Silica Containing Hybrids Loaded with Ibuprofen as Models of Drug Delivery Systems †
Abstract
1. Introduction
2. Results and Discussion
2.1. XRD and SEM Investigations
2.2. IR Structural Investigations
2.3. UV-Vis Investigations
2.4. NMR Analysis
2.5. Ibuprofen Release Profiles
3. Materials and Methods
3.1. Preparation of Silica-Polyvynynylpyrrolidon (Si-PVP) Hybrid
3.2. Sol–Gel Assisted Preparation of Silica–Polyvynylpirrolydon–Ibuprofen (Si-PVP-IBP) Hybrid Materials
3.3. Characterization of the Prepared Model Systems
3.4. “Solvent Deposition” Technique for Preparation of a Model Ibuprofen Adsorbate onto Si-PVP Hybrid (Si-PVP/IBP) 1:1 (w/w) Adsorbate
3.5. Equilibrium Solubility
3.6. In Vitro Dissolution Profile of Ibuprofen Models
4. Conclusions
Limitation of the Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Catauro, M.; Ciprioti, S.V. Characterization of Hybrid Materials Prepared by Sol–gel Method for Biomedical Implementations. A Critical Review. Materials 2021, 14, 1788. [Google Scholar] [CrossRef]
- Castrillo, P.; Olmos, D.; Amador, D.; González-Benito, J. Real dispersion of isolated fumed silica nanoparticles in highly filled PMMA prepared by high energy ball milling. J. Colloid Interface Sci. 2007, 308, 318–324. [Google Scholar] [CrossRef]
- Ogoshi, T.; Chujo, Y. Organic–inorganic polymer hybrids prepared by the sol–gel method. Compos. Interfaces 2005, 11, 539–566. [Google Scholar] [CrossRef]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Schmidt, M.; Schwertfeger, F. Applications for silica aerogel products. J. Non-Cryst. Solids. 1998, 225, 364–368. [Google Scholar] [CrossRef]
- Kuttor, A.; Szalóki, M.; Rente, T.; Kerényi, F.; Bakó, J.; Fábián, I.; Lázár, I.; Jenei, A.; Hegedu, C. Preparation and Application of Highly Porous Aerogel-based Bioactive Materials in Dentistry. Front. Mater. Sci. 2014, 8, 46–52. [Google Scholar] [CrossRef]
- Pajonk, G.M. Some applications of silica aerogels. Colloid Polym. Sci. 2003, 281, 637–665. [Google Scholar] [CrossRef]
- Maleki, H.; Dures, L.; Portugal, A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non Cryst. Solids 2014, 385, 55–74. [Google Scholar] [CrossRef]
- Babiarczuk, B.; Lewandowski, D.; Szczurek, A.; Kierzek, K.; Meffert, M.; Gerthsen, D.; Jerzy, K.; Krzak, J. Novel approach of silica-PVA hybrid aerogel synthesis by simultaneous sol–gel process and phase separation. J. Supercrit. Fluids 2020, 166, 104997. [Google Scholar] [CrossRef]
- Haraguchi, K.; Usami, Y.; Ono, Y. The preparation and characterization of hybrid materials composed of phenolic resin and silica. J. Mater. Sci. 1998, 33, 3337–3344. [Google Scholar] [CrossRef]
- Morikawa, A.; Lyoku, Y.; Kakimoto, M.; Mai, Y. Preparation of Silica-Containing Polyvinylpyrrolidone Films by Sol–gel Process Polymer. J. Mater. Sci. 1992, 24, 689–692. [Google Scholar]
- Hsiao, C.N.; Huang, K.S. Synthesis, Characterization, and Applications of Polyvinylpyrrolidone/SiO2 Hybrid Materials. J. Appl. Polym. Sci. 2005, 96, 1936–1942. [Google Scholar] [CrossRef]
- Seljak, K.B.; Kocbek, P.; Gašperlin, M. Mesoporous silica nanoparticles as delivery carriers: An overview of drug loading techniques. J. Drug Deliv. Sci. Technol. 2020, 59, 101906. [Google Scholar] [CrossRef]
- Hristova, Y.G.; Djambazki, P.D.; Samuneva, B.I.; Bogdanova, S.I.; Salvado, I.M.-M.; Wu, A. Silicadioxide—Methylmetacrylate hybrids as carriers of model drug ibuprofen. In Proceedings of the 3rd Balkan Conference on Glass and Science and Technology; 15th Conference on Glass and Ceramic, 26–30 September 2005; Bachvarov, S., Gutzov, I., Dimitriev, Y., Eds.; Publishing House of the Union of Scientists in Bulgaria: Varna, Bulgaria, 2007; pp. 239–244. [Google Scholar]
- Kortesuo, P.; Ahola, M.; Kangas, M.; Leino, T.; Laakso, S.; Vuorilentho, L.; Yli-Urpo, A.; Kiesvaara, J.; Marvola, M. Alkyl-substituted silica gel as a carrier in the controlled release of dexmedetomidine. J. Control. Release 2001, 76, 227–238. [Google Scholar] [CrossRef]
- Ahola, M.; Sailynoja, E.; Raitavuo, M.; Vaahtio, M.; Salonen, J.; Yli-Urpo, A. In vitro release of heparin from silica xerogels. Biomaterials 2001, 21, 2163–2170. [Google Scholar] [CrossRef]
- Bottcher, H.; Slowik, P.; Suss, W. Sol–gel carrier systems for controlled drug delivery. J. Sol–Gel Sci. Technol. 1998, 13, 277–281. [Google Scholar] [CrossRef]
- Ahola, M.; Kortesuo, P.; Kangasniemi, I.; Kiesvaara, J.; Yli-Urpo, A. Silica xerogel material for controlled release of toremifene citrate. Int. J. Pharm. 2000, 195, 219–227. [Google Scholar] [CrossRef]
- Wan, M.M.; Li, Y.Y.; Yang, T.; Zhang, T.; Sun, X.D.; Zhu, J.H. In Situ Loading of Drugs into Mesoporous Silica SBA-15. Chemistry 2016, 22, 6294–6301. [Google Scholar] [CrossRef]
- Moritz, M.; Geszke-Moritz, M. Mesoporous Materials as Elements of Modern Drug Delivery Systems for Anti-Inflammatory Agents: A Review of Recent Achievements. Pharmaceutics 2022, 14, 1542. [Google Scholar] [CrossRef]
- Trzeciak, K.; Chotera-Ouda, A.; Bak-Sypien, I.I.; Potrzebowski, M.J. Mesoporous Silica Particles as Drug Delivery Systems—The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes. Pharmaceutics 2021, 13, 950. [Google Scholar] [CrossRef]
- Jesus, R.A.; Rabelo, A.S.; Figueiredo, R.T.; Cides da Silva, L.C.; Codentino, I.C.; Fantini, G.M.C.A.; Araújo, L.B.; Araújo, A.A.S.; Mesquita, M.E. Synthesis and application of the MCM-41 and SBA-15 as matrices for in vitro efavirenz release study. J. Drug Deliv. Sci. Technol. 2016, 31, 153–159. [Google Scholar] [CrossRef]
- McCarthy, C.A.; Ahern, R.J.; Dontireddy, R.; Ryan, K.B.; Crean, A.M. Mesoporous silica formulation strategies for drug dissolution enhancement: A review. Expert Opin. Drug Deliv. 2016, 13, 93–108. [Google Scholar] [CrossRef]
- Khan, A.R.; Gholap, A.D.; Grewal, N.S.; Jun, Z.; Khalid, M.; Zhang, H.-J. Advances in smart hybrid scaffolds: A strategic approach for regenerative clinical applications. Eng. Regen. 2025, 6, 85–110. [Google Scholar] [CrossRef]
- Ulfa, M.; Prasetyoko, D. Infrared Spectroscopic and Scanning Electron Microscopy Study of Ibuprofen Loading onto the Molecular Sieve Mesoporous Silica SBA-15 Material. Orient. J. Chem. 2018, 34, 2631–2636. [Google Scholar] [CrossRef]
- Toki, M.; Chow, T.Y.; Ohnaka, T.; Samura, H.; Saegusa, T. Structure of poly(vinylpyrolidon)-silica hybrid. Polym. Bull. 1992, 29, 653–660. [Google Scholar] [CrossRef]
- Janicijevic, J.; Milic, J.; Čalija, B.; Micov, A.; Stepanovic-Petrovic, R.; Tomic, M.; Dakovic, A.; Dobricic, V.; Vasiljevice, B.N.; Krajisnika, D. Potentiation of the ibuprofen antihyperalgesic effect using inorganically functionalized Diatomite. J. Mater. Chem. B 2018, 6, 5812. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia, 7.0 Eur. Pharm. Ibuprofen, Ibuprofenum, 04/2008:0721, Corrected 7.0, 2225-2227. Available online: https://www.scribd.com/document/395679342/European-Pharm-Ibuprofen (accessed on 1 September 2025).
- Timin, A.; Rumyantsev, E.; Lanin, S.N.; Rychkova, S.A.; Guseynov, S.S.; Solomonov, A.V.; Antina, E.V. Preparation and surface properties of mesoporous silica particles modified with poly(N-vinyl2-pyrrolidone) as a potential adsorbent for bilirubin removal. Mater. Chem. Phys. 2014, 147, 673–683. [Google Scholar] [CrossRef]
- Tarlani, A.; Isari, M.; Khazraei, A.; Eslami, M.M. New sol–gel derived aluminum oxide-ibuprofen nanocomposite as a controlled releasing medication. Nanomed. Res. J. 2017, 2, 28–35. [Google Scholar] [CrossRef]
- Azais, T.; Toutne-Peteilh, C.; Aussenac, F.; Baccile, N.; Coelho, C.; Devoisselle, J.-M.; Babonneau, F. Solid-Satate NMR of Ibuprofen confined in MCM-41 Material. Chem. Mater. 2006, 18, 6382–6390. [Google Scholar] [CrossRef]
- Taylor, L.; Zografi, G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm. Res. 1997, 14, 1691–1698. [Google Scholar] [CrossRef]
- Mireles, L.K.; Wu, M.-R.; Saadeh, N.; Yahia, L.; Sacher, E. Physicochemical Characterization of Polyvinyl Pyrrolidone: A Tale of Two Polyvinyl Pyrrolidone. ACS Omega 2020, 5, 30461–30467. [Google Scholar] [CrossRef]
- Lenza, R.; Vasconcelos, W. Preparation of Silica by Sol–gel method using Formamide. Mater. Res. 2001, 4, 189–194. [Google Scholar] [CrossRef]
- Williams, D.; Fleming, I. Spectroscopic Methods in Organic Chemistry, 5th ed.; McGraw-Hill Education: Maidenhead, UK, 1995. [Google Scholar]
- Laila, M.; Al-Harbi, S.A.; Kosa, M.K.; Baloch, Q.A.; El-Mossalamy, E.S.E.B.H. Adsorption of Polyvinylpyrrolidone over the Silica Surface: As Affected by Pretreatment of Adsorbent and Molar Mass of Polymer Adsorbate. Int. J. Polym. Sci. 2016, 9, 2417292. [Google Scholar] [CrossRef]
- Tanski, T.; Matysiak, W.; Krzemi’nski, Ł.; Jarka, P.; Gołombek, K. Optical properties of thin fibrous PVP/SiO2 composite mats prepared via the sol–gel and electrospinning methods. Appl. Surf. Sci. 2017, 424, 184–189. [Google Scholar] [CrossRef]
- Xu, X.; Wang, M.; Pei, Y.; Ai, C.; Yuan, L. SiO2@Ag/AgCl: A low-cost and highly efficient plasmonic photocatalyst for degrading rhodamine B under visible light irradiation. RSC Adv. 2014, 4, 64747–64755. [Google Scholar] [CrossRef]
- Kezzim, A.; Boudjemaa, A.; Belhadi, A.; Trari, M. Photo-catalytic degradation of ibuprofen over the new semiconducting catalyst α-(Cu,Fe)2O3 prepared by hydrothermal route. Res. Chem. Intermed. 2016, 43, 3727–3743. [Google Scholar] [CrossRef]
- Gherasim, O.; Popescu-Pelin, G.; Florian, P.; Icriverzi, M.; Roseanu, A.; Mitran, V.; Cimpean, A.; Socol, G. Bioactive Ibuprofen-Loaded PLGA Coatings for Multifunctional Surface Modification of Medical Devices. Polymers 2021, 13, 1413. [Google Scholar] [CrossRef]
- Zhu, Y.; Shi, J.; Li, Y.; Chen, H.; Shen, W.; Dong, X. Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Microporous Mesoporous Mater. 2005, 85, 75–81. [Google Scholar] [CrossRef]
- Ermei, M.; Henri, K.; Neha, S.; Correia, A.; Kaasalainen, M.; Kukk, E.; Hirvonen, J.; Santos, H.A.; Jarno, S. Influence of Surface Chemistry on Ibuprofen Adsorption and Confinement in Mesoporous Silicon Microparticles. Langmuir 2016, 32, 13020–13029. [Google Scholar] [CrossRef]
- Marchetti, A.; Yin, J.; Su, Y.; Kong, X. Solid-state NMR in the field of drug delivery: State of the art and new perspectives. Magn. Reson. Lett. 2021, 1, 28–70. [Google Scholar] [CrossRef]
- Popova, M.; Mihaylova, R.; Momekov, G.; Momekova, D.; Lazarova, H.; Trendafilova, I.; Mitova, V.; Koseva, N.; Mihályi, J.; Shestakova, P.; et al. Verapamil delivery systems on the basis of mesoporous ZSM-5/KIT-6 and ZSM-5/SBA-15 polymer nanocomposites as a potential tool to overcome MDR cancer cells. Eur. J. Pharm. Biopharm. 2019, 142, 460–472. [Google Scholar] [CrossRef]
- Szegedi, Á.; Shestakova, P.; Trendafilova, I.; Mihályi, J.; Tsacheva, I.; Mitova, V.; Kyulavska, M.; Koseva, N.; Momekova, D.; Konstantinov, S.; et al. Modified mesoporous silica nanoparticles coated by polymer complex as novel curcumin delivery carriers. J. Drug Deliv. Sci. Technol. 2019, 49, 700–712. [Google Scholar] [CrossRef]
- Trendafilova, I.; Szegedi, Á.; Yoncheva, K.; Shestakova, P.; Mihály, J.; Ristic, A.; Konstantinov, S.; Popova, M. A pH dependent delivery of mesalazine from polymer coated and drug-loaded SBA-16 systems. Eur. J. Pharm. Sci. 2016, 81, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calve, S.; Alonso, B.; Durand, J.O.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reason. Chem. 2002, 40, 70–76. [Google Scholar] [CrossRef]
- Bachvarova-Nedelcheva, A.; Kostova, Y.; Yordanova, L.; Nenova, E.; Shestakova, P.; Ivanova, I.; Pavlova, E. Sol–Gel Synthesis of Silica–Poly(Vinylpyrrolidone) Hybrids with Prooxidant Activity and Antibacterial Properties. Molecules 2024, 29, 2675. [Google Scholar] [CrossRef] [PubMed]
- Freer, A.A.; Bunyan, J.M.; Shankland, N.; Sheen, D.B. Structure of (S)-(+)-ibuprofen. Acta Crystallogr. Sect. C 1993, 49, 1378–1380. [Google Scholar] [CrossRef]
- Azaïs, T.; Hartmeyer, G.; Quignard, S.; Laurent, G.; Tourné-Péteilh, C.; Devoisselle, J.M.; Babonneau, F. Solid-state NMR characterization of drug-model molecules encapsulated in MCM-41 silica. Pure Appl. Chem. 2009, 81, 1345–1355. [Google Scholar] [CrossRef]
- Giri, T.K.; Badwaik, H.; Aleexander, A.; Tripathi, D.K. Solubility enhancement of Ibuprofen in the presence of hybrophilic polimer and surfactant. Int. J. Appl. Biol. Pharm. Technnol. 2010, 1, 793–800. [Google Scholar]
- Potthast, H.; Dressman, J.; Junginger, H.; Midha, K.; Oeser, H.; Shah, V.; Vogelpoel, H.; Barebds, D. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Ibuprofen. J. Pharm. Sci. 2005, 94, 2121–2131. [Google Scholar] [CrossRef]
- Buehler, V. Kollidon® Polyvinylpyrrolidone for the Pharmaceutical Industry, 7th ed.; BASF: Ludwigshafen, Germany, 2003; p. 40. [Google Scholar]
- Shula, R.; Chen, T.; Ducheyne, P. The controlled release of drugs from emulsified, sol gel processed silica microspheres. Biomaterials 2009, 30, 850–858. [Google Scholar] [CrossRef]
- Zarinwalla, A.; Maurera, V.; Piericka, J.; Oldhuesa, V.M.; Porsiela, J.C.; Finkea, J.H.; Garnweitnera, G. Amorphization and modified release of ibuprofen by post-synthetic and solvent-free loading into tailored silica aerogels. Drug Deliv. 2022, 29, 2086–2099. [Google Scholar] [CrossRef]
- Rengarajan, G.T.; Enke, D.; Steinhart, M.; Beiner, M. Stabilization of the amorphous state of pharmaceuticals in nanopores. J. Mater. Chem. 2008, 18, 2537. [Google Scholar] [CrossRef]
- Lee, S.Y.; Yu, G.; Kim, I.W. Effects of Polymeric Additives on the Crystallization and Release Behavior of Amorphous Ibuprofen. J. Nanomater. 2013, 2013, 503069. [Google Scholar] [CrossRef]
Sample | Q2 | Q3 | Q4a | Q4b | ||||
---|---|---|---|---|---|---|---|---|
ppm | I | ppm | I | ppm | I | ppm | I | |
Si-PVP-IBP | −91.9 | 5 | −101.3 | 39 | −110.8 | 51 | −120.0 | 5 |
Si-PVP/IBP | −91.3 | 6 | −101.3 | 28 | −110.9 | 51 | −119.6 | 15 |
Ibuprofen Solubility Data | Silica Solubility Data | ||||
---|---|---|---|---|---|
Equilibrium Solubility of IBP in [mg/5 mL], n = 3 | Si Amount Dissolved [mg/5 mL] at 8th h, n = 2 | ||||
Solvent | Pure IBP | IBP Adsorbate | Si-PVP-IBP Hybrid | Si-PVP Hybrid | Silica Xerogel |
0.1 M HCl | 1.0 ± 0.06 | 2.22 ± 0.10 | 3.14 ± 0.10 | 0.0002 | 0.0004 |
water | 1.23 ± 0.15 | 3.17 ± 0.21 | 5.08 ± 0.21 | 0.0017 | 0.0047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostova, Y.; Shestakova, P.; Bachvarova-Nedelcheva, A. Silica Containing Hybrids Loaded with Ibuprofen as Models of Drug Delivery Systems. Pharmaceuticals 2025, 18, 1505. https://doi.org/10.3390/ph18101505
Kostova Y, Shestakova P, Bachvarova-Nedelcheva A. Silica Containing Hybrids Loaded with Ibuprofen as Models of Drug Delivery Systems. Pharmaceuticals. 2025; 18(10):1505. https://doi.org/10.3390/ph18101505
Chicago/Turabian StyleKostova, Yoanna, Pavletta Shestakova, and Albena Bachvarova-Nedelcheva. 2025. "Silica Containing Hybrids Loaded with Ibuprofen as Models of Drug Delivery Systems" Pharmaceuticals 18, no. 10: 1505. https://doi.org/10.3390/ph18101505
APA StyleKostova, Y., Shestakova, P., & Bachvarova-Nedelcheva, A. (2025). Silica Containing Hybrids Loaded with Ibuprofen as Models of Drug Delivery Systems. Pharmaceuticals, 18(10), 1505. https://doi.org/10.3390/ph18101505