
- Asdaq, S.M.B.; Almutiri, A.A.; Alenzi, A.; Shaikh, M.; Shaik, M.A.; Alshehri, S.; Rabbani, S.I. Unveiling the Neuroprotective Potential of Date Palm (Phoenix dactylifera): A Systematic Review. Pharmaceuticals 2024, 17, 1221. [Google Scholar] [CrossRef] [PubMed]
- Lessa, V.L.; Gonçalves, G.; Santos, B.; Cavalari, V.C.; da Costa Vieira, R.F.; Figueiredo, F.B. In Vitro Evaluation of the Combinatorial Effect of Naringenin and Miltefosine against Leishmania amazonensis. Pharmaceuticals 2024, 17, 1014. [Google Scholar] [CrossRef] [PubMed]
- Douti, F.V.; Katawa, G.; Arndts, K.; Bara, F.D.; Awesso, E.R.; Karou, S.D.; Hoerauf, A.; Ritter, M. Potential of Aframomum melegueta and Xylopia aethiopica Against Taenia spp.: Plant-Based Remedies as Novel Anthelmintics. Pharmaceuticals 2025, 18, 749. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.-T.; Huang, L.-Y.; Zheng, X.-H.; Fu, Y.-Q.; Weng, C.-F. Ethanolic Extracts of Cupressaceae Species Conifers Provide Rapid Protection against Barium Chloride-Induced Cardiac Arrhythmia. Pharmaceuticals 2024, 17, 1003. [Google Scholar] [CrossRef] [PubMed]
- Mahran, Y.F.; Badr, A.M.; Al-Kharashi, L.A.; Alajami, H.N.; Aldamry, N.T.; Bayoumy, N.M.; Elmongy, E.I.; Soliman, S. Thymol Protects against 5-Fluorouracil-Induced Hepatotoxicity via the Regulation of the Akt/GSK-3β Pathway in In Vivo and In Silico Experimental Models. Pharmaceuticals 2024, 17, 1094. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Luo, K.; Guo, Z.; Wang, R.; Qian, Q.; Ma, S.; Li, M.; Gao, Y. Evaluation of Crocetin as a Protective Agent in High Altitude Hypoxia-Induced Organ Damage. Pharmaceuticals 2024, 17, 985. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.S.; Cavallini, E.; da Silva, R.A.; Sant’Ana, M.; Yoshikawa, A.H.; Salomão, T.; Huang, B.; Craice, P.; de Souza Ferreira, L.P.; Della Matta, H.P.; et al. Garcinia brasiliensis Leaves Extracts Inhibit the Development of Ascitic and Solid Ehrlich Tumors. Pharmaceuticals 2025, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Corral, G.; Cedillo-Cortezano, M.; Aviles-Flores, M.; López-Castillo, M.; Acevedo-Fernández, J.J.; Petricevich, V.L. Antinociceptive and Anti-Inflammatory Activities of Acetonic Extract from Bougainvillea x buttiana (var. Rose). Pharmaceuticals 2024, 17, 1037. [Google Scholar] [CrossRef] [PubMed]
- Ito, C.N.A.; Santos Procopio, E.d.; Balsalobre, N.d.M.; Machado, L.L.; Silva-Filho, S.E.; Pedroso, T.F.; Lourenço, C.C.d.; Oliveira, R.J.; Arena, A.C.; Salvador, M.J.; et al. Analgesic and Anti-Arthritic Potential of Methanolic Extract and Palmatine Obtained from Annona squamosa Leaves. Pharmaceuticals 2024, 17, 1331. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Gutiérrez, S.; Campos-Xolalpa, N.; Estrada-Barajas, S.A.; Carrasco-Carballo, A.; Mendoza, A.; Sánchez-Mendoza, E. Anti-Inflammatory Activity of Two Labdane Enantiomers from Gymnosperma glutinosum: An In Vivo, In Vitro, and In Silico Study. Pharmaceuticals 2025, 18, 516. [Google Scholar] [CrossRef] [PubMed]
- Binsuwaidan, R.; El-Masry, T.A.; El-Nagar, M.M.F.; El Zahaby, E.I.; Gaballa, M.M.S.; El-Bouseary, M.M. Investigating the Antibacterial, Antioxidant, and Anti-Inflammatory Properties of a Lycopene Selenium Nano-Formulation: An In Vitro and In Vivo Study. Pharmaceuticals 2024, 17, 1600. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, S.M.R.; Girol, A.P.; Nissapatorn, V.; Pereira, M.d.L. Bioactive Compounds Derived from Plants and Their Medicinal Potential. Pharmaceuticals 2025, 18, 1732. https://doi.org/10.3390/ph18111732
Oliveira SMR, Girol AP, Nissapatorn V, Pereira MdL. Bioactive Compounds Derived from Plants and Their Medicinal Potential. Pharmaceuticals. 2025; 18(11):1732. https://doi.org/10.3390/ph18111732
Chicago/Turabian StyleOliveira, Sónia M. R., Ana Paula Girol, Veeranoot Nissapatorn, and Maria de Lourdes Pereira. 2025. "Bioactive Compounds Derived from Plants and Their Medicinal Potential" Pharmaceuticals 18, no. 11: 1732. https://doi.org/10.3390/ph18111732
APA StyleOliveira, S. M. R., Girol, A. P., Nissapatorn, V., & Pereira, M. d. L. (2025). Bioactive Compounds Derived from Plants and Their Medicinal Potential. Pharmaceuticals, 18(11), 1732. https://doi.org/10.3390/ph18111732
