Multi-Kinase Inhibition by New Quinazoline–Isatin Hybrids: Design, Synthesis, Biological Evaluation and Mechanistic Studies
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Study
2.2.1. Cytotoxicity Assay/Anti-Proliferative Activity
2.2.2. Flow Cytometry Cell Cycle Analysis
2.2.3. Annexin V-FITC Dual-Staining Apoptosis Assay
2.2.4. Gene Expression Analysis
2.2.5. In Vitro CDK2, EGFR, VEGFR-2, and HER2 Inhibitory Assay
2.3. In Silico Study
2.3.1. Molecular Docking
2.3.2. In Silico ADME Study
2.3.3. Toxicity Prediction
3. Materials and Methods
3.1. Instrumentation
3.2. Chemicals
3.3. Chemical Synthesis
3.3.1. Chemistry
Synthesis of Ethyl 4-[(Quinazolin-4-yl)amino]benzoate (3)
Synthesis of 4-[(Quinazolin-4-yl)amino] Benzohydrazide (4)
General Procedure for Synthesis of N′-(5-Subsitituted-2-oxoindolin-3-ylidene)-4-(quinazolin-4-ylamino) Benzohydrazide Derivatives (6a–d)
- (Z)-N′-(2-Oxoindolin-3-ylidene)-4-(quinazolin-4-ylamino) benzohydrazide (6a).
- (Z)-N′-(5-Chloro-2-oxoindolin-3-ylidene)-4-(quinazolin-4-ylamino)benzohydrazide (6b).
- (Z)-N′-(5-Fluoro-2-oxoindolin-3-ylidene)-4-(quinazolin-4-ylamino)benzohydrazide (6c).
- (Z)-N′-(5-Methyl-2-oxoindolin-3-ylidene)-4-(quinazolin-4-ylamino)benzohydrazide (6d).
3.4. Biological Screening
3.4.1. Cell Culture
3.4.2. Cytotoxicity Assay
3.4.3. Flow Cytometry Cell Cycle Analysis
3.4.4. Annexin V-FITC Dual-Staining Apoptosis Assay
3.4.5. Gene Expression Analysis
3.4.6. In Vitro CDK2, EGFR, VEGFR-2, and HER2 Inhibitory Assays
3.5. In Silico Study
3.5.1. Molecular Docking
3.5.2. In Silico ADME Study
3.5.3. Toxicity Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, J.S.; Amend, S.R.; Austin, R.H.; Gatenby, R.A.; Hammarlund, E.U.; Pienta, K.J. Updating the Definition of Cancer. Mol. Cancer Res. 2023, 21, 1142–1147. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Chabner, B.A.; Roberts, T.G. Chemotherapy and the War on Cancer. Nat. Rev. Cancer 2005, 5, 65–72. [Google Scholar] [CrossRef] [PubMed]
- DeVita, V.T.; Chu, E. A History of Cancer Chemotherapy. Cancer Res. 2008, 68, 8643–8653. [Google Scholar] [CrossRef]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer Drug Resistance: An Evolving Paradigm. Nat. Rev. Cancer 2013, 13, 714–726. [Google Scholar] [CrossRef]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug Resistance in Cancer: An Overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [PubMed]
- Vasan, N.; Baselga, J.; Hyman, D.M. A View on Drug Resistance in Cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef]
- Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-Targeted Cancer Therapies: Progress, Challenges and Future Directions. Mol. Cancer 2018, 17, 48. [Google Scholar] [CrossRef]
- Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The Protein Kinase Complement of the Human Genome. Science 2002, 298, 1912–1934. [Google Scholar] [CrossRef]
- Olsen, J.V.; Blagoev, B.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M. Global, in Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell 2006, 127, 635–648. [Google Scholar] [CrossRef]
- Krebs, E.G. The Phosphorylation of Proteins: A Major Mechanism for Biological Regulation. Biochem. Soc. Trans. 1985, 13, 813–820. [Google Scholar] [CrossRef]
- Taylor, S.S.; Keshwani, M.M.; Steichen, J.M.; Kornev, A.P. Evolution of the Eukaryotic Protein Kinases as Dynamic Molecular Switches. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2012, 367, 2517–2528. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Sasin, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik, A.; Hunter, T.; Dixon, J.; Mustelin, T. Protein Tyrosine Phosphatases in the Human Genome. Cell 2004, 117, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.K.; Mukhopadhyay, A.K. Tyrosine Kinase-Role and Significance in Cancer. Int. J. Med. Sci. 2004, 1, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P. Protein Kinases—the Major Drug Targets of the Twenty-First Century? Nat. Rev. Drug Discov. 2002, 1, 309–315. [Google Scholar] [CrossRef]
- Blume-Jensen, P.; Hunter, T. Oncogenic Kinase Signalling. Nature 2001, 411, 355–365. [Google Scholar] [CrossRef]
- Cicenas, J.; Zalyte, E.; Bairoch, A.; Gaudet, P. Kinases and Cancer. Cancers 2018, 10, 63. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, P.L.; Gray, N.S. Targeting Cancer with Small Molecule Kinase Inhibitors. Nat. Rev. Cancer 2009, 9, 28–39. [Google Scholar] [CrossRef]
- Eisen, S.A.; Miller, D.K.; Woodward, R.S.; Spitznagel, E.; Przybeck, T.R. The Effect of Prescribed Daily Dose Frequency on Patient Medication Compliance. Arch. Intern. Med. 1990, 150, 1881–1884. [Google Scholar] [CrossRef] [PubMed]
- Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent Advances (2015–2016) in Anticancer Hybrids. Eur. J. Med. Chem. 2017, 142, 179–212. [Google Scholar] [CrossRef]
- Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A.M. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14, 1829–1852. [Google Scholar] [CrossRef]
- Gediya, L.K.; Njar, V.C. Promise and Challenges in Drug Discovery and Development of Hybrid Anticancer Drugs. Expert. Opin. Drug Discov. 2009, 4, 1099–1111. [Google Scholar] [CrossRef]
- Marinho, E.; Proença, M.F. The Reaction of 2-(Acylamino)Benzonitriles with Primary Aromatic Amines: A Convenient Synthesis of 2-Substituted 4-(Arylamino)Quinazolines. Synthesis 2015, 47, 1623–1632. [Google Scholar] [CrossRef]
- Auti, P.S.; George, G.; Paul, A.T. Recent Advances in the Pharmacological Diversification of Quinazoline/Quinazolinone Hybrids. RSC Adv. 2020, 10, 41353–41392. [Google Scholar] [CrossRef]
- Fares, M.; Eldehna, W.M.; Abou-Seri, S.M.; Abdel-Aziz, H.A.; Aly, M.H.; Tolba, M.F. Design, Synthesis and In Vitro Antiproliferative Activity of Novel Isatin-Quinazoline Hybrids. Arch. Pharm. 2015, 348, 144–154. [Google Scholar] [CrossRef]
- Shu, V.A.; Eni, D.B.; Ntie-Kang, F. A Survey of Isatin Hybrids and Their Biological Properties. Mol. Divers. 2025, 29, 1737–1760. [Google Scholar] [CrossRef]
- Laderian, B.; Fojo, T. CDK4/6 Inhibition as a Therapeutic Strategy in Breast Cancer: Palbociclib, Ribociclib, and Abemaciclib. Semin. Oncol. 2017, 44, 395–403. [Google Scholar] [CrossRef] [PubMed]
- McCormack, P.L. Nintedanib: First Global Approval. Drugs 2015, 75, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Goodman, V.L.; Rock, E.P.; Dagher, R.; Ramchandani, R.P.; Abraham, S.; Gobburu, J.V.S.; Booth, B.P.; Verbois, S.L.; Morse, D.E.; Liang, C.Y.; et al. Approval Summary: Sunitinib for the Treatment of Imatinib Refractory or Intolerant Gastrointestinal Stromal Tumors and Advanced Renal Cell Carcinoma. Clin. Cancer Res. 2007, 13, 1367–1373. [Google Scholar] [CrossRef]
- Shagufta, S.; Ahmad, I. An Insight into the Therapeutic Potential of Quinazoline Derivatives as Anticancer Agents. Medchemcomm 2017, 8, 871. [Google Scholar] [CrossRef]
- Fortin, S.; Bérubé, G. Advances in the Development of Hybrid Anticancer Drugs. Expert. Opin. Drug Discov. 2013, 8, 1029–1047. [Google Scholar] [CrossRef] [PubMed]
- Solyanik, G.I. Quinazoline Compounds for Antitumor Treatment. Exp. Oncol. 2019, 41, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Krahling, S.; Callahan, M.K.; Williamson, P.; Schlegel, R.A. Exposure of Phosphatidylserine Is a General Feature in the Phagocytosis of Apoptotic Lymphocytes by Macrophages. Cell Death Differ. 1999, 6, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as Anticancer Mechanism: Function and Dysfunction of Its Modulators and Targeted Therapeutic Strategies. Aging 2016, 8, 603–619. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Kapustyansky, I.Y.; Kovalenko, S.M.; Yevsieieva, L.V.; Zaremba, O.V. Targeted Synthesis of a Series of 4-o-Aryl- and 4-N-Alkyl/Arylquinazolines for Stu-Dying the JNK-Kinase Activity. J. Org. Pharm. Chem. 2014, 12, 70–75. [Google Scholar] [CrossRef]
- Kovalenko, S.I.; Mazur, I.A.; Sinyak, R.S.; Brazhko, O.A.; Andrushchenko, A.V.; Nikitin, V.O.; Karpenko, O.V. Synthesis, Physicochemical Properties and Antimicrobial Activity of (4-Quinazolinylamino)benzoic Acid Hydrazides and Ylidenehydrazides. Farmatsevtichnii Zhurnal 2001, 2001 Pt 3, 55–59. [Google Scholar]
- Alanazi, A.S.; Mirgany, T.O.; Alsaif, N.A.; Alsfouk, A.A.; Alanazi, M.M. Design, Synthesis, Antitumor Evaluation, and Molecular Docking of Novel Pyrrolo[2,3-d]pyrimidine as Multi-Kinase Inhibitors. Saudi Pharm. J. 2023, 31, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, M.M.; Alanazi, A.S. Novel 7-Deazapurine Incorporating Isatin Hybrid Compounds as Protein Kinase Inhibitors: Design, Synthesis, In Silico Studies, and Antiproliferative Evaluation. Molecules 2023, 28, 5869. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, A.S.; Mirgany, T.O.; Alsfouk, A.A.; Alsaif, N.A.; Alanazi, M.M. Antiproliferative Activity, Multikinase Inhibition, Apoptosis- Inducing Effects and Molecular Docking of Novel Isatin–Purine Hybrids. Med. 2023, 59, 610. [Google Scholar] [CrossRef]
- Bahuguna, A.; Khan, I.; Bajpai, V.K.; Kang, S.C. MTT Assay to Evaluate the Cytotoxic Potential of a Drug. Bangladesh J. Pharmacol. 2017, 12, 115–118. [Google Scholar] [CrossRef]
- Alotaibi, A.A.A.; Asiri, H.H.; Rahman, A.F.M.M.; Alanazi, M.M. Novel Pyrrolo[2,3-d]pyrimidine Derivatives as Multi-Kinase Inhibitors with VEGFR-2 Selectivity. J. Saudi Chem. Soc. 2023, 27, 101712. [Google Scholar] [CrossRef]
- Alotaibi, A.A.; Alanazi, M.M.; Rahman, A.F.M.M. Discovery of New Pyrrolo[2,3-d]pyrimidine Derivatives as Potential Multi-Targeted Kinase Inhibitors and Apoptosis Inducers. Pharmaceuticals 2023, 16, 1324. [Google Scholar] [CrossRef]
- Mirgany, T.O.; Rahman, A.F.M.M.; Alanazi, M.M. Design, Synthesis, and Mechanistic Evaluation of Novel Benzimidazole-Hydrazone Compounds as Dual Inhibitors of EGFR and HER2: Promising Candidates for Anticancer Therapy. J. Mol. Struct. 2024, 1309, 138177. [Google Scholar] [CrossRef]
- Mirgany, T.O.; Asiri, H.H.; Rahman, A.F.M.M.; Alanazi, M.M. Discovery of 1H-Benzo[d]Imidazole-(Halogenated)Benzylidenebenzohydrazide Hybrids as Potential Multi-Kinase Inhibitors. Pharmaceuticals 2024, 17, 839. [Google Scholar] [CrossRef]
- Altharawi, A.; Alanazi, M.M.; Alossaimi, M.A.; Alanazi, A.S.; Alqahtani, S.M.; Geesi, M.H.; Riadi, Y. Novel 2-Sulfanylquinazolin-4(3H)-One Derivatives as Multi-Kinase Inhibitors and Apoptosis Inducers: A Synthesis, Biological Evaluation, and Molecular Docking Study. Molecules 2023, 28, 5548. [Google Scholar] [CrossRef]
- Alanazi, M.M.; Aldawas, S.; Alsaif, N.A. Design, Synthesis, and Biological Evaluation of 2-Mercaptobenzoxazole Derivatives as Potential Multi-Kinase Inhibitors. Pharmaceuticals 2023, 16, 97. [Google Scholar] [CrossRef]
- Albalawi, F.S.; Bhat, M.A.; Bakheit, A.H.; Rahman, A.F.M.M.; Alsaif, N.A.; Jones, A.M.; Romero-Canelon, I. Purine–Hydrazone Scaffolds as Potential Dual EGFR/HER2 Inhibitors. Pharmaceuticals 2025, 18, 1051. [Google Scholar] [CrossRef] [PubMed]
Compound | IC50 (µM) | ||||
---|---|---|---|---|---|
WI38 | HepG2 | MCF-7 | MDA-MB-231 | HeLa | |
Sunitinib | 43 ± 2.9 | 6.82 ± 0.5 | 5.19 ± 0.4 | 8.41 ± 0.7 | 7.48 ± 0.6 |
Doxorubicin | 6.72 ± 0.5 | 4.50 ± 0.2 | 4.17 ± 0.2 | 3.18 ± 0.1 | 5.57 ± 0.4 |
6a | 34.07 ± 2.6 | 7.98 ± 0.6 | 4.89 ± 0.3 | 6.24 ± 0.5 | 13.07 ± 0.9 |
6b | >100 | 61.35 ± 3.5 | 70.65 ± 3.4 | 56.31 ± 3.2 | 66.82 ± 3.4 |
6c | 57.28 ± 3.3 | 2.61 ± 0.1 | 3.78 ± 0.2 | 5.18 ± 0.4 | 7.60 ± 0.5 |
6d | 65.83 ± 3.8 | 87.41 ± 4.5 | >100 | 82.67 ± 4.3 | >100 |
Sample | Cell Cycle Distribution (%) | |||
---|---|---|---|---|
%G0–G1 | %S | %G2/M | % Sub-G1 | |
HepG2 | 46.85 | 39.28 | 13.87 | 1.73 |
6c/HepG2 | 36.47 | 53.61 | 9.92 | 42.79 |
Sample | Apoptosis Induction Analysis | Necrosis | ||
---|---|---|---|---|
Total | Early | Late | ||
HepG2 Control | 1.73 | 0.42 | 0.22 | 1.09 |
6c/HepG2 | 42.79 | 28.64 | 11.21 | 2.94 |
Sample | Protein Expression (Normalized to β-Actin) | |||
---|---|---|---|---|
Bax | Bcl-2 | Caspase-3 | Caspase-9 | |
HepG2 | 1 | 1 | 1 | 1 |
Staurosporine/HepG2 | 6.794 | 0.351 | 8.43 | 4.614 |
6c/HepG2 | 4.585 | 0.185 | 10.13 | 2.795 |
Protein Kinase | Compound | IC50 (μM) |
---|---|---|
CDK2 | 6c | 0.183 ± 0.01 |
Roscovitine | 0.595 ± 0.031 | |
EGFR | 6c | 0.083± 0.005 |
Lapatinib | 0.043 ± 0.003 | |
VEGFR-2 | 6c | 0.076 ± 0.004 |
Sorafenib | 0.045 ± 0.002 | |
HER2 | 6c | 0.138 ± 0.07 |
Lapatinib | 0.06 ± 0.003 |
Compound | Pharmacokinetics | Drug Likeness (#Violations) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GI Absorption | BBB Permeant | Pgp Substrate | CYP2D6 Inhibitor | CYP3A4 Inhibitor | log Kp (Skin Permeation) cm/s | Lipinski | Ghose | Veber | Egan | Muegge | Bioavailability Score | |
6a | High | No | No | Yes | Yes | −5.8 | 0 | 0 | 0 | 0 | 0 | 0.55 |
6b | High | No | No | No | Yes | −5.57 | 0 | 0 | 0 | 0 | 0 | 0.55 |
6c | High | No | No | No | Yes | −5.84 | 0 | 0 | 0 | 0 | 0 | 0.55 |
6d | High | No | No | No | Yes | −5.63 | 0 | 0 | 0 | 0 | 0 | 0.55 |
Compound | Toxicity Risk | |||
---|---|---|---|---|
Mutagenic | Tumorigenic | Irritant Effect | Reproductive Effective | |
6a | None | None | None | None |
6b | None | None | None | None |
6c | None | None | None | None |
6d | None | None | None | None |
Doxorubicin | None | None | None | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, M.M.; Al-Wabli, R.I. Multi-Kinase Inhibition by New Quinazoline–Isatin Hybrids: Design, Synthesis, Biological Evaluation and Mechanistic Studies. Pharmaceuticals 2025, 18, 1546. https://doi.org/10.3390/ph18101546
Alanazi MM, Al-Wabli RI. Multi-Kinase Inhibition by New Quinazoline–Isatin Hybrids: Design, Synthesis, Biological Evaluation and Mechanistic Studies. Pharmaceuticals. 2025; 18(10):1546. https://doi.org/10.3390/ph18101546
Chicago/Turabian StyleAlanazi, Mohammed M., and Reem I. Al-Wabli. 2025. "Multi-Kinase Inhibition by New Quinazoline–Isatin Hybrids: Design, Synthesis, Biological Evaluation and Mechanistic Studies" Pharmaceuticals 18, no. 10: 1546. https://doi.org/10.3390/ph18101546
APA StyleAlanazi, M. M., & Al-Wabli, R. I. (2025). Multi-Kinase Inhibition by New Quinazoline–Isatin Hybrids: Design, Synthesis, Biological Evaluation and Mechanistic Studies. Pharmaceuticals, 18(10), 1546. https://doi.org/10.3390/ph18101546