Folic Acid-Decorated Lipidic Nanocapsules Co-Loaded with Atorvastatin and Curcumin to Enhance Glioma Targeting in Mice
Abstract
1. Introduction
2. Results
2.1. Determination of Particle Size (PS), Polydispersity Index (PDI) and Zeta Potential (ZP) of Atorvastatin and Curcumin-Loaded Lipidic Nanocapsules (At-Cu LNCs)
2.2. Determination of PS, PDI and ZP of Folic Acid Functionalized Nanocapsules (FA-At-Cu LNCs)
2.3. X-Ray Photoelectron Spectroscopy (XPS) for Optimized At-Cu LNCs and FA-At-Cu LNCs
2.4. Morphology by Transmission Electron Microscopy (TEM) for Optimized At-Cu LNCs and FA-At-Cu Lncs
2.5. In Vitro Drugs’ Release Evaluation
2.6. The Effect of Storage on the Physical Stability of the Selected LNCs
2.7. MTT Assay for Cell Viability
2.8. In Vivo Study
2.8.1. Radiolabeling Techniques of Atorvastatin, Curcumin, Optimization and Validation
2.8.2. Pharmacokinetic Analysis of Atorvastatin and Curcumin in Blood, Brain and Glioma Tissues
2.8.3. Biodistribution in Clearance Organs: Liver, Spleen, Kidneys, and Intestine
2.8.4. Tissue Distribution in Cardiopulmonary, Musculoskeletal, and Endocrine Organs
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Preparation of At-Cu LNCs
4.2.2. Determination of PS, PDI and ZP of At-Cu LNCs
4.2.3. Preparation of FA-At-Cu LNCs
4.2.4. XPS for Optimized At-Cu LNCs and FA-At-Cu LNCs
4.2.5. Morphology by TEM for Optimized At-Cu LNCs and FA-At-Cu LNCs
4.2.6. In Vitro Drug Release Evaluation
4.2.7. Studying the Effect of Storage on the Physical Stability of the Optimized LNCs
4.2.8. MTT Assay for Cell Viability
4.2.9. In Vivo Pharmacokinetic Evaluation of Radiolabeled Drug-Loaded Nanocapsules in Glioma-Bearing Mice
4.2.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| LNCs | Lipidic nanocapsules |
| FA-LNCs | Folic acid functionalized lipidic nanocapsules |
| PIT | Phase inversion temperature |
| PS | Particle size |
| PDI | Polydispersity index |
| ZP | Zeta potential |
| XPS | X-ray photoelectron spectroscopy |
| TEM | Transmission electron microscopy |
| HPLC | High performance liquid chromatography |
| MRT | Mean residence time |
| AUC | Area under the curve |
| PEG | Polyethylene glycol |
| DMSO | Dimethyl sulfoxide |
| DMEM | Dulbecco’s Modified Eagle Medium |
| EPR | Enhanced permeability and retention |
| MPS | Mononuclear phagocyte system |
| At-Cu LNCs | Atorvastatin and curcumin coloaded lipidic nanocapsules |
| FA-At-Cu LNCs | Folic acid functionalized atorvastatin and curcumin coloaded lipidic nanocapsules |
Appendix A

Appendix B
| Organ | Formulation | 0.5 h | 1 h | 2 h | 4 h | 8 h | 24 h |
|---|---|---|---|---|---|---|---|
| Heart | Solution | 1.50± 0.30 | 1.30 ± 0.27 | 1.20 ± 0.22 | 1.10 ± 0.18 | 0.90 ± 0.15 | 0.20 ± 0.01 |
| LNC | 1.30 ± 0.21 | 1.10 ± 0.13 | 1.00 ± 0.18 | 1.00 ± 0.12 | 0.80 ± 0.12 | 0.15 ± 0.02 | |
| FA-LNCs | 1.20 ± 0.14 | 1.00 ± 0.12 | 0.90 ± 0.11 | 0.80 ± 0.10 | 0.60 ± 0.07 | 0.15 ± 0.02 | |
| Lungs | Solution | 0.60 ± 0.09 | 1.20 ± 0.05 | 1.10 ± 0.06 | 0.80 ± 0.05 | 0.50 ± 0.08 | 0.18 ± 0.01 |
| LNC | 0.70 ± 0.08 | 1.30 ± 0.21 | 1.20 ± 0.14 | 0.90 ± 0.15 | 0.60 ± 0.11 | 0.25 ± 0.04 | |
| FA-LNCs | 0.80 ± 0.10 | 1.40 ± 0.17 | 1.20 ± 0.14 | 1.00 ± 0.12 | 0.70 ± 0.08 | 0.30 ± 0.04 | |
| Stomach | Solution | 6.00 ± 0.45 | 8.15 ± 1.27 | 10.04 ± 1.37 | 13.43 ± 2.1 | 15.20 ± 1.70 | 4.00 ± 0.15 |
| LNC | 5.00 ± 0.66 | 6.80 ± 0.84 | 8.00 ± 1.13 | 9.50 ± 0.97 | 7.50 ± 0.77 | 2.30 ± 0.23 | |
| FA-LNCs | 4.50 ± 0.54 | 6.00 ± 0.72 | 7.00 ± 0.84 | 9.00 ± 1.08 | 6.00 ± 0.72 | 2.00 ± 0.24 | |
| Bone | Solution | 0.80 ± 0.09 | 1.10 ± 0.12 | 1.00 ± 0.15 | 0.90 ± 0.14 | 0.68 ± 0.10 | 0.40 ± 0.06 |
| LNC | 0.80 ± 0.10 | 1.10 ± 0.12 | 1.00 ± 0.19 | 0.90 ± 0.17 | 0.68 ± 0.10 | 0.40 ± 0.08 | |
| FA-LNCs | 0.80 ± 0.10 | 1.00 ± 0.12 | 1.00 ± 0.12 | 0.90 ± 0.11 | 0.70 ± 0.08 | 0.40 ± 0.05 | |
| Muscle | Solution | 1.50 ± 0.22 | 1.30 ± 0.20 | 1.10 ± 0.17 | 0.80 ± 0.12 | 0.40 ± 0.10 | 0.20 ± 0.01 |
| LNC | 1.50 ± 0.22 | 1.30 ± 0.24 | 1.10 ± 0.18 | 0.80 ± 0.09 | 0.40 ± 0.05 | 0.20 ± 0.04 | |
| FA-LNCs | 1.50 ± 0.18 | 1.30 ± 0.16 | 1.10 ± 0.13 | 0.80 ± 0.10 | 0.40 ± 0.05 | 0.20 ± 0.02 | |
| Urine | Solution | 2.40 ± 0.12 | 3.54 ± 0.11 | 5.58 ± 0.62 | 5.71 ± 1.30 | 7.21 ± 1.10 | 8.20 ± 1.30 |
| LNC | 2.00 ± 0.37 | 3.00 ± 0.43 | 4.50 ± 0.89 | 4.50 ± 0.88 | 5.50 ± 0.84 | 4.50 ± 0.75 | |
| FA-LNCs | 1.80 ± 0.22 | 2.50 ± 0.30 | 3.50 ± 0.42 | 4.00 ± 0.48 | 4.50 ± 0.54 | 3.50 ± 0.42 | |
| Thyroid glands | Solution | 0.05 ± 0.01 | 0.07 ± 0.01 | 0.18 ± 0.02 | 0.22 ± 0.02 | 0.03 ± 0.01 | 0.03 ± 0.0 |
| LNC | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.01 ± 0.00 | |
| FA-LNCs | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.01 ± 0.00 |
| Organ | Formulation | 0.5 h | 1 h | 2 h | 4 h | 8 h | 24 h |
|---|---|---|---|---|---|---|---|
| Heart | Solution | 2.00 ± 0.30 | 1.80 ± 0.27 | 1.60 ± 0.24 | 1.30 ± 0.20 | 1.20 ± 0.18 | 1.10 ± 0.17 |
| LNC | 2.30 ± 0.30 | 2.10 ± 0.30 | 1.90 ± 0.30 | 1.60 ± 0.20 | 1.30 ± 0.20 | 1.00 ± 0.20 | |
| FA-LNCs | 2.20 ± 0.30 | 2.00 ± 0.30 | 1.80 ± 0.30 | 1.50 ± 0.25 | 1.20 ± 0.20 | 1.00 ± 0.20 | |
| Lungs | Solution | 3.00 ± 0.20 | 2.00 ± 0.10 | 2.00 ± 0.04 | 1.40 ± 0.36 | 1.00 ± 0.30 | 0.80 ± 0.05 |
| LNC | 3.50 ± 0.40 | 3.00 ± 0.40 | 2.50 ± 0.30 | 2.00 ± 0.30 | 1.50 ± 0.20 | 1.00 ± 0.20 | |
| FA-LNCs | 3.40 ± 0.40 | 2.90 ± 0.35 | 2.40± 0.30 | 1.90 ± 0.25 | 1.40± 0.20 | 1.00 ± 0.20 | |
| Stomach | Solution | 4.00 ± 0.60 | 4.30 ± 0.65 | 3.50 ± 0.68 | 4.00 ± 0.69 | 3.20 ± 0.63 | 3.10 ± 0.09 |
| LNC | 3.80 ± 0.50 | 3.50 ± 0.50 | 3.30 ± 0.40 | 3.10 ± 0.40 | 2.90 ± 0.30 | 2.70 ± 0.30 | |
| FA-LNCs | 3.70 ± 0.50 | 3.40 ± 0.50 | 3.20 ± 0.40 | 3.00 ± 0.40 | 2.80 ± 0.35 | 2.60 ± 0.30 | |
| Bone | Solution | 1.00 ± 0.15 | 0.90 ± 0.14 | 0.80 ± 0.12 | 0.70 ± 0.11 | 0.60 ± 0.09 | 0.50 ± 0.08 |
| LNC | 0.80 ± 0.10 | 0.70 ± 0.10 | 0.60 ± 0.10 | 0.60 ± 0.10 | 0.50 ± 0.10 | 0.40 ± 0.10 | |
| FA-LNCs | 0.80 ± 0.10 | 0.70 ± 0.10 | 0.60 ± 0.10 | 0.60 ± 0.10 | 0.50 ± 0.10 | 0.40 ± 0.05 | |
| Muscle | Solution | 1.60 ± 0.24 | 1.40 ± 0.21 | 1.30 ± 0.20 | 1.20 ± 0.18 | 1.10 ± 0.17 | 1.00 ± 0.15 |
| LNC | 1.90 ± 0.20 | 1.70 ± 0.20 | 1.50 ± 0.20 | 1.30 ± 0.20 | 1.20 ± 0.20 | 1.00 ± 0.10 | |
| FA-LNCs | 1.80 ± 0.20 | 1.60 ± 0.20 | 1.40 ± 0.20 | 1.30 ± 0.20 | 1.20 ± 0.15 | 1.00 ± 0.15 | |
| Urine | Solution | 4.50 ± 0.68 | 5.20 ± 0.78 | 5.60 ± 0.84 | 5.40 ± 0.81 | 4.60 ± 0.69 | 3.90 ± 0.58 |
| LNC | 1.50 ± 0.20 | 1.60 ± 0.20 | 1.60 ± 0.20 | 1.40 ± 0.20 | 1.20 ± 0.20 | 1.00 ± 0.20 | |
| FA-LNCs | 1.50 ± 0.20 | 1.60 ± 0.20 | 1.60 ± 0.20 | 1.40 ± 0.20 | 1.20 ± 0.20 | 1.00 ± 0.15 | |
| Thyroid glands | Solution | 0.06 ± 0.01 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.03 ± 0.01 | 0.02 ± 0.00 | 0.01 ± 0.00 |
| LNC | 0.50 ± 0.08 | 0.40 ± 0.06 | 0.40 ± 0.06 | 0.30 ± 0.05 | 0.20 ± 0.03 | 0.20 ± 0.03 | |
| FA-LNCs | 0.45 ± 0.07 | 0.35 ± 0.05 | 0.35 ± 0.05 | 0.25 ± 0.04 | 0.15 ± 0.02 | 0.15 ± 0.02 |
References
- Tebha, S.S.; Memon, S.A.; Mehmood, Q.; Mukherjee, D.; Abdi, H.; Negida, A. Glioblastoma Management in Low and Middle-Income Countries; Existing Challenges and Policy Recommendations. Brain Spine 2023, 3, 101775. [Google Scholar] [CrossRef]
- Delgado-López, P.D.; Corrales-García, E.M. Survival in Glioblastoma: A Review on the Impact of Treatment Modalities. Clin. Transl. Oncol. 2016, 18, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Chiariello, M.; Inzalaco, G.; Barone, V.; Gherardini, L. Overcoming Challenges in Glioblastoma Treatment: Targeting Infiltrating Cancer Cells and Harnessing the Tumor Microenvironment. Front. Cell. Neurosci. 2023, 17, 1327621. [Google Scholar] [CrossRef]
- Bayoumi, M.; Arafa, M.G.; Nasr, M.; Sammour, O.A. Nobiletin-Loaded Composite Penetration Enhancer Vesicles Restore the Normal miRNA Expression and the Chief Defence Antioxidant Levels in Skin Cancer. Sci. Rep. 2021, 11, 20197. [Google Scholar] [CrossRef]
- Bayoumi, M.; Youshia, J.; Arafa, M.G.; Nasr, M.; Sammour, O.A. Nanocarriers for the Treatment of Glioblastoma Multiforme: A Succinct Review of Conventional and Repositioned Drugs in the Last Decade. Arch. Der Pharm. 2024, 357, e2400343. [Google Scholar] [CrossRef] [PubMed]
- Bayat, N.; Ebrahimi-Barough, S.; Norouzi-Javidan, A.; Saberi, H.; Tajerian, R.; Ardakan, M.M.M.; Shirian, S.; Ai, A.; Ai, J. Apoptotic Effect of Atorvastatin in Glioblastoma Spheroids Tumor Cultured in Fibrin Gel. Biomed. Pharmacother. 2016, 84, 1959–1966. [Google Scholar] [CrossRef]
- Yongjun, Y.; Shuyun, H.; Lei, C.; Xiangrong, C.; Zhilin, Y.; Yiquan, K. Atorvastatin Suppresses Glioma Invasion and Migration by Reducing Microglial MT1-MMP Expression. J. Neuroimmunol. 2013, 260, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, K.A.; Dal-Cim, T.; Lopes, F.G.; Ludka, F.K.; Nedel, C.B.; Tasca, C.I. Atorvastatin Promotes Cytotoxicity and Reduces Migration and Proliferation of Human A172 Glioma Cells. Mol. Neurobiol. 2018, 55, 1509–1523. [Google Scholar] [CrossRef]
- Peng, P.; Wei, W.; Long, C.; Li, J. Atorvastatin Augments Temozolomide’s Efficacy in Glioblastoma via Prenylation-Dependent Inhibition of Ras Signaling. Biochem. Biophys. Res. Commun. 2017, 489, 293–298. [Google Scholar] [CrossRef]
- Altwairgi, A.K.; Alghareeb, W.A.; AlNajjar, F.H.; Alhussain, H.; Alsaeed, E.; Balbaid, A.A.O.; Aldanan, S.; Orz, Y.; Alsharm, A.A. Atorvastatin in Combination with Radiotherapy and Temozolomide for Glioblastoma: A Prospective Phase II Study. Investig. New Drugs 2021, 39, 226–231. [Google Scholar] [CrossRef]
- Valipour, E.; Ranjbar, F.E.; Mousavi, M.; Ai, J.; Malekshahi, Z.V.; Mokhberian, N.; Taghdiri-Nooshabadi, Z.; Khanmohammadi, M.; Nooshabadi, V.T. The Anti-Angiogenic Effect of Atorvastatin Loaded Exosomes on Glioblastoma Tumor Cells: An in Vitro 3D Culture Model. Microvasc. Res. 2022, 143, 104385. [Google Scholar] [CrossRef]
- Zarif Attalla, K.; Hassan, D.H.; Teaima, M.H.; Yousry, C.; El-Nabarawi, M.A.; Said, M.A.; Elhabal, S.F. Enhanced Intranasal Delivery of Atorvastatin via Superparamagnetic Iron-Oxide-Loaded Nanocarriers: Cytotoxicity and Inflammation Evaluation and In Vivo, In Silico, and Network Pharmacology Study for Targeting Glioblastoma Management. Pharmaceuticals 2025, 18, 421. [Google Scholar] [CrossRef]
- Du, W.-Z.; Feng, Y.; Wang, X.-F.; Piao, X.-Y.; Cui, Y.-Q.; Chen, L.-C.; Lei, X.-H.; Sun, X.; Liu, X.; Wang, H.-B.; et al. Curcumin Suppresses Malignant Glioma Cells Growth and Induces Apoptosis by Inhibition of SHH/GLI1 Signaling Pathway in Vitro and Vivo. CNS Neurosci. Ther. 2013, 19, 926–936. [Google Scholar] [CrossRef]
- Wong, S.C.; Kamarudin, M.N.A.; Naidu, R. Anticancer Mechanism of Curcumin on Human Glioblastoma. Nutrients 2021, 13, 950. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.H.; Kim, C.G.; Bae, Y.-S.; Lim, Y.; Lee, Y.H.; Shin, S.Y. p21Waf1/Cip1 Expression by Curcumin in U-87MG Human Glioma Cells: Role of Early Growth Response-1 Expression. Cancer Res. 2008, 68, 1369–1377. [Google Scholar] [CrossRef]
- Dhandapani, K.M.; Mahesh, V.B.; Brann, D.W. Curcumin Suppresses Growth and Chemoresistance of Human Glioblastoma Cells via AP-1 and NFκB Transcription Factors. J. Neurochem. 2007, 102, 522–538. [Google Scholar] [CrossRef]
- Sahab-Negah, S.; Ariakia, F.; Jalili-Nik, M.; Afshari, A.R.; Salehi, S.; Samini, F.; Rajabzadeh, G.; Gorji, A. Curcumin Loaded in Niosomal Nanoparticles Improved the Anti-Tumor Effects of Free Curcumin on Glioblastoma Stem-like Cells: An In Vitro Study. Mol. Neurobiol. 2020, 57, 3391–3411. [Google Scholar] [CrossRef]
- Zanotto-Filho, A.; Coradini, K.; Braganhol, E.; Schröder, R.; de Oliveira, C.M.; Simões-Pires, A.; Battastini, A.M.O.; Pohlmann, A.R.; Guterres, S.S.; Forcelini, C.M.; et al. Curcumin-Loaded Lipid-Core Nanocapsules as a Strategy to Improve Pharmacological Efficacy of Curcumin in Glioma Treatment. Eur. J. Pharm. Biopharm. 2013, 83, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, T.; Dong, J.; Lu, Y. The Blood–Brain Barriers: Novel Nanocarriers for Central Nervous System Diseases. J. Nanobiotechnol. 2025, 23, 146. [Google Scholar] [CrossRef]
- Markowicz-Piasecka, M.; Markiewicz, A.; Darłak, P.; Sikora, J.; Adla, S.K.; Bagina, S.; Huttunen, K.M. Current Chemical, Biological, and Physiological Views in the Development of Successful Brain-Targeted Pharmaceutics. Neurotherapeutics 2022, 19, 942–976. [Google Scholar] [CrossRef] [PubMed]
- Senanayake, D.; Yapa, P.; Dabare, S.; Munaweera, I. Precision Targeting of the CNS: Recent Progress in Brain-Directed Nanodrug Delivery. RSC Adv. 2025, 15, 25910–25928. [Google Scholar] [CrossRef]
- Abdel Gaber, S.A.; Nasr, M.; Hamzawy, M.A. Pterostilbene Lipid Nanocapsules as a Promising System for Treatment of Hepatocellular Carcinoma: Formulation, Characterization, and Cellular/in Vivo Appraisal. J. Drug Deliv. Sci. Technol. 2024, 92, 105310. [Google Scholar] [CrossRef]
- Dabholkar, N.; Waghule, T.; Krishna Rapalli, V.; Gorantla, S.; Alexander, A.; Narayan Saha, R.; Singhvi, G. Lipid Shell Lipid Nanocapsules as Smart Generation Lipid Nanocarriers. J. Mol. Liq. 2021, 339, 117145. [Google Scholar] [CrossRef]
- Moura, R.P.; Pacheco, C.; Pêgo, A.P.; des Rieux, A.; Sarmento, B. Lipid Nanocapsules to Enhance Drug Bioavailability to the Central Nervous System. J. Control. Release 2020, 322, 390–400. [Google Scholar] [CrossRef]
- Katamesh, A.A.; Abdel-Bar, H.M.; Break, M.K.B.; Hassoun, S.M.; Subaiea, G.; Radwan, A.; Abo El-Enin, H.A. Manipulation of Lipid Nanocapsules as an Efficient Intranasal Platform for Brain Deposition of Clozapine as an Antipsychotic Drug. Pharmaceutics 2024, 16, 1417. [Google Scholar] [CrossRef]
- Clavreul, A.; Roger, E.; Pourbaghi-Masouleh, M.; Lemaire, L.; Tétaud, C.; Menei, P. Development and Characterization of Sorafenib-Loaded Lipid Nanocapsules for the Treatment of Glioblastoma. Drug Deliv. 2018, 25, 1756–1765. [Google Scholar] [CrossRef]
- Pereira, N.R.; Loiola, R.; Rodrigues, S.; De Oliveira, C.; Büttenbender, S.; Guterres, S.; Pohlmann, A.; Farsky, S. Mechanisms of the Effectiveness of Poly(ε-Caprolactone) Lipid-Core Nanocapsules Loaded with Methotrexate on Glioblastoma Multiforme Treatment. Int. J. Nanomed. 2018, 13, 4563–4573. [Google Scholar] [CrossRef]
- Bastiancich, C.; Vanvarenberg, K.; Ucakar, B.; Pitorre, M.; Bastiat, G.; Lagarce, F.; Préat, V.; Danhier, F. Lauroyl-Gemcitabine-Loaded Lipid Nanocapsule Hydrogel for the Treatment of Glioblastoma. J. Control. Release 2016, 225, 283–293. [Google Scholar] [CrossRef]
- Balzeau, J.; Pinier, M.; Berges, R.; Saulnier, P.; Benoit, J.-P.; Eyer, J. The Effect of Functionalizing Lipid Nanocapsules with NFL-TBS.40-63 Peptide on Their Uptake by Glioblastoma Cells. Biomaterials 2013, 34, 3381–3389. [Google Scholar] [CrossRef]
- Ibrahim, A.; Abdel Gaber, S.A.; Fawzi Kabil, M.; Ahmed-Farid, O.A.; Hirsch, A.K.; El-Sherbiny, I.M.; Nasr, M. Baicalin Lipid Nanocapsules for Treatment of Glioma: Characterization, Mechanistic Cytotoxicity, and Pharmacokinetic Evaluation. Expert Opin. Drug Deliv. 2022, 19, 1549–1560. [Google Scholar] [CrossRef] [PubMed]
- Bruinsmann, F.A.; de Cristo Soares Alves, A.; de Fraga Dias, A.; Lopes Silva, L.F.; Visioli, F.; Raffin Pohlmann, A.; Figueiró, F.; Sonvico, F.; Stanisçuaski Guterres, S. Nose-to-Brain Delivery of Simvastatin Mediated by Chitosan-Coated Lipid-Core Nanocapsules Allows for the Treatment of Glioblastoma in Vivo. Int. J. Pharm. 2022, 616, 121563. [Google Scholar] [CrossRef]
- Bahrami, B.; Mohammadnia-Afrouzi, M.; Bakhshaei, P.; Yazdani, Y.; Ghalamfarsa, G.; Yousefi, M.; Sadreddini, S.; Jadidi-Niaragh, F.; Hojjat-Farsangi, M. Folate-Conjugated Nanoparticles as a Potent Therapeutic Approach in Targeted Cancer Therapy. Tumor Biol. 2015, 36, 5727–5742. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, H.; Xu, Y.; Liu, T.; Chen, S.; Wang, J.; Zhang, T. Expression of Folate Receptors in Nasopharyngeal and Laryngeal Carcinoma and Folate Receptor-Mediated Endocytosis by Molecular Targeted Nanomedicine. Int. J. Nanomed. 2013, 8, 2443–2451. [Google Scholar] [CrossRef]
- Afzalipour, R.; Khoei, S.; Khoee, S.; Shirvalilou, S.; Jamali Raoufi, N.; Motevalian, M.; Karimi, M.R. Dual-Targeting Temozolomide Loaded in Folate-Conjugated Magnetic Triblock Copolymer Nanoparticles to Improve the Therapeutic Efficiency of Rat Brain Gliomas. ACS Biomater. Sci. Eng. 2019, 5, 6000–6011. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, U.; Chashoo, G.; Sharma, P.R.; Kumar, A.; Saxena, A.K.; Vyas, S.P. Tailored Polymer–Lipid Hybrid Nanoparticles for the Delivery of Drug Conjugate: Dual Strategy for Brain Targeting. Colloids Surf. B Biointerfaces 2015, 126, 414–425. [Google Scholar] [CrossRef]
- Keyvan Rad, J.; Mahdavian, A.R.; Khoei, S.; Shirvalilou, S. Enhanced Photogeneration of Reactive Oxygen Species and Targeted Photothermal Therapy of C6 Glioma Brain Cancer Cells by Folate-Conjugated Gold–Photoactive Polymer Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 19483–19493. [Google Scholar] [CrossRef] [PubMed]
- McCord, E.; Pawar, S.; Koneru, T.; Tatiparti, K.; Sau, S.; Iyer, A.K. Folate Receptors’ Expression in Gliomas May Possess Potential Nanoparticle-Based Drug Delivery Opportunities. ACS Omega 2021, 6, 4111–4118. [Google Scholar] [CrossRef]
- Darwish, W.M.; Bayoumi, N.A.; Ebeid, N.H. Biocompatible Mucoadhesive Nanoparticles for Brain Targeting of Ropinirole Hydrochloride: Formulations, Radiolabeling and Biodistribution. Biopolymers 2022, 113, e23489. [Google Scholar] [CrossRef]
- El-Kawy, O.A.; Shweeta, H.A.; Attallah, K.M. Radioiodination, Nasal Nanoformulation and Preliminary Evaluation of Isovanillin: A New Potential Brain Cancer-Targeting Agent. Appl. Radiat. Isot. 2022, 189, 110464. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Fang, L.; Sun, D.; Shen, Y.; Hu, Y.; Li, N.; Chang, J.; Li, W.; Tan, J. 131I-Labeled and DOX-Loaded Multifunctional Nanoliposomes for Radiotherapy and Chemotherapy in Brain Gliomas. Brain Res. 2020, 1739, 145218. [Google Scholar] [CrossRef]
- Haddad, A.F.; Young, J.S.; Amara, D.; Berger, M.S.; Raleigh, D.R.; Aghi, M.K.; Butowski, N.A. Mouse Models of Glioblastoma for the Evaluation of Novel Therapeutic Strategies. Neuro-Oncol. Adv. 2021, 3, vdab100. [Google Scholar] [CrossRef]
- Oh, T.; Fakurnejad, S.; Sayegh, E.T.; Clark, A.J.; Ivan, M.E.; Sun, M.Z.; Safaee, M.; Bloch, O.; James, C.D.; Parsa, A.T. Immunocompetent Murine Models for the Study of Glioblastoma Immunotherapy. J. Transl. Med. 2014, 12, 107. [Google Scholar] [CrossRef]
- Basso, J.; Mendes, M.; Silva, J.; Sereno, J.; Cova, T.; Oliveira, R.; Fortuna, A.; Castelo-Branco, M.; Falcão, A.; Sousa, J.; et al. Peptide-Lipid Nanoconstructs Act Site-Specifically towards Glioblastoma Growth Impairment. Eur. J. Pharm. Biopharm. 2020, 155, 177–189. [Google Scholar] [CrossRef]
- Gad, S.R.; El-Gogary, R.I.; George, M.Y.; Hathout, R.M. Nose-to-Brain Delivery of 18β-Glycyrrhetinic Acid Using Optimized Lipid Nanocapsules: A Novel Alternative Treatment for Alzheimer’s Disease. Int. J. Pharm. 2023, 645, 123387. [Google Scholar] [CrossRef]
- Safwat, S.; Hathout, R.M.; Ishak, R.A.; Mortada, N.D. Augmented Simvastatin Cytotoxicity Using Optimized Lipid Nanocapsules: A Potential for Breast Cancer Treatment. J. Liposome Res. 2017, 27, 1–10. [Google Scholar] [CrossRef]
- da Silva, M.M.; Nora, L.; Cantillano, R.F.F.; Paese, K.; Guterres, S.S.; Pohlmann, A.R.; Costa, T.M.H.; Rios, A.d.O. The Production, Characterization, and the Stability of Carotenoids Loaded in Lipid-Core Nanocapsules. Food Bioprocess Technol. 2016, 9, 1148–1158. [Google Scholar] [CrossRef]
- Arrua, E.C. Formulation of Benznidazole-Lipid Nanocapsules: Drug Release, Permeability, Biocompatibility, and Stability Studies. Int. J. Pharm. 2023, 642, 123120. [Google Scholar] [CrossRef] [PubMed]
- Montasser, I.; Fessi, H.; Briançon, S.; Lieto, J. New Approach of the Preparation of Nanocapsules by an Interfacial Polycondensation Reaction. Polym. Bull. 2003, 50, 169–174. [Google Scholar] [CrossRef]
- Aparicio-Blanco, J.; Sebastián, V.; Rodríguez-Amaro, M.; García-Díaz, H.C.; Torres-Suárez, A.I. Size-Tailored Design of Highly Monodisperse Lipid Nanocapsules for Drug Delivery. J. Biomed. Nanotechnol. 2019, 15, 1149–1161. [Google Scholar] [CrossRef]
- Cordeiro Lima Fernandes, P.; David De Moura, L.; Freitas De Lima, F.; Henrique Rodrigues Da Silva, G.; Isaias Carvalho Souza, R.; De Paula, E. Lipid Nanocapsules Loaded with Prilocaine and Lidocaine and Incorporated in Gel for Topical Application. Int. J. Pharm. 2021, 602, 120675. [Google Scholar] [CrossRef]
- Urimi, D.; Hellsing, M.; Mahmoudi, N.; Söderberg, C.; Widenbring, R.; Gedda, L.; Edwards, K.; Loftsson, T.; Schipper, N. Structural Characterization Study of a Lipid Nanocapsule Formulation Intended for Drug Delivery Applications Using Small-Angle Scattering Techniques. Mol. Pharm. 2022, 19, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Abu Lila, A.S.; Amran, M.; Tantawy, M.A.; Moglad, E.H.; Gad, S.; Alotaibi, H.F.; Obaidullah, A.J.; Khafagy, E.-S. In Vitro Cytotoxicity and In Vivo Antitumor Activity of Lipid Nanocapsules Loaded with Novel Pyridine Derivatives. Pharmaceutics 2023, 15, 1755. [Google Scholar] [CrossRef]
- Nasr, M.; Abdel-Hamid, S. Lipid Based Nanocapsules: A Multitude of Biomedical Applications. Curr. Pharm. Biotechnol. 2015, 16, 322–332. [Google Scholar] [CrossRef]
- Formica, M.L. Triamcinolone Acetonide-Loaded Lipid Nanocapsules for Ophthalmic Applications. Int. J. Pharm. 2020, 573, 118795. [Google Scholar] [CrossRef]
- Lamprecht, A.; Benoit, J.-P. Etoposide Nanocarriers Suppress Glioma Cell Growth by Intracellular Drug Delivery and Simultaneous P-Glycoprotein Inhibition. J. Control. Release 2006, 112, 208–213. [Google Scholar] [CrossRef]
- Varshosaz, J.; Taymouri, S.; Jahanian-Najafabadi, A.; Alizadeh, A. Efavirenz Oral Delivery via Lipid Nanocapsules: Formulation, Optimisation, and Ex-vivo Gut Permeation Study. IET Nanobiotechnol. 2018, 12, 795–806. [Google Scholar] [CrossRef]
- Hussein, A.; Abdel-Mottaleb, M.M.A.; El-assal, M.; Sammour, O. Novel Biocompatible Essential Oil-Based Lipid Nanocapsules with Antifungal Properties. J. Drug Deliv. Sci. Technol. 2020, 56, 101605. [Google Scholar] [CrossRef]
- Heurtault, B.; Saulnier, P.; Pech, B.; Venier-Julienne, M.-C.; Proust, J.-E.; Phan-Tan-Luu, R.; Benoı̂t, J.-P. The Influence of Lipid Nanocapsule Composition on Their Size Distribution. Eur. J. Pharm. Sci. 2003, 18, 55–61. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, L.-L.; Du, Y.-Z.; You, J.; Hu, F.-Q.; Zeng, S. Preparation and Characteristics of Nanostructured Lipid Carriers for Control-Releasing Progesterone by Melt-Emulsification. Colloids Surf. B Biointerfaces 2007, 60, 174–179. [Google Scholar] [CrossRef]
- Safari Sharafshadeh, M.; Tafvizi, F.; Khodarahmi, P.; Ehtesham, S. Folic Acid-Functionalized PEGylated Niosomes Co-Encapsulated Cisplatin and Doxoribicin Exhibit Enhanced Anticancer Efficacy. Cancer Nanotechnol. 2024, 15, 14. [Google Scholar] [CrossRef]
- Yi, Q.; Ma, J.; Kang, K.; Gu, Z. Bioreducible Nanocapsules for Folic Acid-Assisted Targeting and Effective Tumor-Specific Chemotherapy. Int. J. Nanomed. 2018, 13, 653–667. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Zhang, H.; Liu, Y.; Wang, G.; Shi, C.; Li, Z.; Feng, Y.; Cui, X. Folic Acid Functionalized Reduction-Responsive Magnetic Chitosan Nanocapsules for Targeted Delivery and Triggered Release of Drugs. Carbohydr. Polym. 2017, 168, 282–289. [Google Scholar] [CrossRef]
- Ghalehkhondabi, V.; Fazlali, A.; Soleymani, M. Folic Acid-Conjugated pH-Responsive Poly (Methacrylic Acid) Nanospheres for Targeted Delivery of Anticancer Drugs to Breast Cancer Cells. J. Mol. Liq. 2022, 348, 118028. [Google Scholar] [CrossRef]
- Li, S.; Li, H.; Xu, X.; Saw, P.E.; Zhang, L. Nanocarrier-Mediated Antioxidant Delivery for Liver Diseases. Theranostics 2020, 10, 1262. [Google Scholar] [CrossRef]
- Ramezani, F.; Moghadasi, M.; Shamsasenjan, K.; Narmani, A. Folic Acid-Decorated Chitosan-PLGA Nanobiopolymers for Targeted Drug Delivery to Acute Lymphoblastic Leukemia Cells: In Vitro Studies. Technol. Cancer Res. Treat. 2024, 23, 15330338241308077. [Google Scholar] [CrossRef]
- Sun, L.; Wei, Z.; Chen, H.; Liu, J.; Guo, J.; Cao, M.; Wen, T.; Shi, L. Folic Acid-Functionalized up-Conversion Nanoparticles: Toxicity Studies in Vivo and in Vitro and Targeted Imaging Applications. Nanoscale 2014, 6, 8878–8883. [Google Scholar] [CrossRef] [PubMed]
- El-Fakharany, E.M.; Ashry, M.; Abu-Serie, M.M.; Abdel-Wahhab, K.G.; El-Sahra, D.G.; El-Gendi, H. In Vitro and In Vivo Synergistic Antitumor Activity of Albumin-Coated Oleic Acid-Loaded Liposomes toward Hepatocellular Carcinoma. Cancer Investig. 2023, 41, 621–639. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, F.; Forte, J.; Pontecorvi, G.; Hanieh, P.N.; Carè, A.; Bellenghi, M.; Tirelli, V.; Ammendolia, M.G.; Mattia, G.; Marianecci, C.; et al. pH-Responsive Oleic Acid Based Nanocarriers: Melanoma Treatment Strategies. Int. J. Pharm. 2022, 613, 121391. [Google Scholar] [CrossRef]
- Kefayat, A.; Ghahremani, F.; Motaghi, H.; Amouheidari, A. Ultra-Small but Ultra-Effective: Folic Acid-Targeted Gold Nanoclusters for Enhancement of Intracranial Glioma Tumors’ Radiation Therapy Efficacy. Nanomed. Nanotechnol. Biol. Med. 2019, 16, 173–184. [Google Scholar] [CrossRef]
- Izat, N.; Sahin, S. Hepatic Transporter-Mediated Pharmacokinetic Drug–Drug Interactions: Recent Studies and Regulatory Recommendations. Biopharm. Drug Dispos. 2021, 42, 45–77. [Google Scholar] [CrossRef]
- Lennernäs, H. Clinical Pharmacokinetics of Atorvastatin. Clin. Pharmacokinet. 2003, 42, 1141–1160. [Google Scholar] [CrossRef]
- Ireson, C.R.; Jones, D.J.L.; Orr, S.; Coughtrie, M.W.H.; Boocock, D.J.; Williams, M.L.; Farmer, P.B.; Steward, W.P.; Gescher, A.J. Metabolism of the Cancer Chemopreventive Agent Curcumin in Human and Rat Intestine. Cancer Epidemiol. Biomark. Prev. 2002, 11, 105–111. [Google Scholar]
- Metzler, M.; Pfeiffer, E.; Schulz, S.I.; Dempe, J.S. Curcumin Uptake and Metabolism. BioFactors 2013, 39, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Tyagi, A.K.; Aggarwal, B.B. Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: The Golden Pigment from Golden Spice. Cancer Res. Treat. 2014, 46, 2–18. [Google Scholar] [CrossRef]
- Bagheri, M.; van Nostrum, C.F.; Kok, R.J.; Storm, G.; Hennink, W.E.; Heger, M. Utility of Intravenous Curcumin Nanodelivery Systems for Improving In Vivo Pharmacokinetics and Anticancer Pharmacodynamics. Mol. Pharm. 2022, 19, 3057–3074. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef]
- Lao, C.D.; Ruffin, M.T.; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose Escalation of a Curcuminoid Formulation. BMC Complement. Altern. Med. 2006, 6, 10. [Google Scholar] [CrossRef]
- Vareed, S.K.; Kakarala, M.; Ruffin, M.T.; Crowell, J.A.; Normolle, D.P.; Djuric, Z.; Brenner, D.E. Pharmacokinetics of Curcumin Conjugate Metabolites in Healthy Human Subjects. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, A.; Ebrahimzadeh, A.; Fooladshekan, S.; Mohseni, S.; Mohtashamian, A.; Babajafari, S.; Sohrabi, Z. Therapeutic Effects of Curcumin Supplementation on Liver Enzymes of Nonalcoholic Fatty Liver Disease Patients: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Food Sci. Nutr. 2025, 13, e4144. [Google Scholar] [CrossRef]
- Yaikwawong, M.; Kamdee, K.; Chuengsamarn, S. Curcumin Attenuates Liver Steatosis via Antioxidant and Anti-Inflammatory Pathways in Obese Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. Int. J. Mol. Sci. 2025, 26, 9286. [Google Scholar] [CrossRef]
- Cataldi, M.; Vigliotti, C.; Mosca, T.; Cammarota, M.; Capone, D. Emerging Role of the Spleen in the Pharmacokinetics of Monoclonal Antibodies, Nanoparticles and Exosomes. Int. J. Mol. Sci. 2017, 18, 1249. [Google Scholar] [CrossRef] [PubMed]
- Delama, A.; Teixeira, M.I.; Dorati, R.; Genta, I.; Conti, B.; Lamprou, D.A. Microfluidic Encapsulation Method to Produce Stable Liposomes Containing Iohexol. J. Drug Deliv. Sci. Technol. 2019, 54, 101340. [Google Scholar] [CrossRef]
- Muppidi, K.; Wang, J.; Betageri, G.; Pumerantz, A.S. PEGylated Liposome Encapsulation Increases the Lung Tissue Concentration of Vancomycin. Antimicrob. Agents Chemother. 2011, 55, 4537–4542. [Google Scholar] [CrossRef]
- Sakr, T.M.; Khowessah, O.M.; Motaleb, M.A.; Abd El-Bary, A.; El-Kolaly, M.T.; Swidan, M.M. I-131 Doping of Silver Nanoparticles Platform for Tumor Theranosis Guided Drug Delivery. Eur. J. Pharm. Sci. 2018, 122, 239–245. [Google Scholar] [CrossRef]
- Swidan, M.M.; Sakr, T.M.; Motaleb, M.A.; El-Bary, A.A.; El-Kolaly, M.T. Radioiodinated Acebutolol as a New Highly Selective Radiotracer for Myocardial Perfusion Imaging. Label. Comp. Radiopharm. 2014, 57, 593–599. [Google Scholar] [CrossRef] [PubMed]
- El-Kawy, O.A.; Ibrahim, I.T.; Shewatah, H.A.; Attalah, K.M. Preparation and Evaluation of Radiolabeled Gliclazide Parenteral Nanoemulsion as a New Tracer for Pancreatic β-Cells Mass. Int. J. Radiat. Biol. 2023, 99, 1738–1748. [Google Scholar] [CrossRef] [PubMed]
- Ernsting, M.J.; Murakami, M.; Roy, A.; Li, S.-D. Factors Controlling the Pharmacokinetics, Biodistribution and Intratumoral Penetration of Nanoparticles. J. Control. Release 2013, 172, 782–794. [Google Scholar] [CrossRef]
- Marcato, P.D. Pharmacokinetics and Pharmacodynamics of Nanomaterials. In Nanotoxicology: Materials, Methodologies, and Assessments; Durán, N., Guterres, S.S., Alves, O.L., Eds.; Springer: New York, NY, USA, 2014; pp. 97–110. ISBN 978-1-4614-8993-1. [Google Scholar]
- Shaker, D.S.; Ishak, R.A.H.; Elhuoni, M.A.; Ghoneim, A.M. Boosting Transdermal Delivery of Atorvastatin Calcium via o/w Nanoemulsifying System: Two-Step Optimization, Ex Vivo and in Vivo Evaluation. Int. J. Pharm. 2020, 578, 119073. [Google Scholar] [CrossRef]
- Józsa, L.; Vasvári, G.; Sinka, D.; Nemes, D.; Ujhelyi, Z.; Vecsernyés, M.; Váradi, J.; Fenyvesi, F.; Lekli, I.; Gyöngyösi, A.; et al. Enhanced Antioxidant and Anti-Inflammatory Effects of Self-Nano and Microemulsifying Drug Delivery Systems Containing Curcumin. Molecules 2022, 27, 6652. [Google Scholar] [CrossRef]
- Bseiso, E.A.; AbdEl-Aal, S.A.; Nasr, M.; Sammour, O.A.; El Gawad, N.A.A. Nose to Brain Delivery of Melatonin Lipidic Nanocapsules as a Promising Post-Ischemic Neuroprotective Therapeutic Modality. Drug Deliv. 2022, 29, 2469–2480. [Google Scholar] [CrossRef]
- Kalvodová, A.; Zbytovská, J. Lipid Nanocapsules Enhance the Transdermal Delivery of Drugs Regardless of Their Physico-Chemical Properties. Int. J. Pharm. 2022, 628, 122264. [Google Scholar] [CrossRef] [PubMed]
- Garcion, E.; Lamprecht, A.; Heurtault, B.; Paillard, A.; Aubert-Pouessel, A.; Denizot, B.; Menei, P.; Benoît, J.-P. A New Generation of Anticancer, Drug-Loaded, Colloidal Vectors Reverses Multidrug Resistance in Glioma and Reduces Tumor Progression in Rats. Mol. Cancer Ther. 2006, 5, 1710–1722. [Google Scholar] [CrossRef]
- Weyland, M.; Griveau, A.; Bejaud, J.; Benoit, J.-P.; Coursaget, P.; Garcion, E. Lipid Nanocapsule Functionalization by Lipopeptides Derived from Human Papillomavirus Type-16 Capsid for Nucleic Acid Delivery into Cancer Cells. Int. J. Pharm. 2013, 454, 756–764. [Google Scholar] [CrossRef]
- Sen, R.; Kazi, J.; Mukherjee, A.; Mukherjee, B. Folic Acid-Tripeptide-Conjugated Synthetic Biodegradable Nanoparticle-Loaded with Ormeloxifene Potentially Inhibited Breast Cancer Xenograft Tumor. J. Drug Deliv. Sci. Technol. 2024, 97, 105750. [Google Scholar] [CrossRef]
- Amin, B.H.; Ahmed, H.Y.; El Gazzar, E.M.; Badawy, M.M.M. Enhancement the Mycosynthesis of Selenium Nanoparticles by Using Gamma Radiation. Dose-Response 2021, 19, 155932582110593. [Google Scholar] [CrossRef]
- Chan, C.C.; Lam, H.; Lee, Y.C.; Zhang, X. (Eds.) Analytical Method Validation and Instrument Performance Verification, 1st ed.; Wiley: Hoboken, NJ, USA, 2004; ISBN 978-0-471-25953-4. [Google Scholar]
- Shabir, G.A. Validation of High-Performance Liquid Chromatography Methods for Pharmaceutical Analysis Understanding the Differences and Similarities between Validation Requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization. J. Chromatogr. A 2003, 987, 57–66. [Google Scholar]
- Ayoub, V.R.; Abdel-Mottaleb, M.M.A.; Ibrahem, I.T.; Motaleb, M.A.; Geneidi, A.S. Novel Radioiodinated Desvenlafaxine-Loaded Lipid Nanocapsule for Brain Delivery. Arch. Der Pharm. 2024, 357, 2300618. [Google Scholar] [CrossRef]
- Gaber, S.A.A.; Müller, P.; Zimmermann, W.; Hüttenberger, D.; Wittig, R.; Kader, M.H.A.; Stepp, H. ABCG2-Mediated Suppression of Chlorin E6 Accumulation and Photodynamic Therapy Efficiency in Glioblastoma Cell Lines Can Be Reversed by KO143. J. Photochem. Photobiol. B Biol. 2018, 178, 182–191. [Google Scholar] [CrossRef]
- Khalek, M.A.A.; Gaber, S.A.A.; El-Domany, R.A.; El-Kemary, M.A. Photoactive Electrospun Cellulose Acetate/Polyethylene Oxide/Methylene Blue and Trilayered Cellulose Acetate/Polyethylene Oxide/Silk Fibroin/Ciprofloxacin Nanofibers for Chronic Wound Healing. Int. J. Biol. Macromol. 2021, 193, 1752–1766. [Google Scholar] [CrossRef] [PubMed]
- Ramdhani, D.; Widyasari, E.M.; Sriyani, M.E.; Arnanda, Q.P.; Watabe, H. Iodine-131 Labeled Genistein as a Potential Radiotracer for Breast Cancer. Heliyon 2020, 6, e04780. [Google Scholar] [CrossRef] [PubMed]
- El-Kawy, O.A.; Abdelaziz, G. Preparation, Characterization and Evaluation of [125I]-Pirarubicin: A New Therapeutic Agent for Urinary Bladder Cancer with Potential for Use as Theranostic Agent. Appl. Radiat. Isot. 2022, 179, 110007. [Google Scholar] [CrossRef]
- Kumar, K.; Ghosh, A. Radiochemistry, Production Processes, Labeling Methods, and ImmunoPET Imaging Pharmaceuticals of Iodine-124. Molecules 2021, 26, 414. [Google Scholar] [CrossRef] [PubMed]
- Farrag, N.S.; Amin, A.M. Preliminary Evaluation of the Radiotherapeutic Efficacy of 131I-Atorvastatin in Rats with Hepatocellular Carcinoma. Nucl. Sci. Tech. 2020, 31, 106. [Google Scholar] [CrossRef]
- Said-Elbahr, R.; Nasr, M.; Alhnan, M.A.; Taha, I.; Sammour, O. Nebulizable Colloidal Nanoparticles Co-Encapsulating a COX-2 Inhibitor and a Herbal Compound for Treatment of Lung Cancer. Eur. J. Pharm. Biopharm. 2016, 103, 1–12. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U. The ARRIVE Guidelines 2.0: Updated Guidelines for Reporting Animal Research. J. Cereb. Blood Flow Metab. 2020, 40, 1769–1777. [Google Scholar] [CrossRef]
- Oh, S.S.; Narver, H.L. Mouse and Rat Anesthesia and Analgesia. Curr. Protoc. 2024, 4, e995. [Google Scholar] [CrossRef] [PubMed]
- Iwami, K.; Momota, H.; Natsume, A.; Kinjo, S.; Nagatani, T.; Wakabayashi, T. A Novel Method of Intracranial Injection via the Postglenoid Foramen for Brain Tumor Mouse Models: Laboratory Investigation. J. Neurosurg. 2012, 116, 630–635. [Google Scholar] [CrossRef]
- Fung, E.K.; Zanzonico, P.B. Chapter 8-Monitoring the Biodistribution of Radiolabeled Therapeutics in Mice. In Radiation Oncology and Radiotherapy Part C; Sato, A., Kraynak, J., Marciscano, A.E., Galluzzi, L., Eds.; Methods in Cell Biology; Academic Press: Cambridge, MA, USA, 2023; Volume 180, pp. 93–111. [Google Scholar]
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An Add-in Program for Pharmacokinetic and Pharmacodynamic Data Analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, M.E.; El-Motaleb, M.A.; Ibrahim, I.T.; Rashed, H.M.; El-Nabarawi, M.A.; Ahmed, M.A. Preparation, Characterization, and in Vivo Biodistribution Study of Intranasal 131I-Clonazepam-Loaded Phospholipid Magnesome as a Promising Brain Delivery System. Eur. J. Pharm. Sci. 2022, 169, 106089. [Google Scholar] [CrossRef]
- Wang, Y.; Huo, Y.; Zhao, C.; Liu, H.; Shao, Y.; Zhu, C.; An, L.; Chen, X.; Chen, Z. Engineered Exosomes with Enhanced Stability and Delivery Efficiency for Glioblastoma Therapy. J. Control. Release 2024, 368, 170–183. [Google Scholar] [CrossRef]










| Formulation Code * | Solutol Conc %w/w | Oils Conc %w/w | Amount of Drug (mg) | PS (nm) Mean ± SD | PDI Mean ± SD | ZP (mV) Mean ± SD |
|---|---|---|---|---|---|---|
| At-Cu LNCs1 | 10 | 10 | 22.5 | 162.30 ± 12.16 | 0.44 ± 0.08 | −26.00 ± 1.41 |
| At-Cu LNCs2 | 40 | 10 | 22.5 | 130.15 ± 0.63 | 0.34 ± 0.09 | −14.25 ± 0.35 |
| At-Cu LNCs3 | 10 | 25 | 22.5 | 238.65 ± 8.55 | 0.35 ± 0.13 | −22.65 ± 4.45 |
| At-Cu LNCs4 | 40 | 25 | 22.5 | 160.50 ± 14.70 | 0.42 ± 0.05 | −11.36 ± 2.60 |
| At-Cu LNCs5 | 10 | 17.5 | 15 | 170.50 ± 7.07 | 0.33 ± 0.05 | −26.55 ± 6.01 |
| At-Cu LNCs6 | 40 | 17.5 | 15 | 124.40 ± 12.44 | 0.32 ± 0.09 | −11.45 ± 1.34 |
| At-Cu LNCs7 | 10 | 17.5 | 30 | 186.45 ± 11.66 | 0.39 ± 0.08 | −26.00 ± 0.98 |
| At-Cu LNCs8 | 40 | 17.5 | 30 | 138.20 ± 3.81 | 0.35 ± 0.01 | −13.90 ± 1.97 |
| At-Cu LNCs9 | 25 | 10 | 15 | 120.75 ± 14.07 | 0.32 ± 0.05 | −17.55 ± 1.90 |
| At-Cu LNCs10 | 25 | 25 | 15 | 152.35 ± 15.76 | 0.44 ± 0.05 | −17.30 ± 0.56 |
| At-Cu LNCs11 | 25 | 10 | 30 | 159.55 ± 8.55 | 0.46 ± 0.11 | −21.10 ± 1.97 |
| At-Cu LNCs12 | 25 | 25 | 30 | 172.25 ± 15.76 | 0.45 ± 0.07 | −15.85 ± 0.07 |
| At-Cu LNCs13 | 25 | 17.5 | 22.5 | 264.25 ± 10.96 | 0.45 ± 0.18 | −19.50 ± 2.68 |
| At-Cu LNCs13(1) | 25 | 17.5 | 22.5 | 269.95 ± 1.90 | 0.38 ± 0.03 | −19.30 ± 0.57 |
| At-Cu LNCs13(2) | 25 | 17.5 | 22.5 | 282.55 ± 8.27 | 0.37 ± 0.00 | −17.70 ± 2.96 |
| Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
|---|---|---|---|---|---|---|
| Model | 41177.37 | 9 | 4575.26 | 28.64 | 0.0009 | significant |
| A-Solutol conc | 5235.20 | 1 | 5235.20 | 32.77 | 0.0023 | |
| B-oils conc | 2850.12 | 1 | 2850.12 | 17.84 | 0.0083 | |
| C-Amount of drugs | 977.93 | 1 | 977.93 | 6.12 | 0.0562 | |
| AB | 529.00 | 1 | 529.00 | 3.31 | 0.1284 | |
| AC | 1.16 | 1 | 1.16 | 0.0072 | 0.9355 | |
| BC | 89.30 | 1 | 89.30 | 0.5591 | 0.4883 | |
| A2 | 8451.78 | 1 | 8451.78 | 52.91 | 0.0008 | |
| B2 | 9795.30 | 1 | 9795.30 | 61.32 | 0.0005 | |
| C2 | 17,844.39 | 1 | 17844.39 | 111.71 | 0.0001 | |
| Residual | 798.66 | 5 | 159.73 | |||
| Lack of Fit | 623.28 | 3 | 207.76 | 2.37 | 0.3106 | not significant |
| Pure Error | 175.38 | 2 | 87.69 | |||
| Cor Total | 41,976.03 | 14 |
| Solutol Conc %w/w | Oils Conc %w/w | Amount of Drug (mg) | Mean Particle Size (nm) ± SD | |
|---|---|---|---|---|
| Predicted | 39.60 | 10.50 | 16.60 | 95.68 |
| Actual | 97.98 ± 2.27 |
| Amount of Folic Acid (mg) | Particle Size (nm) Mean ± SD | Polydispersity Index Mean ± SD | Zeta Potential (mV) Mean ± SD |
|---|---|---|---|
| 10 | 130.70 ± 2.27 | 0.30 ± 0.03 | −12.80 ± 0.42 |
| 20 | 172.65 ± 1.76 | 0.50 ± 0.01 | −11.45 ± 0.35 |
| 30 | 181.60 ± 2.83 | 0.40 ± 0.02 | −11.90 ± 2.80 |
| At-Cu LNCs | FA-At-Cu LNCs | |||
|---|---|---|---|---|
| Before Storage | After 3 Months | Before Storage | After 3 Months | |
| Particle size (nm) | 97.98 ± 2.27 | 106.70 ± 2.30 | 181.60 ± 2.83 | 184.90 ± 1.90 |
| Polydispersity | 0.32 ± 0.07 | 0.30 ± 0.00 | 0.40 ± 0.02 | 0.46 ± 0.05 |
| Zeta potential (mV) | −15.85 ± 1.35 | −16.31 ± 2.30 | −11.90 ± 2.80 | −12.00 ± 3.20 |
| Atorvastatin | Curcumin | |||||
|---|---|---|---|---|---|---|
| Free Solution | LNCs | FA LNCs | Free Solution | LNCs | FA LNCs | |
| MRT in blood | 9.77 ± 2.57 | 30.04 ± 0.00 | 30.61 ± 2.42 | 12.08 ± 0.02 | 26.13 ± 3.35 | 26.17 ± 1.59 |
| AUC (0–24 h) Blood | 71.47 ± 17.13 | 151.08 ± 25.64 | 163.08 ± 31.07 | 72.27 ± 15.44 | 236.76 ± 52.04 | 217.51 ± 49.21 |
| AUC (0–24 h) Brain | 0.99 ± 0.36 | 3.50 ± 1.30 | 4.97 ± 1.77 | 1.47 ± 0.44 | 6.97 ± 2.35 | 6.68 ± 2.26 |
| AUC (0–24 h) Glioma | 3.52 ± 1.13 | 14.51 ± 5.13 | 28.70 ± 10.09 | 3.72 ± 1.34 | 17.50 ± 6.15 | 46.20 ± 15.77 |
| Tumor targeting efficiency % | 4.88 ± 0.40 | 9.45 ± 1.79 | 17.32 ± 2.89 | 5.07 ± 0.77 | 7.28 ± 0.99 | 20.95 ± 2.51 |
| Tumor tissue specificity index | 3.57 ± 0.16 | 4.15 ± 0.08 | 5.77 ± 0.02 | 2.53 ± 2.47 | 2.51 ± 0.04 | 6.91 ± 0.01 |
| Atorvastatin | Curcumin | |||||
|---|---|---|---|---|---|---|
| Free Solution | LNCs | FA LNCs | Free Solution | LNCs | FA LNCs | |
| AUC (0–24 h) liver | 440.88 ± 49.33 | 267.40 ± 55.87 | 220.50 ± 37.42 | 711.50 ± 114.83 | 658.50 ± 117.80 | 660.50 ± 117.38 |
| AUC (0–24 h) Spleen | 3.90 ± 0.90 | 57.85 ± 9.82 | 38.05 ± 6.48 | 7.07 ± 1.70 | 114.37 ± 20.18 | 102.37 ± 17.87 |
| AUC (0–24 h) kidneys | 75.39 ± 14.24 | 50.98 ± 8.84 | 41.95 ± 7.16 | 57.87 ± 12.47 | 29.50 ± 7.21 | 29.50 ± 6.53 |
| AUC (0–24 h) Intestine | 398.22 ± 52.90 | 197.50 ± 41.12 | 174.87 ± 29.67 | 526.50 ± 111.63 | 195.97 ± 40.55 | 201.77 ± 34.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayoumi, M.; Youshia, J.; El-Kawy, O.A.; Gaber, S.A.A.; Arafa, M.G.; Nasr, M.; Sammour, O.A. Folic Acid-Decorated Lipidic Nanocapsules Co-Loaded with Atorvastatin and Curcumin to Enhance Glioma Targeting in Mice. Pharmaceuticals 2025, 18, 1623. https://doi.org/10.3390/ph18111623
Bayoumi M, Youshia J, El-Kawy OA, Gaber SAA, Arafa MG, Nasr M, Sammour OA. Folic Acid-Decorated Lipidic Nanocapsules Co-Loaded with Atorvastatin and Curcumin to Enhance Glioma Targeting in Mice. Pharmaceuticals. 2025; 18(11):1623. https://doi.org/10.3390/ph18111623
Chicago/Turabian StyleBayoumi, Mahitab, John Youshia, O. A. El-Kawy, Sara A. Abdel Gaber, Mona G. Arafa, Maha Nasr, and Omaima A. Sammour. 2025. "Folic Acid-Decorated Lipidic Nanocapsules Co-Loaded with Atorvastatin and Curcumin to Enhance Glioma Targeting in Mice" Pharmaceuticals 18, no. 11: 1623. https://doi.org/10.3390/ph18111623
APA StyleBayoumi, M., Youshia, J., El-Kawy, O. A., Gaber, S. A. A., Arafa, M. G., Nasr, M., & Sammour, O. A. (2025). Folic Acid-Decorated Lipidic Nanocapsules Co-Loaded with Atorvastatin and Curcumin to Enhance Glioma Targeting in Mice. Pharmaceuticals, 18(11), 1623. https://doi.org/10.3390/ph18111623

