Overlap and Divergence in Ketamine and Lithium Response in Bipolar Disorder: A Scoping Review
Abstract
1. Introduction
2. Methods
2.1. Data Collection
2.2. Screening Process
3. Results
3.1. Preclinical Studies
3.1.1. Lithium Augmentation of the Rapid Antidepressant Effect of Ketamine
3.1.2. Ketamine as a Preclinical Model of Mania/Psychosis
3.2. Clinical Studies
3.2.1. Rapid Antidepressant Efficacy of Ketamine in Mood Disorders
3.2.2. Symptom Subtypes and Clinical Predictors of Response
3.2.3. Adjunctive Treatments to Sustain Ketamine’s Effects
3.2.4. Neuroimaging and Neurophysiological Mechanisms
3.2.5. Peripheral Biomarkers and Molecular Pathways
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yatham, L.N.; Kennedy, S.H.; Parikh, S.V.; Schaffer, A.; Bond, D.J.; Frey, B.N.; Sharma, V.; Goldstein, B.I.; Rej, S.; Beaulieu, S.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar Disord. 2018, 20, 97–170. [Google Scholar] [CrossRef]
 - Grof, P. Sixty Years of Lithium Responders. Neuropsychobiology 2010, 62, 8–16. [Google Scholar] [CrossRef]
 - Garnham, J.; Munro, A.; Slaney, C.; MacDougall, M.; Passmore, M.; Duffy, A.; O’DOnovan, C.; Teehan, A.; Alda, M. Prophylactic treatment response in bipolar disorder: Results of a naturalistic observation study. J. Affect. Disord. 2007, 104, 185–190. [Google Scholar] [CrossRef]
 - Nunes, A.; Ardau, R.; Berghöfer, A.; Bocchetta, A.; Chillotti, C.; Deiana, V.; Garnham, J.; Grof, E.; Hajek, T.; Manchia, M.; et al. Prediction of lithium response using clinical data. Acta Psychiatr. Scand. 2020, 141, 131–141. [Google Scholar] [CrossRef]
 - Scott, K.; Khayachi, A.; Alda, M.; Nunes, A. Prediction of Treatment Outcome in Bipolar Disorder: When Can We Expect Clinical Relevance? Biol. Psychiatry 2025, 98, 285–292. [Google Scholar] [CrossRef] [PubMed]
 - Nunes, A.; Stone, W.; Ardau, R.; Berghöfer, A.; Bocchetta, A.; Chillotti, C.; Deiana, V.; Degenhardt, F.; Forstner, A.J.; Garnham, J.S.; et al. Exemplar scoring identifies genetically separable phenotypes of lithium responsive bipolar disorder. Transl. Psychiatry 2021, 11, 36. [Google Scholar] [CrossRef] [PubMed]
 - Gershon, S.; Chengappa, K.R.; Malhi, G.S. Lithium specificity in bipolar illness: A classic agent for the classic disorder. Bipolar Disord. 2009, 11 (Suppl. 2), 34–44. [Google Scholar] [CrossRef]
 - Hui, T.P.; Kandola, A.; Shen, L.; Lewis, G.; Osborn, D.P.J.; Geddes, J.R.; Hayes, J.F. A systematic review and meta-analysis of clinical predictors of lithium response in bipolar disorder. Acta Psychiatr. Scand. 2019, 140, 94–115. [Google Scholar] [CrossRef]
 - Lin, Y.; Maihofer, A.X.; Stapp, E.; Ritchey, M.; Alliey-Rodriguez, N.; Anand, A.; Balaraman, Y.; Berrettini, W.H.; Bertram, H.; Bhattacharjee, A.; et al. Clinical predictors of non-response to lithium treatment in the Pharmacogenomics of Bipolar Disorder (PGBD) study. Bipolar Disord. 2021, 23, 821–831. [Google Scholar] [CrossRef]
 - Calkin, C.V.; Ruzickova, M.; Uher, R.; Hajek, T.; Slaney, C.M.; Garnham, J.S.; O’Donovan, M.C.; Alda, M. Insulin resistance and outcome in bipolardisorder. Br. J. Psychiatry 2015, 206, 52–57. [Google Scholar] [CrossRef]
 - Fancy, F.; Haikazian, S.; Johnson, D.E.; Chen-Li, D.C.J.; Levinta, A.; Husain, M.I.; Mansur, R.B.; Rosenblat, J.D. Ketamine for bipolar depression: An updated systematic review. Ther. Adv. Psychopharmacol. 2023, 13, 20451253231202723. [Google Scholar] [CrossRef]
 - Kraus, C.; Rabl, U.; Vanicek, T.; Carlberg, L.; Popovic, A.; Spies, M.; Bartova, L.; Gryglewski, G.; Papageorgiou, K.; Lanzenberger, R.; et al. Administration of ketamine for unipolar and bipolar depression. Int. J. Psychiatry Clin. Pract. 2017, 21, 2–12. [Google Scholar] [CrossRef] [PubMed]
 - Lam, R.W. Onset, time course and trajectories of improvement with antidepressants. Eur. Neuropsychopharmacol. 2012, 22, S492–S498. [Google Scholar] [CrossRef] [PubMed]
 - Wang, C.; Zhou, Y.; Zheng, W.; Liu, W.; Zhan, Y.; Li, H.; Chen, L.; Zhang, B.; Walter, M.; Li, M.; et al. Association between depression subtypes and response to repeated-dose intravenous ketamine. Acta Psychiatr. Scand. 2019, 140, 446–457. [Google Scholar] [CrossRef] [PubMed]
 - Ionescu, D.F.; Luckenbaugh, D.A.; Niciu, M.J.; Richards, E.M.; Zarate, C.A., Jr. A single infusion of ketamine improves depression scores in patients with anxious bipolar depression. Bipolar Disord. 2015, 17, 438–443. [Google Scholar] [CrossRef]
 - McIntyre, R.S.; Lipsitz, O.; Rodrigues, N.B.; Lee, Y.; Cha, D.S.; Vinberg, M.; Lin, K.; Malhi, G.S.; Subramaniapillai, M.; Kratiuk, K.; et al. The effectiveness of ketamine on anxiety, irritability, and agitation: Implications for treating mixed features in adults with major depressive or bipolar disorder. Bipolar Disord. 2020, 22, 831–840. [Google Scholar] [CrossRef]
 - Rong, C.; Park, C.; Rosenblat, J.D.; Subramaniapillai, M.; Zuckerman, H.; Fus, D.; Lee, Y.L.; Pan, Z.; Brietzke, E.; Mansur, R.B.; et al. Predictors of Response to Ketamine in Treatment Resistant Major Depressive Disorder and Bipolar Disorder. Int. J. Environ. Res. Public Health 2018, 15, 771. [Google Scholar] [CrossRef]
 - Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
 - Chiu, C.T.; Scheuing, L.; Liu, G.; Liao, H.M.; Linares, G.R.; Lin, D.; Chuang, D.-M. The Mood Stabilizer Lithium Potentiates the Antidepressant-Like Effects and Ameliorates Oxidative Stress Induced by Acute Ketamine in a Mouse Model of Stress. Int. J. Neuropsychopharmacol. 2015, 18, pyu102. [Google Scholar] [CrossRef]
 - Liu, R.J.; Fuchikami, M.; Dwyer, J.M.; Lepack, A.E.; Duman, R.S.; Aghajanian, G.K. GSK-3 Inhibition Potentiates the Synaptogenic and Antidepressant-Like Effects of Subthreshold Doses of Ketamine. Neuropsychopharmacology 2013, 38, 2268–2277. [Google Scholar] [CrossRef]
 - do Vale, E.M.; Xavier, C.C.; Nogueira, B.G.; Campos, B.C.; de Aquino, P.E.A.; da Costa, R.O.; Leal, L.K.A.M.; de Vasconcelos, S.M.M.; Neves, K.R.T.; Viana, G.S.d.B. Antinociceptive and Anti-Inflammatory Effects of Ketamine and the Relationship to Its Antidepressant Action and GSK3 Inhibition. Basic Clin. Pharmacol. Toxicol. 2016, 119, 562–573. [Google Scholar] [CrossRef]
 - Price, J.B.; Yates, C.G.; Morath, B.A.; Van De Wakker, S.K.; Yates, N.J.; Butters, K.; Frye, M.A.; McGee, S.L.; Tye, S.J. Lithium augmentation of ketamine increases insulin signaling and antidepressant-like active stress coping in a rodent model of treatment-resistant depression. Transl. Psychiatry 2021, 11, 598. [Google Scholar] [CrossRef] [PubMed]
 - Maltbie, E.; Gopinath, K.; Urushino, N.; Kempf, D.; Howell, L. Ketamine-induced brain activation in awake female nonhuman primates: A translational functional imaging model. Psychopharmacology 2016, 233, 961–972. [Google Scholar] [CrossRef] [PubMed]
 - Mayberg, H.S.; Lozano, A.M.; Voon, V.; McNeely, H.E.; Seminowicz, D.; Hamani, C.; Schwalb, J.M.; Kennedy, S.H. Deep Brain Stimulation for Treatment-Resistant Depression. Neuron 2005, 45, 651–660. [Google Scholar] [CrossRef] [PubMed]
 - Stepan, J.; Hladky, F.; Uribe, A.; Holsboer, F.; Schmidt, M.V.; Eder, M. High-Speed imaging reveals opposing effects of chronic stress and antidepressants on neuronal activity propagation through the hippocampal trisynaptic circuit. Front. Neural Circuits 2015, 9, 70. [Google Scholar] [CrossRef]
 - Debom, G.; Gazal, M.; Soares, M.S.P.; do Couto, C.A.T.; Mattos, B.; Lencina, C.; Kaster, M.P.; Ghisleni, G.C.; Tavares, R.; Braganhol, E.; et al. Preventive effects of blueberry extract on behavioral and biochemical dysfunctions in rats submitted to a model of manic behavior induced by ketamine. Brain Res. Bull. 2016, 127, 260–269. [Google Scholar] [CrossRef]
 - Spohr, L.; Soares, M.S.P.; Oliveira, P.S.; da Silveira de Mattos, B.; Bona, N.P.; Pedra, N.S.; Teixeira, F.C.; Couto, C.A.T.D.; Chaves, V.C.; Reginatto, F.H.; et al. Combined actions of blueberry extract and lithium on neurochemical changes observed in an experimental model of mania: Exploiting possible synergistic effects. Metab. Brain Dis. 2019, 34, 605–619. [Google Scholar] [CrossRef]
 - Chaves, V.C.; Soares, M.S.P.; Spohr, L.; Teixeira, F.; Vieira, A.; Constantino, L.S.; Pizzol, F.D.; Lencina, C.L.; Spanevello, R.M.; Freitas, M.P.; et al. Blackberry extract improves behavioral and neurochemical dysfunctions in a ketamine-induced rat model of mania. Neurosci. Lett. 2020, 714, 134566. [Google Scholar] [CrossRef]
 - Gazal, M.; Valente, M.R.; Acosta, B.A.; Kaufmann, F.N.; Braganhol, E.; Lencina, C.L.; Stefanello, F.M.; Ghisleni, G.; Kaster, M.P. Neuroprotective and antioxidant effects of curcumin in a ketamine-induced model of mania in rats. Eur. J. Pharmacol. 2014, 724, 132–139. [Google Scholar] [CrossRef]
 - Gazal, M.; Kaufmann, F.N.; Acosta, B.A.; Oliveira, P.S.; Valente, M.R.; Ortmann, C.F.; Sturbelle, R.; Lencina, C.L.; Stefanello, F.M.; Kaster, M.P.; et al. Preventive Effect of Cecropia pachystachya Against Ketamine-Induced Manic Behavior and Oxidative Stress in Rats. Neurochem. Res. 2015, 40, 1421–1430. [Google Scholar] [CrossRef]
 - Recart, V.M.; Spohr, L.; Soares, M.S.P.; de Mattos Bda, S.; Bona, N.P.; Pedra, N.S.; Teixeira, F.C.; Gamaro, G.D.; Stefanello, F.; Spanevello, R. Gallic acid protects cerebral cortex, hippocampus, and striatum against oxidative damage and cholinergic dysfunction in an experimental model of manic-like behavior: Comparison with lithium effects. Int. J. Dev. Neurosci. 2021, 81, 167–178. [Google Scholar] [CrossRef]
 - Arslan, F.C.; Tiryaki, A.; Yıldırım, M.; Özkorumak, E.; Alver, A.; Altun, İ.K.; İnce, I.; Gedikli, Ö. The effects of edaravone in ketamine-induced model of mania in rats. Acta Neurobiol. Exp. 2016, 76, 192–198. [Google Scholar] [CrossRef] [PubMed]
 - Gao, T.H.; Ni, R.J.; Liu, S.; Tian, Y.; Wei, J.; Zhao, L.; Wang, Q.; Ni, P.; Ma, X.; Li, T. Chronic lithium exposure attenuates ketamine-induced mania-like behavior and c-Fos expression in the forebrain of mice. Pharmacol. Biochem. Behav. 2021, 202, 173108. [Google Scholar] [CrossRef] [PubMed]
 - Ni, R.J.; Gao, T.H.; Wang, Y.Y.; Tian, Y.; Wei, J.X.; Zhao, L.S.; Ni, P.-Y.; Ma, X.-H.; Li, T. Chronic lithium treatment ameliorates ketamine-induced mania-like behavior via the PI3K-AKT signaling pathway. Zool. Res. 2022, 43, 989–1004. [Google Scholar] [CrossRef] [PubMed]
 - Brody, S.A.; Geyer, M.A.; Large, C.H. Lamotrigine prevents ketamine but not amphetamine-induced deficits in prepulse inhibition in mice. Psychopharmacology 2003, 169, 240–246. [Google Scholar] [CrossRef]
 - Rame, M.; Caudal, D.; Schenker, E.; Svenningsson, P.; Spedding, M.; Jay, T.M.; Godsil, B.P. Clozapine counteracts a ketamine-induced depression of hippocampal-prefrontal neuroplasticity and alters signaling pathway phosphorylation. PLoS ONE 2017, 12, e0177036. [Google Scholar] [CrossRef]
 - Bowman, C.; Richter, U.; Jones, C.R.; Agerskov, C.; Herrik, K.F. Activity-State Dependent Reversal of Ketamine-Induced Resting State EEG Effects by Clozapine and Naltrexone in the Freely Moving Rat. Front. Psychiatry 2022, 13, 737295. [Google Scholar] [CrossRef]
 - Williams, N.R.; Heifets, B.D.; Blasey, C.; Sudheimer, K.; Pannu, J.; Pankow, H.; Hawkins, J.; Birnbaum, J.; Lyons, D.M.; Rodriguez, C.I.; et al. Attenuation of Antidepressant Effects of Ketamine by Opioid Receptor Antagonism. Am. J. Psychiatry 2018, 175, 1205–1215. [Google Scholar] [CrossRef]
 - Diazgranados, N.; Ibrahim, L.; Brutsche, N.E.; Newberg, A.; Kronstein, P.; Khalife, S.; Kammerer, W.A.; Quezado, Z.; Luckenbaugh, D.A.; Salvadore, G.; et al. A Randomized Add-on Trial of an N-methyl-d-aspartate Antagonist in Treatment-Resistant Bipolar Depression. Arch. Gen. Psychiatry 2010, 67, 793–802. [Google Scholar] [CrossRef]
 - Zarate, C.A.; Brutsche, N.E.; Ibrahim, L.; Franco-Chaves, J.; Diazgranados, N.; Cravchik, A.; Selter, J.; Marquardt, C.A.; Liberty, V.; Luckenbaugh, D.A. Replication of Ketamine’s Antidepressant Efficacy in Bipolar Depression: A Randomized Controlled Add-On Trial. Biol. Psychiatry 2012, 71, 939–946. [Google Scholar] [CrossRef]
 - Xu, A.J.; Niciu, M.J.; Lundin, N.B.; Luckenbaugh, D.A.; Ionescu, D.F.; Richards, E.M.; Voort, J.L.V.; Ballard, E.D.; Brutsche, N.E.; Machado-Vieira, R.; et al. Lithium and Valproate Levels Do Not Correlate with Ketamine’s Antidepressant Efficacy in Treatment-Resistant Bipolar Depression. Neural Plast. 2015, 2015, 858251. [Google Scholar] [CrossRef] [PubMed]
 - Rybakowski, J.K.; Permoda-Osip, A.; Bartkowska-Sniatkowska, A. Ketamine augmentation rapidly improves depression scores in inpatients with treatment-resistant bipolar depression. Int. J. Psychiatry Clin. Pract. 2017, 21, 99–103. [Google Scholar] [CrossRef] [PubMed]
 - O’Brien, B.; Lijffijt, M.; Lee, J.; Kim, Y.S.; Wells, A.; Murphy, N.; Ramakrishnan, N.; Swann, A.C.; Mathew, S.J. Distinct trajectories of antidepressant response to intravenous ketamine. J. Affect. Disord. 2021, 286, 320–329. [Google Scholar] [CrossRef] [PubMed]
 - Tundo, A.; Musetti, L.; Grande, C.D.; de Filippis, R.; Proietti, L.; Marazziti, D.; Gibertoni, D.; Dell’osso, L. The relationship between depression with anxious distress DSM-5 specifier and mixed depression: A network analysis. CNS Spectr. 2021, 26, 251–257. [Google Scholar] [CrossRef]
 - Serretti, A.; Lattuada, E.; Franchini, L.; Smeraldi, E. Melancholic features and response to lithium prophylaxis in mood disorders. Depress. Anxiety 2000, 11, 73–79. [Google Scholar] [CrossRef]
 - Peters, E.M.; Halpape, K.; Cheveldae, I.; Jacobson, P.; Wanson, A. Predictors of response to intranasal ketamine in patients hospitalized for treatment-resistant depression. Pers. Med. Psychiatry 2024, 43–44, 100119. [Google Scholar] [CrossRef]
 - Etain, B.; Lajnef, M.; Brichant-Petitjean, C.; Geoffroy, P.A.; Henry, C.; Gard, S.; Kahn, J.P.; Leboyer, M.; Young, A.H.; Bellivier, F. Childhood trauma and mixed episodes are associated with poor response to lithium in bipolar disorders. Acta Psychiatr. Scand. 2017, 135, 319–327. [Google Scholar] [CrossRef]
 - Cascino, G.; D’Agostino, G.; Monteleone, A.M.; Marciello, F.; Caivano, V.; Monteleone, P.; Maj, M. Childhood maltreatment and clinical response to mood stabilizers in patients with bipolar disorder. Hum. Psychopharmacol. Clin. Exp. 2021, 36, e2783. [Google Scholar] [CrossRef]
 - Pennybaker, S.J.; Niciu, M.J.; Luckenbaugh, D.A.; Zarate, C.A. Symptomatology and Predictors of Antidepressant Efficacy in Extended Responders to a Single Ketamine Infusion. J. Affect. Disord. 2017, 208, 560–566. [Google Scholar] [CrossRef]
 - Keith, K.M.; Geller, J.; Froehlich, A.; Arfken, C.; Oxley, M.; Mischel, N. Vital Sign Changes During Intravenous Ketamine Infusions for Depression: An Exploratory Study of Prognostic Indications. J. Clin. Psychopharmacol. 2022, 42, 254–259. [Google Scholar] [CrossRef]
 - Lundin, N.B.; Niciu, M.J.; Luckenbaugh, D.A.; Ionescu, D.F.; Richards, E.M.; Voort, J.L.V.; Brutsche, N.E.; Machado-Vieira, R.; Zarate, C. Baseline Vitamin B12 and Folate Levels Do Not Predict Improvement in Depression After a Single Infusion of Ketamine. Pharmacopsychiatry 2014, 47, 141–144. [Google Scholar] [CrossRef]
 - Permoda-Osip, A.; Skibińska, M.; Bartkowska-Sniatkowska, A.; Kliwicki, S.; Chłopocka-Woźniak, M.; Rybakowski, J.K. Factors connected with efficacy of single ketamine infusion in bipolar depression. Psychiatr. Pol. 2014, 48, 35–47. [Google Scholar] [CrossRef]
 - Costi, S.; Soleimani, L.; Glasgow, A.; Brallier, J.; Spivack, J.; Schwartz, J.; Levitch, C.F.; Richards, S.; Hoch, M.; Wade, E.; et al. Lithium continuation therapy following ketamine in patients with treatment resistant unipolar depression: A randomized controlled trial. Neuropsychopharmacology 2019, 44, 1812–1819. [Google Scholar] [CrossRef] [PubMed]
 - Amiaz, R.; Saporta, R.; Noy, A.; Berkenstadt, H.; Weiser, M. Can Quetiapine Prolong the Antidepressant Effect of Ketamine?: A 5-Year Follow-up Study. J. Clin. Psychopharmacol. 2021, 41, 673–675. [Google Scholar] [CrossRef] [PubMed]
 - Nugent, A.C.; Diazgranados, N.; Carlson, P.J.; Ibrahim, L.; Luckenbaugh, D.A.; Brutsche, N.; Herscovitch, P.; Drevets, W.C.; Zarate, C.A., Jr. Neural correlates of rapid antidepressant response to ketamine in bipolar disorder. Bipolar Disord. 2014, 16, 119–128. [Google Scholar] [CrossRef] [PubMed]
 - Chen, M.H.; Chang, W.C.; Lin, W.C.; Tu, P.C.; Li, C.T.; Bai, Y.M.; Tsai, S.-J.; Huang, W.-S.; Su, T.-P. Functional Dysconnectivity of Frontal Cortex to Striatum Predicts Ketamine Infusion Response in Treatment-Resistant Depression. Int. J. Neuropsychopharmacol. 2020, 23, 791–798. [Google Scholar] [CrossRef]
 - Liu, H.; Wang, C.; Lan, X.; Li, W.; Zhang, F.; Hu, Z.; Ye, Y.; Ning, Y.; Zhou, Y. Functional connectivity of the amygdala subregions and the antidepressant effects of repeated ketamine infusions in major depressive disorder. Eur. Psychiatry 2024, 67, e33. [Google Scholar] [CrossRef]
 - Cao, Z.; Lin, C.T.; Ding, W.; Chen, M.H.; Li, C.T.; Su, T.P. Identifying Ketamine Responses in Treatment-Resistant Depression Using a Wearable Forehead EEG. IEEE Trans. Biomed. Eng. 2019, 66, 1668–1679. [Google Scholar] [CrossRef]
 - Berner, K.; Oz, N.; Kaya, A.; Acharjee, A.; Berner, J. mTORC1 activation in presumed classical monocytes: Observed correlation with human size variation and neuropsychiatric disease. Aging 2024, 16, 11134–11150. [Google Scholar] [CrossRef]
 - McGrory, C.L.; Ryan, K.M.; Gallagher, B.; McLoughlin, D.M. Vascular endothelial growth factor and pigment epithelial-derived factor in the peripheral response to ketamine. J. Affect. Disord. 2020, 273, 380–383. [Google Scholar] [CrossRef]
 - Guo, S.; Arai, K.; Stins, M.F.; Chuang, D.M.; Lo, E.H. Lithium Upregulates Vascular Endothelial Growth Factor in Brain Endothelial Cells and Astrocytes. Stroke 2009, 40, 652–655. [Google Scholar] [CrossRef]
 - Villaseñor, A.; Ramamoorthy, A.; Silva dos Santos, M.; Lorenzo, M.P.; Laje, G.; Zarate, C., Jr.; Barbas, C.; Wainer, I.W. A pilot study of plasma metabolomic patterns from patients treated with ketamine for bipolar depression: Evidence for a response-related difference in mitochondrial networks. Br. J. Pharmacol. 2014, 171, 2230–2242. [Google Scholar] [CrossRef]
 - Słupski, J.; Cubała, W.J.; Górska, N.; Słupska, A.; Gałuszko-Węgielnik, M. Copper Concentrations in Ketamine Therapy for Treatment-Resistant Depression. Brain Sci. 2020, 10, 971. [Google Scholar] [CrossRef] [PubMed]
 - Duman, R.S.; Li, N.; Liu, R.J.; Duric, V.; Aghajanian, G. Signaling Pathways Underlying the Rapid Antidepressant Actions of Ketamine. Neuropharmacology 2012, 62, 35–41. [Google Scholar] [CrossRef] [PubMed]
 - Zanos, P.; Gould, T.D. Intracellular signaling pathways involved in (S)- and (R)-ketamine antidepressant actions. Biol. Psychiatry 2018, 83, 2–4. [Google Scholar] [CrossRef] [PubMed]
 - Quiroz, J.A.; Gould, T.D.; Manji, H.K. Molecular effects of lithium. Mol. Interv. 2004, 4, 259–272. [Google Scholar] [CrossRef]
 - Wilkinson, S.T.; Katz, R.B.; Toprak, M.; Webler, R.; Ostroff, R.B.; Sanacora, G. Acute and Longer-Term Outcomes Using Ketamine as a Clinical Treatment at the Yale Psychiatric Hospital. J. Clin. Psychiatry 2018, 79, 10099. [Google Scholar] [CrossRef]
 - Cipriani, A.; Hawton, K.; Stockton, S.; Geddes, J.R. Lithium in the prevention of suicide in mood disorders: Updated systematic review and meta-analysis. BMJ 2013, 346, f3646. [Google Scholar] [CrossRef]
 - Grof, P.; Duffy, A.; Cavazzoni, P.; Grof, E.; Garnham, J.; MacDougall, M.; O’DOnovan, C.; Alda, M. Is response to prophylactic lithium a familial trait? J. Clin. Psychiatry 2002, 63, 942–947. [Google Scholar] [CrossRef]
 - Manchia, M.; Adli, M.; Akula, N.; Ardau, R.; Aubry, J.M.; Backlund, L.; Banzato, C.E.; Baune, B.T.; Bellivier, F.; Bengesser, S.; et al. Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report. PLoS ONE 2013, 8, e65636. [Google Scholar] [CrossRef]
 - McIntyre, R.S.; Rosenblat, J.D.; Nemeroff, C.B.; Sanacora, G.; Murrough, J.W.; Berk, M.; Brietzke, E.; Dodd, S.; Gorwood, P.; Ho, R.; et al. Synthesizing the Evidence for Ketamine and Esketamine in Treatment-Resistant Depression: An International Expert Opinion on the Available Evidence and Implementation. Am. J. Psychiatry 2021, 178, 383–399. [Google Scholar] [CrossRef] [PubMed]
 - Rybakowski, J.K.; Suwalska, A. Excellent lithium responders have normal cognitive functions and plasma BDNF levels. Int. J. Neuropsychopharmacol. 2010, 13, 617–622. [Google Scholar] [CrossRef]
 - Khayachi, A.; Ase, A.; Liao, C.; Kamesh, A.; Kuhlmann, N.; Schorova, L.; Chaumette, B.; Dion, P.; Alda, M.; Séguéla, P.; et al. Chronic lithium treatment alters the excitatory/inhibitory balance of synaptic networks and reduces mGluR5–PKC signalling in mouse cortical neurons. J. Psychiatry Neurosci. 2021, 46, E402–E414. [Google Scholar] [CrossRef]
 - Khayachi, A.; Abuzgaya, M.; Liu, Y.; Jiao, C.; Dejgaard, K.; Schorova, L.; Kamesh, A.; He, Q.; Cousineau, Y.; Pietrantonio, A.; et al. Akt and AMPK activators rescue hyperexcitability in neurons from patients with bipolar disorder. EBioMedicine 2024, 104, 105161. [Google Scholar] [CrossRef]
 - Stern, S.; Santos, R.; Marchetto, M.C.; Mendes, A.P.D.; Rouleau, G.; Biesmans, S.; Wang, Q.-W.; Yao, J.; Charnay, P.; Bang, A.G.; et al. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Mol. Psychiatry 2018, 23, 1453–1465. [Google Scholar] [CrossRef]
 - Stern, S.; Sarkar, A.; Galor, D.; Stern, T.; Mei, A.; Stern, Y.; Mendes, A.P.; Randolph-Moore, L.; Rouleau, G.; Bang, A.G.; et al. A Physiological Instability Displayed in Hippocampal Neurons Derived from Lithium-Nonresponsive Bipolar Disorder Patients. Biol. Psychiatry 2020, 88, 150–158. [Google Scholar] [CrossRef]
 - Stern, S.; Sarkar, A.; Stern, T.; Mei, A.; Mendes, A.P.D.; Stern, Y.; Goldberg, G.; Galor, D.; Nguyen, T.; Randolph-Moore, L.; et al. Mechanisms Underlying the Hyperexcitability of CA3 and Dentate Gyrus Hippocampal Neurons Derived from Patients with Bipolar Disorder. Biol. Psychiatry 2020, 88, 139–149. [Google Scholar] [CrossRef]
 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toulany, J.; Cunningham, J.E.A.; Nunes, A. Overlap and Divergence in Ketamine and Lithium Response in Bipolar Disorder: A Scoping Review. Pharmaceuticals 2025, 18, 1662. https://doi.org/10.3390/ph18111662
Toulany J, Cunningham JEA, Nunes A. Overlap and Divergence in Ketamine and Lithium Response in Bipolar Disorder: A Scoping Review. Pharmaceuticals. 2025; 18(11):1662. https://doi.org/10.3390/ph18111662
Chicago/Turabian StyleToulany, Jay, Jasmyn E. A. Cunningham, and Abraham Nunes. 2025. "Overlap and Divergence in Ketamine and Lithium Response in Bipolar Disorder: A Scoping Review" Pharmaceuticals 18, no. 11: 1662. https://doi.org/10.3390/ph18111662
APA StyleToulany, J., Cunningham, J. E. A., & Nunes, A. (2025). Overlap and Divergence in Ketamine and Lithium Response in Bipolar Disorder: A Scoping Review. Pharmaceuticals, 18(11), 1662. https://doi.org/10.3390/ph18111662
        
                                                
