Point of Care Testing, Rapid Next Generation Sequencing and Artificial Intelligence in Pediatric and Neonatal Healthcare: A Narrative Review
Abstract
1. Introduction
2. Rapid Genome Sequencing for Children’s Diseases
- Personalized treatment: rNGS facilitates individualized therapy by avoiding ineffective interventions [45].
- Higher diagnostic precision with trio analysis: inclusion of parental DNA increases the ability to detect de novo mutations, distinguish pathogenic from benign variants, and clarify inheritance patterns—essential for genetic counseling [46].
- Research benefits: rNGS provides valuable genomic data for rare disease studies, potentially leading to the identification of new molecular targets and to the development of novel therapies [48].
3. Laboratory POCT: An Important Opportunity for Pediatric Patients
4. Artificial Intelligence for Diagnosis of Children’s Diseases
5. Challenges, Strategies, and Stakeholder Roles in the Implementation of rNGS, POCT, and AI in NICU and PICU
6. Discussion
7. Conclusions and Future Outlook
- ▪
- Cross-disciplinary education, fostering novel professional roles such as hybrid clinician–data scientists who can bridge medical expertise with computational and analytical proficiency.
- ▪
- Explainable AI tools designed for non-specialists, enabling clinicians without advanced data science training to interpret AI-generated insights, critically evaluate algorithmic outputs, and incorporate them into real-time clinical decision-making.
- ▪
- Dynamic ethical governance that evolves in parallel with technological progress, ensuring that frameworks for consent, data sharing, algorithmic accountability, and patient privacy remain adaptive, transparent, and responsive to rapid developments in genomic and AI-driven diagnostics.
- ▪
- Global harmonization of diagnostic standards and neonatal/pediatric data frameworks, promoting interoperability across institutions and countries, improving data quality and reproducibility, and ensuring equitable access to high-quality genomic and clinical resources for all pediatric populations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, N.; Makarem, D.C.; Wasserstein, M.P. Screening of Newborns for Disorders with High Benefit-Risk Ratios Should Be Mandatory. J. Law Med. Ethics 2016, 44, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Therrell, B.L.; Padilla, C.D.; Loeber, J.G.; Kneisser, I.; Saadallah, A.; Borrajo, G.J.C.; Adams, J. Current status of newborn screening worldwide: 2015. Semin. Perinatol. 2015, 39, 171–187. [Google Scholar] [CrossRef] [PubMed]
- Cianflone, A.; Savoia, F.; Parasole, R.; Mirabelli, P. Pediatric biobanks to enhance clinical and translational research for children. Eur. J. Pediatr. 2023, 182, 1459–1468. [Google Scholar] [CrossRef]
- Van Wijk, J.J.; Weber, F.; Stolker, R.J.; Staals, L.M. Current state of noninvasive, continuous monitoring modalities in pediatric anesthesiology. Curr. Opin. Anaesthesiol. 2020, 33, 781–787. [Google Scholar] [CrossRef]
- Loeber, J.G.; Platis, D.; Zetterström, R.H.; Almashanu, S.; Boemer, F.; Bonham, J.R.; Borde, P.; Brincat, I.; Cheillan, D.; Dekkers, E.; et al. Neonatal Screening in Europe Revisited: An ISNS Perspective on the Current State and Developments Since 2010. Int. J. Neonatal Screen. 2021, 7, 15. [Google Scholar] [CrossRef]
- Aktuglu Zeybek, A.C. Newborn Screening: From the Past to the Future. Turk. Arch. Pediatr. 2022, 57, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Dexter, D.; McGann, P.T. Saving lives through early diagnosis: The promise and role of point of care testing for sickle cell disease. Br. J. Haematol. 2022, 196, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Christopher, H.; Burns, A.; Josephat, E.; Makani, J.; Schuh, A.; Nkya, S. Using DNA testing for the precise, definite, and low-cost diagnosis of sickle cell disease and other Haemoglobinopathies: Findings from Tanzania. BMC Genom. 2021, 22, 902. [Google Scholar] [CrossRef]
- El Helali, N.; Habibi, F.; Azria, E.; Giovangrandi, Y.; Autret, F.; Durand-Zaleski, I.; Le Monnier, A. Point-of-Care Intrapartum Group B Streptococcus Molecular Screening: Effectiveness and Costs. Obstet. Gynecol. 2019, 133, 276–281. [Google Scholar] [CrossRef]
- Monk, C.H.; Youngquist, B.M.; Brady, A.D.; Shaffer, J.G.; Hu, T.Y.; Ning, B.; Zwezdaryk, K.J. Development of a CRISPR-Cas12a rapid diagnostic for human cytomegalovirus. Antivir. Res. 2023, 215, 105624. [Google Scholar] [CrossRef]
- Steinberg, R.; Mostacci, N.; Kieninger, E.; Frauchiger, B.; Casaulta, C.; Usemann, J.; Moeller, A.; Trachsel, D.; Rochat, I.; Blanchon, S.; et al. Early nasal microbiota and subsequent respiratory tract infections in infants with cystic fibrosis. Commun. Med. 2024, 4, 246. [Google Scholar] [CrossRef]
- Strand, J.; Gul, K.A.; Erichsen, H.C.; Lundman, E.; Berge, M.C.; Trømborg, A.K.; Sørgjerd, L.K.; Ytre-Arne, M.; Hogner, S.; Halsne, R.; et al. Second-Tier Next Generation Sequencing Integrated in Nationwide Newborn Screening Provides Rapid Molecular Diagnostics of Severe Combined Immunodeficiency. Front. Immunol. 2020, 11, 1417. [Google Scholar] [CrossRef] [PubMed]
- Hohenfellner, K.; Bergmann, C.; Fleige, T.; Janzen, N.; Burggraf, S.; Olgemöller, B.; Gahl, W.A.; Czibere, L.; Froschauer, S.; Röschinger, W.; et al. Molecular based newborn screening in Germany: Follow-up for cystinosis. Mol. Genet. Metab. Rep. 2019, 21, 100514. [Google Scholar] [CrossRef]
- Yu, M.K.; Ma, J.; Fisher, J.; Kreisberg, J.F.; Raphael, B.J.; Ideker, T. Visible Machine Learning for Biomedicine. Cell 2018, 173, 1562–1565. [Google Scholar] [CrossRef] [PubMed]
- Reiley, J.; Botas, P.; Miller, C.E.; Zhao, J.; Malone Jenkins, S.; Best, H.; Grubb, P.H.; Mao, R.; Isla, J.; Brunelli, L. Open-Source Artificial Intelligence System Supports Diagnosis of Mendelian Diseases in Acutely Ill Infants. Children 2023, 10, 991. [Google Scholar] [CrossRef] [PubMed]
- Dimmock, D.P.; Clark, M.M.; Gaughran, M.; Cakici, J.A.; Caylor, S.A.; Clarke, C.; Feddock, M.; Chowdhury, S.; Salz, L.; Cheung, C.; et al. An RCT of Rapid Genomic Sequencing among Seriously Ill Infants Results in High Clinical Utility, Changes in Management, and Low Perceived Harm. Am. J. Hum. Genet. 2020, 107, 942–952. [Google Scholar] [CrossRef]
- Berry, M.A.; Shah, P.S.; Brouillette, R.T.; Hellmann, J. Predictors of mortality and length of stay for neonates admitted to children’s hospital neonatal intensive care units. J. Perinatol. 2008, 28, 297–302. [Google Scholar] [CrossRef]
- Shashi, V.; McConkie-Rosell, A.; Rosell, B.; Schoch, K.; Vellore, K.; McDonald, M.; Jiang, Y.-H.; Xie, P.; Need, A.; Goldstein, D.B. The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet. Med. 2014, 16, 176–182. [Google Scholar] [CrossRef]
- Malam, F.; Hartley, T.; Gillespie, M.K.; Armour, C.M.; Bariciak, E.; Graham, G.E.; Nikkel, S.M.; Richer, J.; Sawyer, S.L.; Boycott, K.M.; et al. Benchmarking outcomes in the Neonatal Intensive Care Unit: Cytogenetic and molecular diagnostic rates in a retrospective cohort. Am. J. Med. Genet. Part A 2017, 173, 1839–1847. [Google Scholar] [CrossRef]
- Petrikin, J.E.; Willig, L.K.; Smith, L.D.; Kingsmore, S.F. Rapid whole genome sequencing and precision neonatology. Semin. Perinatol. 2015, 39, 623–631. [Google Scholar] [CrossRef]
- Richer, J.; Daoud, H.; Geier, P.; Jarinova, O.; Carson, N.; Feberova, J.; Nadya, B.F.; Unrau, J.; Bareke, E.; Khatchadourian, K.; et al. Resolution of refractory hypotension and anuria in a premature newborn with loss-of-function of ACE. Am. J. Med. Genet. Part A 2015, 167, 1654–1658. [Google Scholar] [CrossRef]
- McGowan, M.L.; Glinka, A.; Highland, J.; Asaad, G.; Sharp, R.R. Genetics Patients‘ Perspectives on Clinical Genomic Testing. Pers. Med. 2013, 10, 339–347. [Google Scholar] [CrossRef]
- Hill, M.; Hammond, J.; Lewis, C.; Mellis, R.; Clement, E.; Chitty, L.S. Delivering genome sequencing for rapid genetic diagnosis in critically ill children: Parent and professional views, experiences and challenges. Eur. J. Hum. Genet. 2020, 28, 1529–1540. [Google Scholar] [CrossRef]
- Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019, 20, 631–656. [Google Scholar] [CrossRef] [PubMed]
- Schofield, D.; Alam, K.; Douglas, L.; Shrestha, R.; MacArthur, D.G.; Davis, M.; Laing, N.G.; Clarke, N.F.; Burns, J.; Cooper, S.T.; et al. Cost-effectiveness of massively parallel sequencing for diagnosis of paediatric muscle diseases. NPJ Genom. Med. 2017, 2, 4. [Google Scholar] [CrossRef]
- Wright, C.F.; FitzPatrick, D.R.; Firth, H.V. Paediatric genomics: Diagnosing rare disease in children. Nat. Rev. Genet. 2018, 19, 253–268. [Google Scholar] [CrossRef]
- Gorzynski, J.E.; Goenka, S.D.; Shafin, K.; Jensen, T.D.; Fisk, D.G.; Grove, M.E.; Spiteri, E.; Pesout, T.; Monlong, J.; Baid, G.; et al. Ultrarapid Nanopore Genome Sequencing in a Critical Care Setting. N. Engl. J. Med. 2022, 386, 700–702. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Pammi, M.; Saronwala, A.; Magoulas, P.; Ghazi, A.R.; Vetrini, F.; Zhang, J.; He, W.; Dharmadhikari, A.V.; Qu, C.; et al. Use of Exome Sequencing for Infants in Intensive Care Units: Ascertainment of Severe Single-Gene Disorders and Effect on Medical Management. JAMA Pediatr. 2017, 171, e173438. [Google Scholar] [CrossRef]
- Saunders, C.J.; Miller, N.A.; Soden, S.E.; Dinwiddie, D.L.; Noll, A.; Alnadi, N.A.; Andraws, N.; Patterson, M.L.; Krivohlavek, L.A.; Fellis, J.; et al. Rapid Whole-Genome Sequencing for Genetic Disease Diagnosis in Neonatal Intensive Care Units. Sci. Transl. Med. 2012, 4, 154ra135. [Google Scholar] [CrossRef] [PubMed]
- Soden, S.E.; Saunders, C.J.; Willig, L.K.; Farrow, E.G.; Smith, L.D.; Petrikin, J.E.; LePichon, J.-B.; Miller, N.A.; Thiffault, I.; Dinwiddie, D.L.; et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci. Transl. Med. 2014, 6, 265ra168. [Google Scholar] [CrossRef]
- Willig, L.K.; Petrikin, J.E.; Smith, L.D.; Saunders, C.J.; Thiffault, I.; Miller, N.A.; Soden, S.E.; Cakici, J.A.; Herd, S.M.; Twist, G.; et al. Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: A retrospective analysis of diagnostic and clinical findings. Lancet Respir. Med. 2015, 3, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Priest, J.R.; Ceresnak, S.R.; Dewey, F.E.; Malloy-Walton, L.E.; Dunn, K.; Grove, M.E.; Perez, M.V.; Maeda, K.; Dubin, A.M.; Ashley, E.A. Molecular diagnosis of long QT syndrome at 10 days of life by rapid whole genome sequencing. Heart Rhythm 2014, 11, 1707–1713. [Google Scholar] [CrossRef]
- Farnaes, L.; Nahas, S.A.; Chowdhury, S.; Nelson, J.; Batalov, S.; Dimmock, D.M.; Kingsmore, S.F.; RCIGM Investigators. Rapid whole-genome sequencing identifies a novel GABRA1 variant associated with West syndrome. Cold Spring Harb. Mol. Case Stud. 2017, 3, a001776. [Google Scholar] [CrossRef]
- Hildreth, A.; Wigby, K.; Chowdhury, S.; Nahas, S.; Barea, J.; Ordonez, P.; Batalov, S.; Dimmock, D.; Kingsmore, S.; RCIGM Investigators. Rapid whole-genome sequencing identifies a novel homozygous NPC1 variant associated with Niemann-Pick type C1 disease in a 7-week-old male with cholestasis. Cold Spring Harb. Mol. Case Stud. 2017, 3, a001966. [Google Scholar] [CrossRef]
- Miller, N.A.; Farrow, E.G.; Gibson, M.; Willig, L.K.; Twist, G.; Yoo, B.; Marrs, T.; Corder, S.; Krivohlavek, L.; Walter, A.; et al. A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases. Genome Med. 2015, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- Australian Genomics Health Alliance Acute Care Flagship; Lunke, S.; Eggers, S.; Wilson, M.; Patel, C.; Barnett, C.P.; Pinner, J.; Sandaradura, S.A.; Buckley, M.F.; Krzesinski, E.I.; et al. Feasibility of Ultra-Rapid Exome Sequencing in Critically Ill Infants and Children With Suspected Monogenic Conditions in the Australian Public Health Care System. JAMA 2020, 323, 2503–2511. [Google Scholar] [CrossRef]
- Owen, M.J.; Lefebvre, S.; Hansen, C.; Kunard, C.M.; Dimmock, D.P.; Smith, L.D.; Scharer, G.; Mardach, R.; Willis, M.J.; Feigenbaum, A.; et al. An automated 13.5 hour system for scalable diagnosis and acute management guidance for genetic diseases. Nat. Commun. 2022, 13, 4057. [Google Scholar] [CrossRef]
- Berg, J.S.; Agrawal, P.B.; Bailey, D.B.; Beggs, A.H.; Brenner, S.E.; Brower, A.M.; Cakici, J.A.; Ceyhan-Birsoy, O.; Chan, K.; Chen, F.; et al. Newborn Sequencing in Genomic Medicine and Public Health. Pediatrics 2017, 139, e20162252. [Google Scholar] [CrossRef]
- Cakici, J.A.; Dimmock, D.P.; Caylor, S.A.; Gaughran, M.; Clarke, C.; Triplett, C.; Clark, M.M.; Kingsmore, S.F.; Bloss, C.S. A Prospective Study of Parental Perceptions of Rapid Whole-Genome and -Exome Sequencing among Seriously Ill Infants. Am. J. Hum. Genet. 2020, 107, 953–962. [Google Scholar] [CrossRef]
- Best, S.; Brown, H.; Lunke, S.; Patel, C.; Pinner, J.; Barnett, C.P.; Wilson, M.; Sandaradura, S.A.; McClaren, B.; Brett, G.R.; et al. Learning from scaling up ultra-rapid genomic testing for critically ill children to a national level. NPJ Genom. Med. 2021, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, R.; Jenkins, S.M.; Bentley, D.; Miller, C.; Mao, R.; Meibos, B.; Bayrak-Toydemir, P.; Tvrdik, T.; Nadauld, L.D.; Bleyl, S.B.; et al. Evaluating use of changing technologies for rapid next-generation sequencing in pediatrics. Pediatr. Res. 2022, 92, 1364–1369. [Google Scholar] [CrossRef]
- Guner Yilmaz, B.; Akgun-Dogan, O.; Ozdemir, O.; Yuksel, B.; Hatirnaz Ng, O.; Bilguvar, K.; Ay, B.; Ozkose, G.S.; Aydin, E.; Yigit, A.; et al. Rapid genome sequencing for critically ill infants: An inaugural pilot study from Turkey. Front. Pediatr. 2024, 12, 1412880. [Google Scholar] [CrossRef]
- Jezkova, J.; Shaw, S.; Taverner, N.V.; Williams, H.J. Rapid genome sequencing for pediatrics. Hum. Mutat. 2022, 43, 1507–1518. [Google Scholar] [CrossRef]
- Manickam, K.; McClain, M.R.; Demmer, L.A.; Biswas, S.; Kearney, H.M.; Malinowski, J.; Massingham, L.J.; Miller, D.; Yu, T.W.; Hisama, F.M.; et al. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: An evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021, 23, 2029–2037. [Google Scholar] [CrossRef]
- Oates, J.T.; Lopez, D. Pharmacogenetics: An Important Part of Drug Development with A Focus on Its Application. Int. J. Biomed. Investig. 2018, 1, 111. [Google Scholar] [CrossRef]
- Acuna-Hidalgo, R.; Veltman, J.A.; Hoischen, A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 2016, 17, 241. [Google Scholar] [CrossRef]
- Smith, E.E.; du Souich, C.; Dragojlovic, N.; CAUSES Study; RAPIDOMICS Study; Elliott, A.M. Genetic counseling considerations with rapid genome-wide sequencing in a neonatal intensive care unit. J. Genet. Couns. 2019, 28, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Stark, Z.; Dolman, L.; Manolio, T.A.; Ozenberger, B.; Hill, S.L.; Caulfied, M.J.; Levy, Y.; Glazer, D.; Wilson, J.; Lawler, M.; et al. Integrating Genomics into Healthcare: A Global Responsibility. Am. J. Hum. Genet. 2019, 104, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Ontario Health (Quality). Genome-Wide Sequencing for Unexplained Developmental Disabilities or Multiple Congenital Anomalies: A Health Technology Assessment. Ont. Health Technol. Assess. Ser. 2020, 20, 1–178. [Google Scholar]
- Pruneri, G.; De Braud, F.; Sapino, A.; Aglietta, M.; Vecchione, A.; Giusti, R.; Marchiò, C.; Scarpino, S.; Baggi, A.; Bonetti, G.; et al. Next-Generation Sequencing in Clinical Practice: Is It a Cost-Saving Alternative to a Single-Gene Testing Approach? PharmacoEconomics-Open 2021, 5, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Rehm, H.L.; Bale, S.J.; Bayrak-Toydemir, P.; Berg, J.S.; Brown, K.K.; Deignan, J.L.; Friez, M.J.; Funke, B.H.; Hegde, M.R.; Lyon, E. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 2013, 15, 733–747. [Google Scholar] [CrossRef]
- for the EuroGentest Validation Group; Mattocks, C.J.; Morris, M.A.; Matthijs, G.; Swinnen, E.; Corveleyn, A.; Dequeker, E.; Müller, C.R.; Pratt, V.; Wallace, A. A standardized framework for the validation and verification of clinical molecular genetic tests. Eur. J. Hum. Genet. 2010, 18, 1276–1288. [Google Scholar] [CrossRef]
- Karakoyun, H.K.; Sayar, C.; Yararbaş, K. Challenges in clinical interpretation of next-generation sequencing data: Advantages and Pitfalls. Results Eng. 2023, 20, 101421. [Google Scholar] [CrossRef]
- Manolio, T.A. Using the Data We Have: Improving Diversity in Genomic Research. Am. J. Hum. Genet. 2019, 105, 233–236. [Google Scholar] [CrossRef]
- Marom, D.; Mory, A.; Reytan-Miron, S.; Amir, Y.; Kurolap, A.; Cohen, J.G.; Morhi, Y.; Smolkin, T.; Cohen, L.; Zangen, S.; et al. National Rapid Genome Sequencing in Neonatal Intensive Care. JAMA Netw. Open 2024, 7, e240146. [Google Scholar] [CrossRef]
- Kalia, S.S.; Adelman, K.; Bale, S.J.; Chung, W.K.; Eng, C.; Evans, J.P.; Herman, G.E.; Hufnagel, S.B.; Klein, T.E.; Korf, B.R.; et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): A policy statement of the American College of Medical Genetics and Genomics. Genet. Med. 2017, 19, 249–255. [Google Scholar] [CrossRef]
- Kaye, J.; Whitley, E.A.; Lund, D.; Morrison, M.; Teare, H.; Melham, K. Dynamic consent: A patient interface for twenty-first century research networks. Eur. J. Hum. Genet. 2015, 23, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Larkins, M.C.; Thombare, A. Point-of-Care Testing. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025; Available online: http://www.ncbi.nlm.nih.gov/books/NBK592387/ (accessed on 27 August 2025).
- St John, A.; Price, C.P. Existing and Emerging Technologies for Point-of-Care Testing. Clin. Biochem. Rev. 2014, 35, 155–167. [Google Scholar]
- Khan, A.R.; Hussain, W.L.; Shum, H.C.; Hassan, S.U. Point-of-care testing: A critical analysis of the market and future trends. Front. Lab Chip Technol. 2024, 3, 1394752. [Google Scholar] [CrossRef]
- Donà, D.; Barbieri, E.; Brigadoi, G.; Liberati, C.; Bosis, S.; Castagnola, E.; Colomba, C.; Galli, L.; Lancella, L.; Lo Vecchio, A.; et al. State of the Art of Antimicrobial and Diagnostic Stewardship in Pediatric Setting. Antibiotics 2025, 14, 132. [Google Scholar] [CrossRef] [PubMed]
- Bellini, T.; Fueri, E.; Formigoni, C.; Mariani, M.; Villa, G.; Finetti, M.; Marin, M.; De Chiara, E.; Bratta, A.; Vanorio, B.; et al. Usefulness of Point-of-Care Testing for Respiratory Viruses in a Pediatric Emergency Department Setting. J. Clin. Med. 2024, 13, 7368. [Google Scholar] [CrossRef]
- Kanwar, N.; Jackson, J.; Bardsley, T.; Pavia, A.; Bourzac, K.M.; Holmberg, K.; Selvarangan, R. Impact of Rapid Molecular Multiplex Gastrointestinal Pathogen Testing in Management of Children during a Shigella Outbreak. J. Clin. Microbiol. 2023, 61, e01652-22. [Google Scholar] [CrossRef]
- Tamelytė, E.; Vaičekauskienė, G.; Dagys, A.; Lapinskas, T.; Jankauskaitė, L. Early Blood Biomarkers to Improve Sepsis/Bacteremia Diagnostics in Pediatric Emergency Settings. Medicina 2019, 55, 99. [Google Scholar] [CrossRef]
- Teggert, A.; Datta, H.; Ali, Z. Biomarkers for Point-of-Care Diagnosis of Sepsis. Micromachines 2020, 11, 286. [Google Scholar] [CrossRef]
- Goyal, M.; Mascarenhas, D.; Rr, P.; Haribalakrishna, A. Diagnostic Accuracy of Point-of-Care Testing of C-Reactive Protein, Interleukin-6, and Procalcitonin in Neonates with Clinically Suspected Sepsis: A Prospective Observational Study. Med. Princ. Pract. 2024, 33, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, Z.; Wang, L.; Li, S.; Liu, J.; Huang, Y.; Liu, J.; Zhu, C.; Zhang, J.; Li, C.; et al. Early-onset neonatal sepsis in a Chinese maternal and child healthcare centre, 2017–2023. Front. Pediatr. 2025, 13, 1521908. [Google Scholar] [CrossRef]
- Nabi, S.; Iqbal, M.A.; Masood, S.; Shami, S.S.; Ali, H.; Hamid, M. Diagnostic Accuracy of Serum Procalcitonin (PCT) as an Early Biomarker of Neonatal Sepsis using Blood Culture as Gold Standard: A Prospective Study. J. Neonatal Surg. 2025, 13, 494–499. [Google Scholar] [CrossRef]
- Adamson, P.C.; Loeffelholz, M.J.; Klausner, J.D. Point-of-Care Testing for Sexually Transmitted Infections: A Review of Recent Developments. Arch. Pathol. Lab. Med. 2020, 144, 1344–1351. [Google Scholar] [CrossRef]
- Demuru, S.; Chai-Gao, H.; Shynkarenko, Y.; Hermann, N.; Boia, P.-D.; Cristofolini, P.; Petkus, B.; Generelli, S.; Paoletti, S.; Cattaneo, S.; et al. Point-of-Care Fluorescence Biosensing System for Rapid Multi-Allergen Screening. Sensors 2024, 24, 3280. [Google Scholar] [CrossRef]
- Tsao, Y.-T.; Tsai, Y.-H.; Liao, W.-T.; Shen, C.-J.; Shen, C.-F.; Cheng, C.-M. Differential Markers of Bacterial and Viral Infections in Children for Point-of-Care Testing. Trends Mol. Med. 2020, 26, 1118–1132. [Google Scholar] [CrossRef] [PubMed]
- Grace, E.; Jayakumar, N.; Cooper, C.; Andersen, C.; Callander, E.; Gomersall, J.; Rumbold, A.; Keir, A. Reducing intravenous antibiotics in neonates born ≥35 weeks’ gestation: A quality improvement study. J. Paediatr. Child Health 2024, 60, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-Y.; Corder, W.; Tefera, E.; Abubakar, K.M. Comparison of Point-of-Care versus Central Laboratory Testing of Electrolytes, Hemoglobin, and Bilirubin in Neonates. Am. J. Perinatol. 2022, 39, 1786–1791. [Google Scholar] [CrossRef]
- Hernández-Bou, S.; Trenchs, V.; Vanegas, M.I.; Valls, A.F.; Luaces, C. Evaluation of the bedside Quikread go® CRP test in the management of febrile infants at the emergency department. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1205–1211. [Google Scholar] [CrossRef]
- Westenberg, L.E.H.; Been, J.V.; Willemsen, S.P.; Vis, J.Y.; Tintu, A.N.; Bramer, W.M.; Dijk, P.H.; Steegers, E.A.P.; Reiss, I.K.M.; Hulzebos, C.V. Diagnostic Accuracy of Portable, Handheld Point-of-Care Tests vs Laboratory-Based Bilirubin Quantification in Neonates: A Systematic Review and Meta-analysis. JAMA Pediatr. 2023, 177, 479–488. [Google Scholar] [CrossRef]
- Morimatsu, H.; Rocktäschel, J.; Bellomo, R.; Uchino, S.; Goldsmith, D.; Gutteridge, G. Comparison of point-of-care versus central laboratory measurement of electrolyte concentrations on calculations of the anion gap and the strong ion difference. Anesthesiology 2003, 98, 1077–1084. [Google Scholar] [CrossRef]
- Chhapola, V.; Kanwal, S.K.; Sharma, R.; Kumar, V. A comparative study on reliability of point of care sodium and potassium estimation in a pediatric intensive care unit. Indian J. Pediatr. 2013, 80, 731–735. [Google Scholar] [CrossRef]
- Coppola, L.; Cianflone, A.; Grimaldi, A.M.; Incoronato, M.; Bevilacqua, P.; Messina, F.; Baselice, S.; Soricelli, A.; Mirabelli, P.; Salvatore, M. Biobanking in health care: Evolution and future directions. J. Transl. Med. 2019, 17, 172. [Google Scholar] [CrossRef] [PubMed]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef]
- Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal biomedical AI. Nat. Med. 2022, 28, 1773–1784. [Google Scholar] [CrossRef]
- Cadamuro, J. Rise of the Machines: The Inevitable Evolution of Medicine and Medical Laboratories Intertwining with Artificial Intelligence—A Narrative Review. Diagnostics 2021, 11, 1399. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Li, Z.; Li, S.; Liu, J.; Sun, M.; Liu, X.; Sun, F.; Zheng, J.; Li, Y.; Yu, Y.; et al. The role of artificial intelligence in identifying asthma in pediatric inpatient setting. Ann. Transl. Med. 2020, 8, 1367. [Google Scholar] [CrossRef]
- Alghalyini, B. Applications of artificial intelligence in the management of childhood obesity. J. Fam. Med. Prim. Care 2023, 12, 2558–2564. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Li, Y. Artificial intelligence applications in pediatric oncology diagnosis. Explor. Target Antitumor Ther. 2023, 4, 157–169. [Google Scholar] [CrossRef]
- Chen, T.; Tachmazidis, I.; Batsakis, S.; Adamou, M.; Papadakis, E.; Antoniou, G. Diagnosing attention-deficit hyperactivity disorder (ADHD) using artificial intelligence: A clinical study in the UK. Front. Psychiatry 2023, 14, 1164433. [Google Scholar] [CrossRef]
- Tsang, B.; Gupta, A.; Takahashi, M.S.; Baffi, H.; Ola, T.; Doria, A.S. Applications of artificial intelligence in magnetic resonance imaging of primary pediatric cancers: A scoping review and CLAIM score assessment. Jpn. J. Radiol. 2023, 41, 1127–1147. [Google Scholar] [CrossRef] [PubMed]
- Tveit, J.; Aurlien, H.; Plis, S.; Calhoun, V.D.; Tatum, W.O.; Schomer, D.L.; Arntsen, V.; Cox, F.; Fahoum, F.; Gallentine, W.B.; et al. Automated Interpretation of Clinical Elec-troencephalograms Using Artificial Intelligence. JAMA Neurol. 2023, 80, 805–812. [Google Scholar] [CrossRef]
- Sethi, Y.; Patel, N.; Kaka, N.; Desai, A.; Kaiwan, O.; Sheth, M.; Sharma, R.; Huang, H.; Chopra, H.; Khandaker, M.U.; et al. Artificial Intelligence in Pediatric Cardiology: A Scoping Review. J. Clin. Med. 2022, 11, 7072. [Google Scholar] [CrossRef]
- Van Schalkwyk, G. Artificial intelligence in pediatric behavioral health. Child Adolesc. Psychiatry Ment. Health 2023, 17, 38. [Google Scholar] [CrossRef] [PubMed]
- De La Vega, F.M.; Chowdhury, S.; Moore, B.; Frise, E.; McCarthy, J.; Hernandez, E.J.; Wong, T.; James, K.; Guidugli, L.; Agrawal, P.B.; et al. Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases. Genome Med. 2021, 13, 153. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-W.; Shrestha, L.; Green, G.; Leier, A.; Marquez-Lago, T.T. The hitchhikers’ guide to RNA sequencing and functional analysis. Brief. Bioinform. 2023, 24, bbac529. [Google Scholar] [CrossRef]
- Amarasinghe, S.L.; Su, S.; Dong, X.; Zappia, L.; Ritchie, M.E.; Gouil, Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020, 21, 30. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, G.A.; Vollger, M.R.; Eichler, E.E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 2020, 21, 597–614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, D.; Tang, X.; Xu, T.; Li, S.; Zhao, X.; Miao, Z.; Zhang, Y.; Zhou, H.; Li, Y.; et al. Deep Learning-Enhanced Hand-Driven Spatial Encoding Microfluidics for Multiplexed Molecular Testing at Home. ACS Nano 2025, 19, 25793–25811. [Google Scholar] [CrossRef] [PubMed]
- Marescotti, D.; Narayanamoorthy, C.; Bonjour, F.; Kuwae, K.; Graber, L.; Calvino-Martin, F.; Ghosh, S.; Hoeng, J. AI-driven laboratory workflows enable operation in the age of social distancing. SLAS Technol. 2022, 27, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.I.; Khan, M.; Khan, R. Artificial Intelligence in Point-of-Care Testing. Ann. Lab. Med. 2023, 43, 401–407. [Google Scholar] [CrossRef]
- Zhang, D.; Lv, X.; Jiang, H.; Fan, Y.; Liu, K.; Wang, H.; Deng, Y. AI-Enabled Microfluidics for Respiratory Pathogen Detection. Sensors 2025, 25, 5791. [Google Scholar] [CrossRef]
- Papadopoulos, M.; Kokkinis, A.; Lamprou, E.; Kalligosfyri, P.M.; Koustoumpardis, P.N.; Kalogianni, D.P. Smartphone-Powered Automated Image Recognition Tool for Multianalyte Rapid Tests: Application to Infectious Diseases. Anal. Chem. 2025, 97, 13340–13349. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, P.; Chen, Y. Artificial Intelligence-Assisted Visualized Microspheres for Biochemical Analysis: From Encoding to Decoding. Acc. Chem. Res. 2025, 58, 2627–2639. [Google Scholar] [CrossRef]
- Gao, S.; Wang, J.; Miao, Z.; Zhao, X.; Zhang, Y.; Du, W.; Feng, X.; Li, Y.; Liu, J.; Chen, P.; et al. Artificial intelligence enhanced microfluidic system for multiplexed point-of-care-testing of biological thiols. Talanta 2025, 287, 127619. [Google Scholar] [CrossRef]
- Lu, P.; Zhou, Y.; Niu, X.; Zhan, C.; Lang, P.; Zhao, Y.; Chen, Y. Deep-Learning-Assisted Microfluidic Immunoassay via Smartphone-Based Imaging Transcoding System for On-Site and Multiplexed Biosensing. Nano Lett. 2025, 25, 6803–6812. [Google Scholar] [CrossRef]
- Ghassemi, M.; Oakden-Rayner, L.; Beam, A.L. The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit. Health 2021, 3, e745–e750. [Google Scholar] [CrossRef] [PubMed]
- Muralidharan, V.; Burgart, A.; Daneshjou, R.; Rose, S. Recommendations for the use of pediatric data in artificial intelligence and machine learning ACCEPT-AI. NPJ Digit. Med. 2023, 6, 166. [Google Scholar] [CrossRef]
- Malhotra, A.; Molloy, E.J.; Bearer, C.F.; Mulkey, S.B. Emerging role of artificial intelligence, big data analysis and precision medicine in pediatrics. Pediatr. Res. 2023, 93, 281–283. [Google Scholar] [CrossRef]
- Abdalwahab Abdallah, A.B.A.; Hafez Sadaka, S.I.; Ali, E.I.; Mustafa Bilal, S.A.; Abdelrahman, M.O.; Fakiali Mohammed, F.B.; Nimir Ahmed, S.D.; Abdelrahim Saeed, N.E. The Role of Artificial Intelligence in Pediatric Intensive Care: A Systematic Review. Cureus 2025, 17, e80142. [Google Scholar] [CrossRef]
- Schouten, J.S.; Kalden, M.A.C.M.; Van Twist, E.; Reiss, I.K.M.; Gommers, D.A.M.P.J.; Van Genderen, M.E.; Taal, H.R. From bytes to bedside: A systematic review on the use and readiness of artificial intelligence in the neonatal and pediatric intensive care unit. Intensive Care Med. 2024, 50, 1767–1777. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.S.; Woo, H.; Yoo, Y.K.; Lee, D.; Chung, S.; Yoon, D.S.; Lee, K.-B.; Lee, J.H. Rapid deep learning-assisted predictive diagnostics for point-of-care testing. Nat. Commun. 2024, 15, 1695. [Google Scholar] [CrossRef]
- Khan, A.I.; Pratumvinit, B.; Jacobs, E.; Kost, G.J.; Kary, H.; Balla, J.; Shaw, J.; Milevoj Kopcinovic, L.; Vaubourdolle, M.; Oliver, P.; et al. Point-of-care testing performed by healthcare professionals outside the hospital setting: Consensus based recommendations from the IFCC Committee on Point-of-Care Testing (IFCC C-POCT). Clin. Chem. Lab. Med. CCLM 2023, 61, 1572–1579. [Google Scholar] [CrossRef]
- Pillay, T.S.; Khan, A.I.; Yenice, S. Artificial intelligence (AI) in point-of-care testing. Clin. Chim. Acta 2025, 574, 120341. [Google Scholar] [CrossRef] [PubMed]
- Elrobaa, I.H.; Khan, K.; Mohamed, E. The Role of Point-of-Care Testing to Improve Acute Care and Health Care Services. Cureus 2024, 16, e55315. [Google Scholar] [CrossRef]
- Rasti, R.; Brännström, J.; Mårtensson, A.; Zenk, I.; Gantelius, J.; Gaudenzi, G.; Alvesson, H.M.; Alfvén, T. Point-of-care testing in a high-income country paediatric emergency department: A qualitative study in Sweden. BMJ Open 2021, 11, e054234. [Google Scholar] [CrossRef] [PubMed]
- Hoste, M.E.; Colman, E.; Wanat, M.; Hayward, G.; Tissier, J.-L.; Postma, M.; Goossens, H.; Anthierens, S.; Tonkin-Crine, S. on behalf of the VALUE-Dx study team Stakeholders’ views and experiences on implementing new diagnostics in primary care to support management of community-acquired acute respiratory tract infections: A qualitative study. Front. Public Health 2023, 11, 1216940. [Google Scholar] [CrossRef]
- Guttmacher, A.E.; Porteous, M.E.; McInerney, J.D. Educating health-care professionals about genetics and genomics. Nat. Rev. Genet. 2007, 8, 151–157. [Google Scholar] [CrossRef]
- Slade, I.; Subramanian, D.N.; Burton, H. Genomics education for medical professionals—The current UK landscape. Clin. Med. 2016, 16, 347–352. [Google Scholar] [CrossRef]
- Behera, S.; Catreux, S.; Rossi, M.; Truong, S.; Huang, Z.; Ruehle, M.; Visvanath, A.; Parnaby, G.; Roddey, C.; Onuchic, V.; et al. Comprehensive genome analysis and variant detection at scale using DRAGEN. Nat. Biotechnol. 2025, 43, 1177–1191. [Google Scholar] [CrossRef]
- Canson, D.M.; Davidson, A.L.; De La Hoya, M.; Parsons, M.T.; Glubb, D.M.; Kondrashova, O.; Spurdle, A.B. SpliceAI-10k calculator for the prediction of pseudoexonization, intron retention, and exon deletion. Bioinformatics 2023, 39, btad179. [Google Scholar] [CrossRef]
- Cheng, J.; Novati, G.; Pan, J.; Bycroft, C.; Žemgulytė, A.; Applebaum, T.; Pritzel, A.; Wong, L.H.; Zielinski, M.; Sargeant, T.; et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 2023, 381, eadg7492. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, G.; Kokori, E.; Aderinto, N.; Abdul, A.; Tsoi, V.; Mohamed, L.; Alsabri Hussein Alsabri, M. Challenges and Strategies in Pediatric Critical Care: Insights From Low-Resource Settings. Glob. Pediatr. Health 2024, 11, 2333794X241285964. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Peñaloza, G.; Uribe, S.; García, F.M.; Graf, N.; Álvarez, F. General context and relevant public datasets available for improving pathways in Paediatric Cancer applying Artificial Intelligence. A review. EJC Paediatr. Oncol. 2024, 4, 100196. [Google Scholar] [CrossRef]
- Rei Bolislis, W.; Bejeuhr, G.; Benzaghou, F.; Corriol-Rohou, S.; Herrero-Martinez, E.; Hildebrand, H.; Hill-Venning, C.; Hoogland, H.; Johnson, C.; Joos, A.; et al. Optimizing Pediatric Medicine Developments in the European Union Through Pragmatic Approaches. Clin. Pharmacol. Ther. 2021, 110, 871–879. [Google Scholar] [CrossRef]
- Park, T.; Lee, I.-H.; Lee, S.W.; Kong, S.W. Artificial intelligence in pediatric healthcare: Current applications, potential, and implementation considerations. Clin. Exp. Pediatr. 2025, 68, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Lingervelder, D.; Koffijberg, H.; Kusters, R.; IJzerman, M.J. Health Economic Evidence of Point-of-Care Testing: A Systematic Review. PharmacoEconomics-Open 2021, 5, 157–173. [Google Scholar] [CrossRef] [PubMed]




| Study/Project | Population | Intervention/Method | Main Results | References |
|---|---|---|---|---|
| Baby Bear | n = 178 critically ill newborns covered by Medicaid | rWGS as a first-line diagnostic test | 43% diagnostic yield, changes in clinical management in 31% of diagnosed cases, $2.5 million healthcare cost savings | [37] |
| NSIGHT1 (NCT02225522) | n = 65 infants under 4 months from NICU/PICU | rWGS vs. standard genetic testing | 31% diagnostic yield within 28 days for rWGS vs. 3% for standard testing | [38] |
| NSIGHT2 (NCT03211039) | n = 1248 critically ill ICU infants | Randomized rWGS, urWGS, and rWES | urWGS had the highest diagnostic yield (46%) and the fastest median turnaround time (4.6 days); rWGS outperformed rWES | [39] |
| Australian Genomics Acute Care program | n = 450 infants with suspected monogenic disorders | rWGS or rWES | 51% diagnostic yield, median referral time 3.3 days | [40] |
| NIHMS1870862 | n = 75 infants with suspected monogenic disorders | rNGS | 39% diagnostic yield, most diagnoses influenced clinical management | [41] |
| Pilot study (Acibadem Mehmet Ali Aydinlar University) | n = 10 infants with suspected monogenic disorders | rNGS | 50% diagnostic yield, 33% of patients received definitive molecular diagnoses directly impacting care | [42] |
| Authors | Target | Population | Intervention/Method | Main Results | References |
|---|---|---|---|---|---|
| Donà D et al., 2025, Bellini T et al., 2024 | Respiratory pathogen panels | Pediatric patients | Multiplex POCT detecting influenza, RSV, rhinovirus | Facilitates management of respiratory infections | [61,62] |
| Kanwar N et al., 2023 | Gastrointestinal panels | Pediatric patients | Multiplex POCT detecting bacterial, viral, parasitic agents | Rapid diagnosis of acute pediatric gastroenteritis | [63] |
| Tamelytė E et al., 2019, Teggert A et al., 2020, Goyal M et al., 2024, Wang W et al., 2025, Nabi S et al., 2025 | Sepsis panels | Pediatric patients | Multiplex POCT detecting bacterial/fungal pathogens in blood | Early detection of sepsis crucial for timely intervention | [64,65,66,67,68] |
| Adamson PC et al., 2020 | sexually transmitted disease panels | Pediatric /adolescent patients | Multiplex POCT | Supports rapid diagnosis of sexual illnesses | [69] |
| Demuru S et al., 2024 | Allergy panels | Pediatric patients | POCT measuring specific IgE levels | Useful for allergy diagnostics | [70] |
| Tsao YT et al., 2020 | Meningitis/encephalitis panels | Pediatric patients | POCT detecting pathogens in cerebrospinal fluid | Rapid diagnosis critical for management | [71] |
| Application | Description | Benefits | Pathologies | Doi |
|---|---|---|---|---|
| Diagnostic Support | AI algorithms analyze medical data to assist in diagnosing conditions in children. | Faster and more accurate diagnoses. | Asthma | [82] 10.21037/atm-20-2501a |
| Predictive Analytics | Predicts potential health issues based on patient data and trends. | Early intervention and prevention strategies. | Obesity | [83] 10.4103/jfmpc.jfmpc_469_23 |
| Personalized Treatment Plans | Tailors treatment plans based on genetic, environmental, and lifestyle factors. | More effective and individualized care. | Cancer, Chronic Conditions | [84] 10.37349/etat.2023.00127 |
| Telemedicine and Virtual Care | AI enhances remote consultations and monitoring through virtual platforms. | Improved access to care, especially in rural areas. | ADHD | [85] 10.3389/fpsyt.2023.1164433 |
| Radiology and Imaging Analysis | Automates the analysis of pediatric imaging, such as X-rays and MRIs. | Reduced workload for radiologists and faster results. | Tumors | [86] 10.1007/s11604-023-01437-8 |
| Medication Management | AI helps in optimizing medication dosages and schedules for pediatric patients. | Reduces medication errors and enhances safety. | Epilepsy | [87] 10.1001/jamaneurol.2023.1645 |
| Patient Monitoring | Continuous monitoring of vital signs and health data through AI algorithms. | Early detection of potential complications. | Heart Conditions | [88] 10.3390/jcm11237072 |
| Mental Health Support | AI-driven chatbots and applications provide mental health resources for children. | Increases access to mental health support. | Depression, Anxiety Disorders | [89] 10.1186/s13034-023-00586-y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cianflone, A.; Coppola, L.; Primo, P.; Maisto, G.; Mastrodonato, F.; Di Palma, M.A.; Parasole, R.; Omodei, D.; Mirabelli, P. Point of Care Testing, Rapid Next Generation Sequencing and Artificial Intelligence in Pediatric and Neonatal Healthcare: A Narrative Review. Pharmaceuticals 2025, 18, 1721. https://doi.org/10.3390/ph18111721
Cianflone A, Coppola L, Primo P, Maisto G, Mastrodonato F, Di Palma MA, Parasole R, Omodei D, Mirabelli P. Point of Care Testing, Rapid Next Generation Sequencing and Artificial Intelligence in Pediatric and Neonatal Healthcare: A Narrative Review. Pharmaceuticals. 2025; 18(11):1721. https://doi.org/10.3390/ph18111721
Chicago/Turabian StyleCianflone, Alessandra, Luigi Coppola, Pasquale Primo, Giovanna Maisto, Fiorenza Mastrodonato, Maria Antonia Di Palma, Rosanna Parasole, Daniela Omodei, and Peppino Mirabelli. 2025. "Point of Care Testing, Rapid Next Generation Sequencing and Artificial Intelligence in Pediatric and Neonatal Healthcare: A Narrative Review" Pharmaceuticals 18, no. 11: 1721. https://doi.org/10.3390/ph18111721
APA StyleCianflone, A., Coppola, L., Primo, P., Maisto, G., Mastrodonato, F., Di Palma, M. A., Parasole, R., Omodei, D., & Mirabelli, P. (2025). Point of Care Testing, Rapid Next Generation Sequencing and Artificial Intelligence in Pediatric and Neonatal Healthcare: A Narrative Review. Pharmaceuticals, 18(11), 1721. https://doi.org/10.3390/ph18111721

