Assessment of Carrier-Free Metallacarboranes for Targeted Radiation Therapies PBFT and BNCT: Comparative Cellular Effects and Dosimetry Studies with [o-FESAN]− in Breast Cancer Cells
Abstract
1. Introduction
2. Results and Discussion
2.1. Cytotoxic Activity Evaluation
2.2. Cellular Uptake Analysis
2.3. Biodistribution Studies
2.4. Radiation Studies
2.4.1. Neutron Irradiation—BNCT
2.4.2. Proton Irradiation
2.5. Cellular Effects of Proton Irradiation
Reactive Oxygen Species (ROS)
2.6. TEM Studies
2.7. Dosimetry Studies
2.7.1. Proton Dosimetry
2.7.2. Neutron Dosimetry
3. Materials and Methods
3.1. Chemicals
3.2. Cell Lines, Cell Culture Conditions, and Na[o-FESAN] Stock Solutions
3.3. Cellular Viability Before Irradiation (Concentration Range Selection)
3.4. Cellular Uptake
3.4.1. Uptake by ICP-MS
3.4.2. Single Cell Uptake by Micro-PIXE
3.5. Biodistribution of Na[o-FESAN] in MDA-MB-231 Xenograft Models
3.6. Neutron Irradiation Experiments
3.7. Cellular Viability and Survival Assays After Neutron Irradiation
3.8. Proton Irradiation Experiments
3.9. Cellular Viability and Survival Assays After Irradiation with Protons
3.10. Intracellular ROS
3.11. Morphological Analysis by TEM
3.12. Proton Simulation and Dosimetric Calculations
Proton Setup
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef]
- Olivares-Urbano, M.A.; Griñán-Lisón, C.J.; Marchal, A.; Nuñez, M.I. CSC Radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells 2020, 9, 1651. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.L. Particle therapy for cancers: A new weapon in radiation therapy. Front. Med. 2012, 6, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.H.; Shtam, T.; Marchenko, Y.Y.; Konevega, A.L.; Lebedev, D. Current state and prospectives for proton boron capture therapy. Biomedicines 2023, 11, 1727. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.Y.; Yoon, D.K.; Barraclough, B.; Lee, H.C.; Suh, T.S.; Lu, B. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): A Monte Carlo study. Oncotarget 2017, 8, 39774–39781. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Fukumitsu, N.; Ishikawa, H.; Nakai, K.; Sakurai, H. A critical review of radiation therapy: From particle beam therapy (proton, carbon, and BNCT) to beyond. J. Pers. Med. 2021, 11, 825. [Google Scholar] [CrossRef]
- Mohan, R.; Grosshans, D. Proton therapy—Present and future. Adv. Drug. Deliv. Rev. 2017, 109, 26–44. [Google Scholar] [CrossRef]
- Hideghéty, K.; Brunner, S.; Cheesman, A.; Szabó, E.R.; Polanek, R.; Margarone, D.; Tőkés, T.; Mogyorósi, K. 11Boron delivery agents for boron proton-capture enhanced proton therapy. Anticancer Res. 2019, 39, 2265–2276. [Google Scholar] [CrossRef]
- Geser, F.A.; Valente, M. Analytical approach to the reaction cross section of the fusion of protons with boron isotopes aimed at cancer therapy. Appl. Radiat. Isot. 2019, 151, 96–101. [Google Scholar] [CrossRef]
- Shtam, T.; Burdakov, V.; Garina, A.; Garaeva, L.; Tran, N.H.; Volnitskiy, A.; Kuus, E.; Amerkanov, D.; Pack, F.; Andreev, G.; et al. Experimental validation of proton boron capture therapy for glioma cells. Sci. Rep. 2023, 13, 1341. [Google Scholar] [CrossRef]
- Cirrone, G.A.P.; Manti, L.; Margarone, D.; Petringa, G.; Giuffrida, L.; Minopoli, A.; Picciotto, A.; Russo, G.; Cammarata, F.; Pisciotta, P.; et al. First experimental proof of proton boron capture therapy (PBCT) to enhance proton therapy effectiveness. Sci. Rep. 2018, 8, 1141. [Google Scholar] [CrossRef] [PubMed]
- Manandhar, M.; Bright, S.J.; Flint, D.B.; Martinus, D.K.J.; Kolachina, R.V.; Ben, K.M.; Titt, U.; Martin, T.J.; Lee, C.L.; Morrison, K.; et al. Effect of boron compounds on the biological effectiveness of proton therapy. Med. Phys. 2022, 49, 6098–6109. [Google Scholar] [CrossRef] [PubMed]
- Bláha, P.; Feoli, C.; Agosteo, S.; Calvaruso, M.; Cammarata, F.P.; Catalano, R.; Ciocca, M.; Cirrone, G.A.P.; Conte, V.; Cuttone, G.; et al. The proton-boron reaction increases the radiobiological effectiveness of clinical low- and high-energy proton beams: Novel experimental evidence and perspectives. Front. Oncol. 2021, 11, 682647. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.H.; Seldon, C.; Butkus, M.; Sauerwein, W.; Giap, H.B. A review of boron neutron capture therapy: Its history and current challenges. Int. J. Part. Ther. 2022, 9, 71–82. [Google Scholar] [CrossRef]
- Kato, I.; Ono, K.; Sakurai, Y.; Ohmae, M.; Maruhashi, A.; Imahori, Y.; Kirihata, M.; Nakazawa, M.; Yura, Y. Effectiveness of BNCT for recurrent head and neck malignancies. Appl. Radiat. Isot. 2004, 61, 1069–1073. [Google Scholar] [CrossRef]
- Nedunchezhian, K.; Aswath, N.; Thiruppathy, M.; Thirugnanamurthy, S. Boron neutron capture therapy—A literature review. J. Clin. Diagn. Res. 2016, 10, ZE01–ZE04. [Google Scholar] [CrossRef]
- Malouff, T.D.; Seneviratne, D.S.; Ebner, D.K.; Stross, W.C.; Waddle, M.R.; Trifiletti, D.M.; Krishnan, S. Boron neutron capture therapy: A review of clinical applications. Front. Oncol. 2021, 11, 601820. [Google Scholar] [CrossRef]
- Donya, H.; Umer, M. Optimization of DD-110 neutron generator output for boron neutron capture therapy using Monte Carlo simulation. Quantum Beam Sci. 2025, 9, 12. [Google Scholar] [CrossRef]
- Barth, R.F.; Zhang, Z.; Liu, T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun. 2018, 38, 36. [Google Scholar] [CrossRef]
- Barth, R.F.; Grecula, J.C. Boron neutron capture therapy at the crossroads—Where do we go from here? Appl. Radiat. Isot. 2020, 160, 09029. [Google Scholar] [CrossRef]
- Dymova, M.A.; Taskaev, S.Y.; Richter, V.A.; Kuligina, E.V. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun. 2020, 40, 406–421. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Li, J.; Jiang, P.; Tian, S.; Wang, H.; Fan, R.; Liu, J.; Yang, Y.; Liu, Z.; Wang, J. The basis and advances in clinical application of boron neutron capture therapy. Radiat. Oncol. 2021, 16, 216. [Google Scholar] [CrossRef] [PubMed]
- Michaelidesová, A.J.; Kundrát, P.; Zahradníček, O.; Danilová, I.; Brabcová, K.P.; Vachelová, J.; Vilimovský, J.; David, M.; Vondráček, V.; Davídková, M. First independent validation of the proton-boron capture therapy concept. Sci. Rep. 2024, 14, 19264. [Google Scholar] [CrossRef]
- Paganetti, H. Proton relative biological effectiveness—Uncertainties and opportunities. Int. J. Part. Ther. 2018, 5, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Nuez-Martínez, M.; Queralt-Martín, M.; Muñoz-Juan, A.; Aguilella, V.M.; Laromaine, A.; Teixidor, F.; Viñas, C.; Pinto, C.G.; Pinheiro, T.; Guerreiro, J.F.; et al. Boron clusters (ferrabisdicarbollides) shaping the future as radiosensitizers for multimodal (chemo/radio/PBFR) therapy of glioblastoma. J. Mater. Chem. B 2022, 10, 9794–9815. [Google Scholar] [CrossRef]
- Monti Hughes, A.; Hu, N. Optimizing boron neutron capture therapy (BNCT) to treat cancer: An updated review on the latest developments on boron compounds and strategies. Cancers 2023, 15, 4091. [Google Scholar] [CrossRef]
- Kaniowski, D.; Ebenryter-Olbińska, K.; Sobczak, M.; Wojtczak, B.; Janczak, S.; Leśnikowski, Z.J.; Nawrot, B. High Boron-loaded DNA-Oligomers as Potential Boron Neutron Capture Therapy and Antisense Oligonucleotide Dual-Action Anticancer Agents. Molecules 2017, 22, 1393. [Google Scholar] [CrossRef]
- Oleshkevich, E.; Morancho, A.; Saha, A.; Galenkamp, K.M.O.; Grayston, A.; Crich, S.G.; Alberti, D.; Protti, N.; Comella, J.X.; Teixidor, F.; et al. Combining magnetic nanoparticles and icosahedral boron clusters in biocompatible inorganic nanohybrids for cancer therapy. Nanomedicine 2019, 20, 101986. [Google Scholar] [CrossRef]
- Hirase, S.; Aoki, A.; Hattori, Y.; Morimoto, K.; Noguchi, K.; Fujii, I.; Takatani-Nakase, T.; Futaki, S.; Kirihata, M.; Nakase, I. Dodecaborate-encapsulated extracellular vesicles with modification of cell-penetrating peptides for enhancing macropinocytotic cellular uptake and biological activity in boron neutron capture therapy. Mol. Pharm. 2022, 19, 1135–1145. [Google Scholar] [CrossRef]
- Ferrer-Ugalde, A.; Muñoz-Juan, A.; Laromaine, A.; Curotto, P.; Nievas, S.; Dagrosa, M.A.; Couto, M.; Núñez, R. Enhancing boron neutron capture therapy (BNCT) with materials based on COSAN-functionalized nanoparticles. Pharmaceuticals 2025, 18, 466. [Google Scholar] [CrossRef]
- Li, X.; He, P.; Wei, Y.; Qu, C.; Tang, F.; Li, Y. Application and perspectives of nanomaterials in boron neutron capture therapy of tumors. Cancer Nano 2025, 16, 25. [Google Scholar] [CrossRef]
- Barth, R.F.; Gupta, N.; Kawabata, S. Evaluation of sodium borocaptate (BSH) and boronophenylalanine (BPA) as boron delivery agents for neutron capture therapy (NCT) of cancer: An update and a guide for the future clinical evaluation of new boron delivery agents for NCT. Cancer Commun. 2024, 44, 893–909. [Google Scholar] [CrossRef]
- Punshon, L.D.; Fabbrizi, M.R.; Phoenix, B.; Green, S.; Parsons, J.L. Current insights into the radiobiology of boron neutron capture therapy and the potential for further improving biological effectiveness. Cells 2024, 13, 2065. [Google Scholar] [CrossRef]
- Marfavi, A.; Kavianpour, P.; Rendina, L.M. Carboranes in drug discovery, chemical biology and molecular imaging. Nat. Rev. Chem. 2022, 6, 486–504. [Google Scholar] [CrossRef] [PubMed]
- Grams, R.J.; Santos, W.L.; Scorei, I.R.; Abad-García, A.; Rosenblum, C.A.; Bita, A.; Cerecetto, H.; Viñas, C.; Soriano-Ursúa, M.A. The rise of boron- containing Compounds: Advancements in synthesis, medicinal chemistry, and emerging pharmacology. Chem. Rev. 2024, 124, 2441–2511. [Google Scholar] [CrossRef] [PubMed]
- Leśnikowski, Z.J.; Ekholm, F.; Hosmane, N.S.; Kellert, M.; Matsuura, E.; Nakamura, H.; Olejniczak, A.B.; Panza, L.; Rendina, L.M.; Sauerwein, W.A.G. Early stage in vitro bioprofiling of potential low-molecular-weight organoboron compounds for boron neutron capture therapy (BNCT)-proposal for a guide. Cells 2024, 13, 798. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Andoh, T.; Kawabata, S.; Hu, N.; Michiue, H.; Nakamura, H.; Nomoto, T.; Suzuki, M.; Takata, T.; Tanaka, H.; et al. Proposal of recommended experimental protocols for in vitro and in vivo evaluation methods of boron agents for neutron capture therapy. J. Radiat. Res. 2023, 64, 859–869. [Google Scholar] [CrossRef]
- Sato, M.; Hirose, K.; Takeno, S.; Aihara, T.; Nihei, K.; Takai, Y.; Hayashi, T.; Bando, K.; Kimura, H.; Tsurumi, K.; et al. Safety of boron neutron capture therapy with borofalan(10B) and its efficacy on recurrent head and neck cancer: Real-world outcomes from nationwide post-marketing surveillance. Cancers 2024, 16, 869. [Google Scholar] [CrossRef]
- Oloo, S.O.; Smith, K.M.; Vicente, M.D.G.H. Multi-functional boron-delivery agents for boron neutron capture therapy of cancers. Cancers 2023, 15, 3277. [Google Scholar] [CrossRef]
- Da Silva, A.F.; Seixas, R.S.; Silva, A.M.; Coimbra, J.; Fernandes, A.C.; Santos, J.P.; Matos, A.; Rino, J.; Santos, I.; Marques, F. Synthesis, characterization and biological evaluation of carboranylmethylbenzo[b]acridones as novel agents for boron neutron capture therapy. Org. Biomol. Chem. 2014, 12, 5201–5211. [Google Scholar] [CrossRef]
- Belchior, A.; Fernandes, A.; Lamotte, M.; da Silva, A.F.; Seixas, R.S.; Silva, A.M.; Marques, F. Exploring the physical and biological aspects of BNCT with a carboranylmethylbenzo[b]acridone compound in U87 glioblastoma cells. Int. J. Mol. Sci. 2022, 23, 14929. [Google Scholar] [CrossRef]
- Fuentes, I.; García-Mendiola, T.; Sato, S.; Pita, M.; Nakamura, H.; Lorenzo, E.; Teixidor, F.; Marques, F.; Viñas, C. Metallacarboranes on the road to anticancer therapies: Cellular uptake, DNA interaction, and biological evaluation of cobaltabisdicarbollide [COSAN]. Chemistry 2018, 24, 17239–17254. [Google Scholar] [CrossRef]
- Nuez-Martinez, M.; Pinto, C.I.G.; Guerreiro, J.F.; Mendes, F.; Marques, F.; Muñoz-Juan, A.; Xavier, J.A.M.; Laromaine, A.; Bitonto, V.; Protti, N.; et al. Cobaltabis(dicarbollide) ([o-COSAN]-]) as multifunctional chemotherapeutics: A prospective application in boron neutron capture therapy (BNCT) for glioblastoma. Cancers 2021, 13, 6367. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, M.A.; Monti Hughes, A.; Trivillin, V.A.; Garabalino, M.A.; Ramos, P.S.; Thorp, S.I.; Curotto, P.; Pozzi, E.C.C.; Nuez Martínez, M.; Teixidor, F.; et al. Cobaltabis(dicarbollide) [o-COSAN]- for boron neutron capture therapy of head and neck cancer: Biodistribution and irradiation studies in an experimental oral cancer model. Pharmaceuticals 2024, 17, 1367. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Du, F.; Tang, L.; Xu, J.; Zhao, Y.; Wu, X.; Li, M.; Shen, J.; Wen, Q.; Cho, C.H.; et al. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol. Ther. Oncolytics. 2022, 24, 400–416. [Google Scholar] [CrossRef] [PubMed]
- Beck-Sickinger, A.G.; Becker, D.P.; Chepurna, O.; Das, B.; Flieger, S.; Hey-Hawkins, E.; Hosmane, N.; Jalisatgi, S.S.; Nakamura, H.; Patil, R.; et al. New boron delivery agents. Cancer Biother. Radiopharm. 2023, 38, 160–172. [Google Scholar] [CrossRef]
- Xu, H.; Liu, J.; Li, R.; Lin, J.; Gui, L.; Wang, Y.; Jin, Z.; Xia, W.; Liu, Y.; Cheng, S.; et al. Novel promising boron agents for boron neutron capture therapy: Current status and outlook on the future. Coord. Chem. Rev. 2024, 511, 215795. [Google Scholar] [CrossRef]
- Chen, K.; Liu, S.; Lv, L.; Tong, J.; Chen, J.; Liang, H.; Wang, Y.; Hu, F.; Liu, Q.; Li, H.; et al. Well-established immunotherapy with R837-loaded boron neutron capture-shocked tumor cells. Nano Today 2023, 52, 10199. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, Z.; Fu, Q.; Shen, X.; Zhang, Z.; Sun, W.; Wang, J.; Sun, J.; Zhang, Z.; Liu, T.; et al. Localized nuclear reaction breaks boron drug capsules loaded with immune adjuvants for cancer immunotherapy. Nat. Commun. 2023, 14, 1884. [Google Scholar] [CrossRef]
- Kaniowski, D.; Suwara, J.; Ebenryter-Olbińska, K.; Jakóbik-Kolon, A.; Nawrot, B. EGFR-Targeted Cellular Delivery of Therapeutic Nucleic Acids Mediated by Boron Clusters. Int. J. Mol. Sci. 2022, 23, 14793. [Google Scholar] [CrossRef]
- Kaniowski, D.; Kulik, K.; Suwara, J.; Ebenryter-Olbińska, K.; Nawrot, B. Boron Clusters as Enhancers of RNase H Activity in the Smart Strategy of Gene Silencing by Antisense Oligonucleotides. Int. J. Mol. Sci. 2022, 23, 12190. [Google Scholar] [CrossRef]
- Sauerwein, W.A.G.; Sancey, L.; Hey-Hawkins, E.; Kellert, M.; Panza, L.; Imperio, D.; Balcerzyk, M.; Rizzo, G.; Scalco, E.; Herrmann, K.; et al. Theranostics in boron neutron capture therapy. Life 2021, 11, 330. [Google Scholar] [CrossRef] [PubMed]
- Tarrés, M.; Viñas, C.; González-Cardoso, P.; Hänninen, M.M.; Sillanpää, R.; Ďorďovič, V.; Uchman, M.; Teixidor, F.; Matějíček, P. Aqueous self-assembly and cation selectivity of cobaltabisdicarbollide dianionic dumbbells. Chem. Eur. J. 2014, 20, 6786–6794. [Google Scholar] [CrossRef] [PubMed]
- Bennour, I.; Ramos, M.N.; Nuez-Martínez, M.; Xavier, J.A.M.; Buades, A.B.; Sillanpää, R.; Teixidor, F.; Choquesillo-Lazarte, D.; Romero, I.; Martinez-Medinad, M.; et al. Water soluble organometallic small molecules as promising antibacterial agents: Synthesis, physical–chemical properties and biological evaluation to tackle bacterial infections. Dalton Trans. 2022, 51, 7188–7209. [Google Scholar] [CrossRef] [PubMed]
- Tarrés, M.; Canetta, E.; Paul, E.; Forbes, J.; Azzouni, K.; Viñas, C.; Teixidor, F.; Harwood, A.J. Biological interaction of living cells with COSAN-based synthetic vesicles. Sci. Rep. 2015, 5, 7804. [Google Scholar] [CrossRef]
- Gutiérrez-Gálvez, L.; García-Mendiola, T.; Lorenzo, E.; Nuez-Martinez, M.; Ocal, C.; Yan, S.; Teixidor, F.; Pinheiro, T.; Marques, F.; Viñas, C. Compelling DNA intercalation through ‘anion-anion’ anti-coulombic interactions: Boron cluster self-vehicles as promising anticancer agents. J. Mater. Chem. B 2024, 12, 9550–9565. [Google Scholar] [CrossRef] [PubMed]
- Belchior, A.; Alves, B.C.; Mendes, E.; Megre, F.; Alves, L.C.; Santos, P.; Nishimura, K.; Nakamura, H.; Teixidor, F.; Viñas, C.; et al. Unravelling physical and radiobiological effects of proton boron fusion reaction with anionic metallacarboranes ([o-COSAN]-) in breast cancer cells. EJNMMI Res. 2025, 15, 13. [Google Scholar] [CrossRef]
- Waks, A.G.; Winer, E.P. Breast cancer treatment: A review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef]
- Agostinetto, E.; Gligorov, J.; Piccart, M. Systemic therapy for early-stage breast cancer: Learning from the past to build the future. Nat. Rev. Clin. Oncol. 2022, 19, 763–774. [Google Scholar] [CrossRef]
- Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 2016, 13, 674–690. [Google Scholar] [CrossRef]
- Seneviratne, D.; Advani, P.; Trifiletti, D.M.; Chumsri, S.; Beltran, C.J.; Bush, A.F.; Vallow, L.A. Exploring the biological and physical basis of boron neutron capture therapy (BNCT) as a promising treatment frontier in breast cancer. Cancers 2022, 14, 3009. [Google Scholar] [CrossRef]
- Yuan, T.Z.; Zhan, Z.J.; Qian, C.N. New frontiers in proton therapy: Applications in cancers. Cancer Commun. 2019, 39, 61. [Google Scholar] [CrossRef]
- Qiao, K.; Wei, Y.; Tao, C.; Zhu, J.; Yuan, S. Proton therapy for breast cancer: Reducing toxicity. Thorac. Cancer. 2024, 15, 2156–2165. [Google Scholar] [CrossRef]
- Kammerer, E.; Guevelou, J.L.; Chaikh, A.; Danhier, S.; Geffrelot, J.; Levy, C.; Saloux, E.; Habrand, J.L.; Thariat, J. Proton therapy for locally advanced breast cancer: A systematic review of the literature. Cancer Treat. Rev. 2018, 63, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Ali, Y.F.; Liu, C.; Wang, Y.; Liu, C.; Jin, X.; Zhou, G.; Liu, N.A. Particle therapy for breast cancer: Benefits and challenges. Front. Oncol. 2021, 11, 662826. [Google Scholar] [CrossRef] [PubMed]
- Lalani, N.; Alqarni, S.; Jimenez, R.B. The potential of proton therapy for locally advanced breast cancer: Clinical and technical considerations. Curr. Oncol. 2023, 30, 2869–2878. [Google Scholar] [CrossRef] [PubMed]
- Mutter, R.W.; Choi, J.I.; Jimenez, R.B.; Kirova, Y.M.; Fagundes, M.; Haffty, B.G.; Amos, R.A.; Bradley, J.A.; Chen, P.Y.; Ding, X.; et al. Proton therapy for breast cancer: A consensus statement from the particle therapy cooperative group breast cancer subcommittee. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 337–359. [Google Scholar] [CrossRef]
- Choi, S.; Dreyfuss, I.; Taswell, C.S.; Cyriac, J.; Butkus, M.; Takita, C. Proton beam therapy for breast cancer. Crit. Rev. Oncog. 2024, 29, 67–82. [Google Scholar] [CrossRef]
- Pinheiro, T.; Alves, L.C.; Matos, A.P.; Correia, I.; Costa Pessoa, J.; Marques, F. Cellular targets of cytotoxic copper phenanthroline complexes: A multimodal imaging quantitative approach in single PC3 cells. Metallomics 2024, 16, mfae051. [Google Scholar] [CrossRef]
- Pinheiro, T.; Alves, L.C.; Corregidor, V.; Teixidor, F.; Vinãs, C.; Marques, F. Metallacarboranes for proton therapy using research accelerators: A pilot study. EPJ Techn. Instrum. 2023, 10, 5. [Google Scholar] [CrossRef]
- Tagliazucchi, M.; Peleg, O.; Kröger, M.; Rabin, Y.; Szleifer, I. Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex. Proc. Natl. Acad. Sci. USA 2013, 110, 3363–3368. [Google Scholar] [CrossRef]
- Malaspina, D.C.; Teixidor, F.; Viñas, C.; Faraudo, J. How a few help all: Cooperative crossing of lipid membranes by COSAN anions. Phys. Chem. Chem. Phys. 2023, 25, 27942–27948. [Google Scholar] [CrossRef] [PubMed]
- Verdiá-Báguena, C.; Alcaraz, A.; Aguilella, V.M.; Cioran, A.M.; Tachikawa, S.; Nakamura, H.; Teixidor, F.; Viñas, C. Amphiphilic COSAN and I2-COSAN crossing synthetic lipid membranes: Planar bilayers and liposomes. Chem. Commun. 2014, 50, 6700–6703. [Google Scholar] [CrossRef] [PubMed]
- Rokitskaya, T.I.; Kosenko, I.D.; Sivaev, I.B.; Antonenko, Y.N.; Bregadze, V.I. Fast flip-flop of halogenated cobalt bis(dicarbollide) anion in a lipid bilayer membrane. Phys. Chem. Chem. Phys. 2017, 19, 25122–25128. [Google Scholar] [CrossRef]
- Marforio, T.D.; Carboni, A.; Calvaresi, M. In vivo application of carboranes for boron neutron capture therapy (BNCT): Structure, formulation and analytical methods for detection. Cancers 2023, 15, 4944. [Google Scholar] [CrossRef]
- Sforzi, J.; Lanfranco, A.; Stefania, R.; Alberti, D.; Bitonto, V.; Parisotto, S.; Renzi, P.; Protti, N.; Altieri, S.; Deagostino, A.; et al. A novel pH sensitive theranostic PLGA nanoparticle for boron neutron capture therapy in mesothelioma treatment. Sci. Rep. 2023, 13, 620. [Google Scholar] [CrossRef]
- Bortolussi, S.; Protti, N.; Ferrari, M.; Postuma, I.; Fatemi, S.; Prata, M.; Ballarini, F.; Carante, M.P.; Farias, R.; González, S.J.; et al. Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2018, 414, 113–120. [Google Scholar] [CrossRef]
- Buch, K.; Peters, T.; Nawroth, T.; Sänger, M.; Schmidberger, H.; Langguth, P. Determination of cell survival after irradiation via clonogenic assay versus multiple MTT assay- a comparative study. Radiat. Oncol. 2012, 7, 1. [Google Scholar] [CrossRef]
- Zheng, Z.; Su, J.; Bao, X.; Wang, H.; Bian, C.; Zhao, Q.; Jiang, X. Mechanisms and applications of radiation-induced oxidative stress in regulating cancer immunotherapy. Front. Immunol. 2023, 14, 1247268. [Google Scholar] [CrossRef]
- McMahon, S.J.; Prise, K.M. A Mechanistic DNA Repair and Survival Model (Medras): Applications to Intrinsic Radiosensitivity, Relative Biological Effectiveness and Dose-Rate. Front. Oncol. 2021, 11, 689112. [Google Scholar] [CrossRef]
- Tran, H.N.; Karamitros, M.; Ivanchenko, V.N.; Guatelli, S.; McKinnon, S.; Murakami, K.; Sasaki, T.; Okada, S.; Bordage, M.C.; Francis, Z.; et al. Nucl. Geant4 Monte Carlo simulation of absorbed dose and radiolysis yields enhancement from a gold nanoparticle under MeV proton irradiation. Instrum. Methods Phys. Res. B 2016, 373, 126–139. [Google Scholar] [CrossRef]
- Mazzone, A.; Finocchiaro, P.; Lo Meo, S.; Colonna, N. On the (un)effectiveness of proton boron capture in proton therapy. Eur. Phys. J. Plus 2019, 134, 361. [Google Scholar] [CrossRef]
- Shahmohammadi, B.M.; Islam, M.R.; Kim, K.M.; Krstic, D.; Nikezic, D.; Yu, K.N.; Watabe, H. On the effectiveness of proton boron fusion therapy (PBFT) at cellular level. Sci. Rep. 2022, 12, 18098. [Google Scholar] [CrossRef] [PubMed]
- García-Mendiola, T.; Bayon-Pizarro, V.; Zaulet, A.; Fuentes, I.; Pariente, F.; Teixidor, F.; Viñas, C.; Lorenzo, E. Metallacarboranes as tunable redox potential electrochemical indicators for screening of gene mutation. Chem. Sci. 2016, 7, 5786–5797. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, M.F.; Young, D.C.; Wegner, P.A. The electronic properties of the 1,2- and 1,7-dicarbaclovododecaborane(12) groups bonded at carbon. J. Am. Chem. Soc. 1965, 87, 4746–4750. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.P.; Pinheiro, T.; Martins, M.S.; Carvalho, M.F.N.N.; Feliciano, J.; Leitão, J.H.; Silva, R.A.L.; Guerreiro, J.F.; Alves, L.M.C.; Custódio, I.; et al. Tuning the Biological Activity of Camphorimine Complexes through Metal Selection. Antibiotics 2022, 11, 1010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Côrte-Real, L.; Matos, A.P.; Alho, I.; Morais, T.S.; Tomaz, A.I.; Garcia, M.H.; Santos, I.; Bicho, M.P.; Marques, F. Cellular Uptake Mechanisms of an Antitumor Ruthenium Compound: The Endosomal/Lysosomal System as a Target for Anticancer Metal-Based Drugs. Microsc. Microanal. 2013, 19, 1122–1130. [Google Scholar] [CrossRef]
- Gabel, D.; Foster, S.; Fairchild, R.G. The Monte Carlo simulation of the biological effect of the 10B(n, alpha)7Li reaction in cells and tissue and its implication for boron neutron capture therapy. Radiat. Res. 1987, 111, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Goorley, J.T.; James, M.R.; Booth, T.E.; Brown, F.B.; Bull, J.S.; Cox, L.J.; Durkee, J.W.J.; Elson, J.S.; Fensin, M.L.; Forster, I.R.; et al. Initial MCNP6 Release Overview—MCNP6 Version 1.0; Los Alamos National Laboratory Report, LA-UR-13-22934; National Laboratory: Los Alamos, NM, USA, 2013. [Google Scholar]
- Goddu, S.M.; Howell, R.W.; Rao, D.V. Cellular dosimetry: Absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments. J. Nucl. Med. 1994, 35, 303–316. [Google Scholar] [PubMed]
- Di Maria, S.; Belchior, A.; Romanets, Y.; Paulo, A.; Vaz, P. Monte Carlo dose distribution calculation at nuclear level for Auger-emitting radionuclide energies. Appl. Radiat. Isot. 2018, 135, 72–77. [Google Scholar] [CrossRef]
- Chiesa, C.; Bardiès, M.; Zaidi, H. Voxel-based dosimetry is superior to mean absorbed dose approach for establishing dose-effect relationship in targeted radionuclide therapy. Med. Phys. 2019, 46, 5403–5406. [Google Scholar] [CrossRef]
- Li, W.B.; Belchior, A.; Beuve, M.; Chen, Y.Z.; Di Maria, S.; Friedland, W.; Gervais, B.; Heide, B.; Hocine, N.; Ipatov, A.; et al. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Phys. Med. 2020, 69, 147–163. [Google Scholar] [CrossRef]
SKBR-3 | MDA-MB-231 | ||
---|---|---|---|
B/Fe | B/Fe | ||
Nucleus | Cytoplasm | Nucleus | Cytoplasm |
2.9 | 2.8 | 2.7 | 2.8 |
Cell Line | Na[o-FESAN] (µM) | B ng/106 Cells | 10B ppm |
---|---|---|---|
MDA-MB-231 | 50 | 310 ± 87 | 6.2 ± 1.7 |
MDA-MB-231 | 100 | 406 ± 113 | 8.1 ± 2.2 |
SKBR-3 | 50 | 303 ± 73 | 6.0 ± 1.3 |
SKBR-3 | 100 | 475 ± 114 | 9.4 ± 2.2 |
Radiation Contribution | Dose (Gy) 6.0 ppm | % Dose | Dose (Gy) 6.2 ppm | % Dose | Dose (Gy) 8.1 ppm | % Dose | Dose (Gy) 9.5 ppm | % Dose |
---|---|---|---|---|---|---|---|---|
10B (94%) | 0.865 | 54 | 0.894 | 54 | 1.17 | 60 | 1.37 | 64 |
10B (6%) | 0.066 | 4 | 0.068 | 4 | 0.089 | 5 | 0.105 | 5 |
10B Tot | 0.931 | 58 | 0.962 | 59 | 1.259 | 65 | 1.475 | 68 |
14N | 0.323 | 20 | 0.323 | 20 | 0.323 | 17 | 0.323 | 15 |
H scatt | 0.081 | 5 | 0.081 | 5 | 0.081 | 4 | 0.081 | 4 |
Total p | 0.404 | 25 | 0.404 | 25 | 0.404 | 21 | 0.404 | 19 |
2.2 MeV γ | 0.163 | 10 | 0.163 | 10 | 0.163 | 8 | 0.163 | 8 |
478 keV γ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
γ background | 0.113 | 7 | 0.113 | 7 | 0.113 | 6 | 0.113 | 5 |
Total γ | 0.276 | 17 | 0.276 | 17 | 0.276 | 14 | 0.276 | 13 |
TOTAL | 1.611 | 1.642 | 1.939 | 2.155 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Maria, S.; Pinheiro, T.; Alves, L.C.; Bitonto, V.; Protti, N.; Crich, S.G.; Nishimura, K.; Nakamura, H.; Matos, A.P.; Pinto, C.I.G.; et al. Assessment of Carrier-Free Metallacarboranes for Targeted Radiation Therapies PBFT and BNCT: Comparative Cellular Effects and Dosimetry Studies with [o-FESAN]− in Breast Cancer Cells. Pharmaceuticals 2025, 18, 1491. https://doi.org/10.3390/ph18101491
Di Maria S, Pinheiro T, Alves LC, Bitonto V, Protti N, Crich SG, Nishimura K, Nakamura H, Matos AP, Pinto CIG, et al. Assessment of Carrier-Free Metallacarboranes for Targeted Radiation Therapies PBFT and BNCT: Comparative Cellular Effects and Dosimetry Studies with [o-FESAN]− in Breast Cancer Cells. Pharmaceuticals. 2025; 18(10):1491. https://doi.org/10.3390/ph18101491
Chicago/Turabian StyleDi Maria, Salvatore, Teresa Pinheiro, Luís Cerqueira Alves, Valeria Bitonto, Nicoletta Protti, Simonetta Geninatti Crich, Kai Nishimura, Hiroyuki Nakamura, António P. Matos, Catarina I. G. Pinto, and et al. 2025. "Assessment of Carrier-Free Metallacarboranes for Targeted Radiation Therapies PBFT and BNCT: Comparative Cellular Effects and Dosimetry Studies with [o-FESAN]− in Breast Cancer Cells" Pharmaceuticals 18, no. 10: 1491. https://doi.org/10.3390/ph18101491
APA StyleDi Maria, S., Pinheiro, T., Alves, L. C., Bitonto, V., Protti, N., Crich, S. G., Nishimura, K., Nakamura, H., Matos, A. P., Pinto, C. I. G., Mendes, F., Teixidor, F., Viñas, C., & Marques, F. (2025). Assessment of Carrier-Free Metallacarboranes for Targeted Radiation Therapies PBFT and BNCT: Comparative Cellular Effects and Dosimetry Studies with [o-FESAN]− in Breast Cancer Cells. Pharmaceuticals, 18(10), 1491. https://doi.org/10.3390/ph18101491