Computational Investigation of the Potential Antileishmanial Mechanism of the Nitroindazole Derivative VATR131
Abstract
1. Introduction
2. Results
2.1. In Vitro Evaluation
2.2. Overview of Modeling Studies
2.3. Target Fishing and Homology Models
2.4. Molecular Docking
2.5. Molecular Dynamics Simulations
3. Discussion
4. Materials and Methods
4.1. Experimental Methods
4.1.1. Chemistry
4.1.2. Parasites
4.1.3. Susceptibility Assay in Promastigotes
4.1.4. Peritoneal Macrophage Extraction
4.1.5. Cytotoxicity in Mouse Peritoneal Macrophages
4.1.6. Intracellular Amastigote Assay
4.2. Computational Methods
4.2.1. Target Selection
4.2.2. Molecular Docking
4.2.3. Molecular Dynamics Simulations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez, J. Snakebite Envenomation as a Neglected Tropical Disease. New Impetus for Confronting an Old Scourge. In Handbook of Venoms and Toxins of Reptiles, 2nd ed.; Mackessy, S.P., Ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 471–483. ISBN 978-0-367-14974-1. [Google Scholar]
- Jayashankar, C.A.; Kandi, V.; Girish, N.; Sanjana, K.; Dharshini, D.; Batchu, S.V.C.; Bhanu, P.; Girish, N.; Divyadharshini, M.S. Neglected Tropical Diseases: A Comprehensive Review. Cureus 2024, 16, e53933. [Google Scholar] [CrossRef]
- Chippaux, J.-P. Snakebite Envenomation Turns Again into a Neglected Tropical Disease! J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 38. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Warrell, D.A.; Williams, D.J.; Jensen, S.; Brown, N.; Calvete, J.J.; Harrison, R.A. The Need for Full Integration of Snakebite Envenoming within a Global Strategy to Combat the Neglected Tropical Diseases: The Way Forward. PLoS Negl. Trop. Dis. 2013, 7, e2162. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Report on Neglected Tropical Diseases; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; Boer, M. den Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef]
- Pigott, D.M.; Bhatt, S.; Golding, N.; Duda, K.A.; Battle, K.E.; Brady, O.J.; Messina, J.P.; Balard, Y.; Bastien, P.; Pratlong, F.; et al. Global Distribution Maps of the Leishmaniases. eLife 2014, 3, e02851. [Google Scholar] [CrossRef]
- Pinheiro, A.C.; de Souza, M.V.N. Current Leishmaniasis Drug Discovery. RSC Med. Chem. 2022, 13, 1029–1043. [Google Scholar] [CrossRef]
- Bhusal, C.K.; Sinha, S.; Kaur, D.; Sehgal, R. Unravelling Drug Resistance in Leishmaniasis: Genomic Adaptations and Emerging Therapies. Front. Mol. Biosci. 2025, 12, 1573618. [Google Scholar] [CrossRef] [PubMed]
- Majoor, A.; Michel, G.; Marty, P.; Boyer, L.; Pomares, C. Leishmaniases: Strategies in Treatment Development. Parasite 2025, 32, 18. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; Singh, A. Chemotherapeutics of Visceral Leishmaniasis: Present and Future Developments. Parasitology 2018, 145, 481–489. [Google Scholar] [CrossRef]
- Sindermann, H.; Croft, S.L.; Engel, K.R.; Bommer, W.; Eibl, H.J.; Unger, C.; Engel, J. Miltefosine (Impavido): The First Oral Treatment against Leishmaniasis. Med. Microbiol. Immunol. 2004, 193, 173–180. [Google Scholar] [CrossRef]
- Pandey, K.; Pal, B.; Siddiqui, N.A.; Das, V.N.R.; Murti, K.; Lal, C.S.; Verma, N.; Babu, R.; Ali, V.; Kumar, R.; et al. Efficacy and Safety of Liposomal Amphotericin B for Visceral Leishmaniasis in Children and Adolescents at a Tertiary Care Center in Bihar, India. Am. J. Trop. Med. Hyg. 2017, 97, 1498–1502. [Google Scholar] [CrossRef]
- Sangshetti, J.N.; Khan, F.A.K.; Kulkarni, A.A.; Arote, R.; Patil, R.H. Antileishmanial Drug Discovery: Comprehensive Review of the Last 10 Years. RSC Adv. 2015, 5, 32376–32415. [Google Scholar] [CrossRef]
- Fonseca-Berzal, C.; Ibáñez-Escribano, A.; Vela, N.; Cumella, J.; Nogal-Ruiz, J.J.; Escario, J.A.; da Silva, P.B.; Batista, M.M.; de Nazaré C Soeiro, M.; Sifontes-Rodríguez, S.; et al. Antichagasic, Leishmanicidal, and Trichomonacidal Activity of 2-Benzyl-5-Nitroindazole-Derived Amines. ChemMedChem 2018, 13, 1246–1259. [Google Scholar] [CrossRef]
- Mollineda-Diogo, N.; de Oca, C.S.C.-M.; Sifontes-Rodríguez, S.; Espinosa-Buitrago, T.; Monzote-Fidalgo, L.; Meneses-Marcel, A.; Morales-Helguera, A.; Perez-Castillo, Y.; Arán-Redó, V. Antileishmanial Activity of 5-Nitroindazole Derivatives. Ther. Adv. Infect. Dis. 2023, 10, 20499361231208296. [Google Scholar] [CrossRef]
- Mollineda-Diogo, N.; Sifontes-Rodríguez, S.; Aguirre-García, M.M.; Escalona-Montaño, A.R.; Espinosa-Buitrago, T.; Mondragón-Flores, R.; Mondragón-Castelán, M.E.; Meneses-Marcel, A.; Pérez-Olvera, O.; Sánchez-Almaraz, D.A.; et al. 3-Alkoxy-1-Benzyl-5-Nitroindazole Derivatives Are Potent Antileishmanial Compounds. Int. J. Mol. Sci. 2024, 25, 10582. [Google Scholar] [CrossRef] [PubMed]
- Ahamad, S.; Kanipakam, H.; Kumar, V.; Gupta, D. A Molecular Journey to Check the Conformational Dynamics of Tau Tubulin Kinase 2 Mutations Associated with Alzheimer’s Disease. RSC Adv. 2021, 11, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Ahamad, S.; Hema, K.; Gupta, D. Identification of Novel Tau-Tubulin Kinase 2 Inhibitors Using Computational Approaches. ACS Omega 2023, 8, 13026–13037. [Google Scholar] [CrossRef]
- Ahamad, S.; Junaid, I.T.; Gupta, D. Computational Design of Novel Tau-Tubulin Kinase 1 Inhibitors for Neurodegenerative Diseases. Pharmaceuticals 2024, 17, 952. [Google Scholar] [CrossRef] [PubMed]
- Steverding, D.; do Nascimento, L.G.; Perez-Castillo, Y.; de Sousa, D.P. Gallic Acid Alkyl Esters: Trypanocidal and Leishmanicidal Activity, and Target Identification via Modeling Studies. Molecules 2022, 27, 5876. [Google Scholar] [CrossRef]
- Peitl, B.; Kovács, D.; Simon, Z.; Hári, P.; Málnási-Csizmadia, A.; Drimba, L.; Németh, J.; Sári, R.; Szilvássy, Z.; Hegedűs, C. Identification of PPARγ Ligands with One-Dimensional Drug Profile Matching. Drug Des. Devel Ther. 2013, 7, 917–928. [Google Scholar] [CrossRef]
- Cheng, F.; Liu, C.; Jiang, J.; Lu, W.; Li, W.; Liu, G.; Zhou, W.; Huang, J.; Tang, Y. Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference. PLoS Comput. Biol. 2012, 8, e1002503. [Google Scholar] [CrossRef]
- Katsila, T.; Spyroulias, G.A.; Patrinos, G.P.; Matsoukas, M.-T. Computational Approaches in Target Identification and Drug Discovery. Comput. Struct. Biotechnol. J. 2016, 14, 177–184. [Google Scholar] [CrossRef]
- Galati, S.; Di Stefano, M.; Martinelli, E.; Poli, G.; Tuccinardi, T. Recent Advances in In Silico Target Fishing. Molecules 2021, 26, 5124. [Google Scholar] [CrossRef] [PubMed]
- Cereto-Massagué, A.; Ojeda, M.J.; Valls, C.; Mulero, M.; Pujadas, G.; Garcia-Vallve, S. Tools for in Silico Target Fishing. Methods 2015, 71, 98–103. [Google Scholar] [CrossRef]
- Sakano, T.; Mahamood, M.I.; Yamashita, T.; Fujitani, H. Molecular Dynamics Analysis to Evaluate Docking Pose Prediction. Biophys. Physicobiol. 2016, 13, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. [Google Scholar] [CrossRef]
- Wang, J.; Morin, P.; Wang, W.; Kollman, P.A. Use of MM-PBSA in Reproducing the Binding Free Energies to HIV-1 RT of TIBO Derivatives and Predicting the Binding Mode to HIV-1 RT of Efavirenz by Docking and MM-PBSA. J. Am. Chem. Soc. 2001, 123, 5221–5230. [Google Scholar] [CrossRef] [PubMed]
- Bilbao-Ramos, P.; Sifontes-Rodríguez, S.; Dea-Ayuela, M.A.; Bolás-Fernández, F. A Fluorometric Method for Evaluation of Pharmacological Activity against Intracellular Leishmania Amastigotes. J. Microbiol. Methods 2012, 89, 8–11. [Google Scholar] [CrossRef]
- Shmueli, M.; Ben-Shimol, S. Review of Leishmaniasis Treatment: Can We See the Forest through the Trees? Pharmacy 2024, 12, 30. [Google Scholar] [CrossRef]
- Tu Quyen, L.T.; Tung, B.N.; Thach, P.N.; Tri, N.N.; Trung, N.T. Characteristics of Nonconventional Hydrogen Bonds and Stability of Dimers of Chalcogenoaldehyde Derivatives: A Noticeable Role of Oxygen Compared to Other Chalcogens. RSC Adv. 2024, 14, 14114–14125. [Google Scholar] [CrossRef]
- Macaveiu, L.; Göbel, M.; Klapötke, T.M.; Murray, J.S.; Politzer, P. The Unique Role of the Nitro Group in Intramolecular Interactions: Chloronitromethanes. Struct. Chem. 2010, 21, 139–146. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S. Σ-holes and Π-holes: Similarities and Differences. J. Comput. Chem. 2018, 39, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Balaji, P.V. C-H…pi Interactions in Proteins: Prevalence, Pattern of Occurrence, Residue Propensities, Location, and Contribution to Protein Stability. J. Mol. Model. 2014, 20, 2136. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, R.; Murugan Sreedevi, S.; Ravichandran, K.; Vinod, S.M.; Hari Krishnan, Y.; Babu, L.K.; Parthiban, P.S.; Basker, L.; Perumal, T.; Rajaraman, V.; et al. Molecular Docking Approach on the Binding Stability of Derivatives of Phenolic Acids (DPAs) with Human Serum Albumin (HSA): Hydrogen-Bonding versus Hydrophobic Interactions or Combined Influences? JCIS Open 2023, 12, 100096. [Google Scholar] [CrossRef]
- Alexander, J.; Coombs, G.H.; Mottram, J.C. Leishmania Mexicana Cysteine Proteinase-Deficient Mutants Have Attenuated Virulence for Mice and Potentiate a Th1 Response. J. Immunol. 1998, 161, 6794–6801. [Google Scholar] [CrossRef]
- Mottram, J.C.; Coombs, G.H.; Alexander, J. Cysteine Peptidases as Virulence Factors of Leishmania. Curr. Opin. Microbiol. 2004, 7, 375–381. [Google Scholar] [CrossRef]
- Williams, R.A.; Tetley, L.; Mottram, J.C.; Coombs, G.H. Cysteine Peptidases CPA and CPB Are Vital for Autophagy and Differentiation in Leishmania mexicana. Mol. Microbiol. 2006, 61, 655–674. [Google Scholar] [CrossRef]
- Doroud, D.; Zahedifard, F.; Vatanara, A.; Taslimi, Y.; Vahabpour, R.; Torkashvand, F.; Vaziri, B.; Rouholamini Najafabadi, A.; Rafati, S. C-Terminal Domain Deletion Enhances the Protective Activity of Cpa/Cpb Loaded Solid Lipid Nanoparticles against Leishmania Major in BALB/c Mice. PLoS Negl. Trop. Dis. 2011, 5, e1236. [Google Scholar] [CrossRef]
- Rana, S.; Mahato, J.P.; Kumar, M.; Sarsaiya, S. Modeling and Docking of Cysteine Protease-A (CPA) of Leishmania Donovani. J. Appl. Pharm. Sci. 2017, 7, 179–184. [Google Scholar] [CrossRef]
- Denise, H.; Poot, J.; Jiménez, M.; Ambit, A.; Herrmann, D.C.; Vermeulen, A.N.; Coombs, G.H.; Mottram, J.C. Studies on the CPA Cysteine Peptidase in the Leishmania Infantum Genome Strain JPCM5. BMC Mol. Biol. 2006, 7, 42. [Google Scholar] [CrossRef]
- Sanderson, S.J.; Pollock, K.G.J.; Hilley, J.D.; Meldal, M.; Hilaire, P.S.; Juliano, M.A.; Juliano, L.; Mottram, J.C.; Coombs, G.H. Expression and Characterization of a Recombinant Cysteine Proteinase of Leishmania Mexicana. Biochem. J. 2000, 347, 383–388. [Google Scholar] [CrossRef]
- Sajid, M.; McKerrow, J.H. Cysteine Proteases of Parasitic Organisms. Mol. Biochem. Parasitol. 2002, 120, 1–21. [Google Scholar] [CrossRef]
- Mottram, J.C.; Frame, M.J.; Brooks, D.R.; Tetley, L.; Hutchison, J.E.; Souza, A.E.; Coombs, G.H. The Multiple Cpb Cysteine Proteinase Genes OfLeishmania Mexicana Encode Isoenzymes That Differ in Their Stage Regulation and Substrate Preferences. J. Biol. Chem. 1997, 272, 14285–14293. [Google Scholar] [CrossRef] [PubMed]
- Selzer, P.M.; Pingel, S.; Hsieh, I.; Ugele, B.; Chan, V.J.; Engel, J.C.; Bogyo, M.; Russell, D.G.; Sakanari, J.A.; McKerrow, J.H. Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target. Proc. Natl. Acad. Sci. USA 1999, 96, 11015–11022. [Google Scholar] [CrossRef] [PubMed]
- Bryson, K.; Besteiro, S.; McGachy, H.A.; Coombs, G.H.; Mottram, J.C.; Alexander, J. Overexpression of the Natural Inhibitor of Cysteine Peptidases in Leishmania mexicana Leads to Reduced Virulence and a Th1 Response. Infect. Immun. 2009, 77, 2971–2978. [Google Scholar] [CrossRef]
- Engel, J.C.; Doyle, P.S.; Palmer, J.; Hsieh, I.; Bainton, D.F.; McKerrow, J.H. Cysteine Protease Inhibitors Alter Golgi Complex Ultrastructure and Function in Trypanosoma cruzi. J. Cell Sci. 1998, 111, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Engel, J.C.; Doyle, P.S.; Hsieh, I.; McKerrow, J.H. Cysteine Protease Inhibitors Cure an Experimental Trypanosoma cruzi Infection. J. Exp. Med. 1998, 188, 725–734. [Google Scholar] [CrossRef]
- Sifontes-Rodríguez, S.; Mollineda-Diogo, N.; Monzote-Fidalgo, L.; Escalona-Montaño, A.R.; Escario García-Trevijano, J.A.; Aguirre-García, M.M.; Meneses-Marcel, A. In Vitro and In Vivo Antileishmanial Activity of Thioridazine. Acta Parasitol. 2024, 69, 324–331. [Google Scholar] [CrossRef]
- Rolón, M.; Vega, C.; Escario, J.A.; Gómez-Barrio, A. Development of Resazurin Microtiter Assay for Drug Sensibility Testing of Trypanosoma cruzi Epimastigotes. Parasitol. Res. 2006, 99, 103–107. [Google Scholar] [CrossRef]
- Bodley, A.L.; McGarry, M.W.; Shapiro, T.A. Drug Cytotoxicity Assay for African Trypanosomes and Leishmania Species. J. Infect. Dis. 1995, 172, 1157–1159. [Google Scholar] [CrossRef]
- Lopes, S.P.; Yepes, L.M.; Pérez-Castillo, Y.; Robledo, S.M.; de Sousa, D.P. Alkyl and Aryl Derivatives Based on P-Coumaric Acid Modification and Inhibitory Action against Leishmania braziliensis and Plasmodium falciparum. Molecules 2020, 25, 3178. [Google Scholar] [CrossRef]
- Perez-Castillo, Y.; Montes, R.C.; da Silva, C.R.; de Andrade Neto, J.B.; da Silva Dias, C.; Duarte, A.B.S.; Júnior, H.V.N.; de Sousa, D.P. Antifungal Activity of N-(4-Halobenzyl)Amides against Candida Spp. and Molecular Modeling Studies. Int. J. Mol. Sci. 2022, 23, 419. [Google Scholar] [CrossRef]
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating Protein Pharmacology by Ligand Chemistry. Nat. Biotechnol. 2007, 25, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, P.C.D.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 2010, 50, 572–584. [Google Scholar] [CrossRef] [PubMed]
- OpenEye Scientific Software QUACPAC; Version 2.2.5; OpenEye Scientific: Santa Fe, NM, USA, 2024.
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- BIOVIA. BIOVIA Discovery Studio, Version 24.1.0; Dassault Systèmes: Vélizy-Villacoublay, France, 2024. [Google Scholar]
- Schrödinger, Inc. The PyMOL Molecular Graphics System, Version 2.6.2; Schrödinger, Inc.: Washington, DC, USA, 2015. [Google Scholar]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Cerutti, D.S.; Cisneros, G.A.; Cruzeiro, V.W.D.; Forouzesh, N.; Giese, T.J.; Götz, A.W.; Gohlke, H.; et al. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. [Google Scholar] [CrossRef]
- Lopes, S.P.; Castillo, Y.P.; Monteiro, M.L.; de Menezes, R.R.P.P.B.; Almeida, R.N.; Martins, A.M.C.; de Sousa, D.P. Trypanocidal Mechanism of Action and in Silico Studies of P-Coumaric Acid Derivatives. Int. J. Mol. Sci. 2019, 20, 5916. [Google Scholar] [CrossRef]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.Py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef] [PubMed]
- Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef] [PubMed]
Promastigotes | Amastigotes | CC50 ± SD (µM) | |||
---|---|---|---|---|---|
Compound | IC50 ± SD (µM) | SI | IC50 ± SD (µM) | SI | |
VATR131 | 11.35 ± 1.04 | 35 | 10.31 ± 1.4 | 39 | 402.6 ± 13.4 |
AmB | 0.28± 0.01 | 21 | 0.6 ± 0.21 | 10 |
UniProtKB Entry Name | Target ID (a) | Description | PDB Template | Coverage (b) | QMEANDisCo | QMEAN Z-Scores | GMQE (c) | Sequence Identity (%) |
---|---|---|---|---|---|---|---|---|
A0A6L0WJ22_LEIIN | CPB | Cathepsin L protease | 7AVM | 0.70 | 0.80 ± 0.05 | −1.33 | 0.58 | 52.6 |
A4HXY2_LEIIN | PKAC1 | cAMP-dependent protein kinase | 6F14 | 0.90 | 0.83 ± 0.05 | −1.00 | 0.79 | 50.79 |
A4HYH2_LEIIN | CPA | Cysteine peptidase A | 7AVM | 0.86 | 0.77 ± 0.05 | −2.06 | 0.73 | 48.69 |
A4I342_LEIIN | AKR | Aldose reductase | 2PDF | 0.84 | 0.71 ± 0.05 | −1.67 | 0.66 | 38.59 |
A4I5W0_LEIIN | HSP60 | Chaperonin HSP60 | 4V4O | 0.97 | 0.73 ± 0.05 | −1.30 | 0.75 | 39.46 |
A4I6Z4_LEIIN | PGFS | Prostaglandin f2-alpha synthase | 4F40 | 1.00 | 0.93 ± 0.05 | 0.03 | 0.97 | 95.42 |
A4I7L0_LEIIN | PGFS2 | Prostaglandin F synthase | 4GIE | 0.96 | 0.85 ± 0.05 | 0.17 | 0.88 | 58.52 |
A4I800_LEIIN | HSP60-1 | Chaperonin HSP60 | 4V4O | 0.89 | 0.76 ± 0.05 | −0.96 | 0.73 | 50.94 |
A4IBT4_LEIIN | PKA | Protein kinase A | 3OVV | 0.83 | 0.80 ± 0.05 | −0.86 | 0.72 | 52.52 |
A4IDH4_LEIIN | HSP60-2 | Chaperonin HSP60 | 4V4O | 0.94 | 0.76 ± 0.05 | −0.58 | 0.77 | 48.59 |
A4IDH5_LEIIN | HSP60-3 | Chaperonin HSP60 | 5OPX | 0.97 | 0.76 ± 0.05 | −0.49 | 0.78 | 50.73 |
Target ID | Score (kcal/mol) | Median Score (kcal/mol) | Standard Deviation (kcal/mol) |
---|---|---|---|
CPB | −6.34 | −6.19 | 0.28 |
PKAC1 | −8.17 | −8.19 | 0.19 |
CPA | −5.78 | −5.96 | 0.14 |
AKR | −7.17 | −7.15 | 0.15 |
HSP60 | −7.76 | −7.56 | 0.18 |
PGFS | −7.30 | −7.37 | 0.13 |
PGFS2 | −6.97 | −7.08 | 0.12 |
HSP60-1 | −8.60 | −8.76 | 0.30 |
PKA | −8.64 | −8.65 | 0.28 |
HSP60-2 | −9.19 | −9.37 | 0.36 |
HSP60-3 | −9.19 | −9.22 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casanova-Alvarez, O.; Mollineda-Diogo, N.; Morales-Helguera, A.; Arán-Redó, V.; Molina-Ruiz, R.; Sánchez-Cruz, N.; Velásquez-López, Y.; Perez-Castillo, Y. Computational Investigation of the Potential Antileishmanial Mechanism of the Nitroindazole Derivative VATR131. Pharmaceuticals 2025, 18, 1489. https://doi.org/10.3390/ph18101489
Casanova-Alvarez O, Mollineda-Diogo N, Morales-Helguera A, Arán-Redó V, Molina-Ruiz R, Sánchez-Cruz N, Velásquez-López Y, Perez-Castillo Y. Computational Investigation of the Potential Antileishmanial Mechanism of the Nitroindazole Derivative VATR131. Pharmaceuticals. 2025; 18(10):1489. https://doi.org/10.3390/ph18101489
Chicago/Turabian StyleCasanova-Alvarez, Omar, Niurka Mollineda-Diogo, Aliuska Morales-Helguera, Vicente Arán-Redó, Reinaldo Molina-Ruiz, Norberto Sánchez-Cruz, Yendrek Velásquez-López, and Yunierkis Perez-Castillo. 2025. "Computational Investigation of the Potential Antileishmanial Mechanism of the Nitroindazole Derivative VATR131" Pharmaceuticals 18, no. 10: 1489. https://doi.org/10.3390/ph18101489
APA StyleCasanova-Alvarez, O., Mollineda-Diogo, N., Morales-Helguera, A., Arán-Redó, V., Molina-Ruiz, R., Sánchez-Cruz, N., Velásquez-López, Y., & Perez-Castillo, Y. (2025). Computational Investigation of the Potential Antileishmanial Mechanism of the Nitroindazole Derivative VATR131. Pharmaceuticals, 18(10), 1489. https://doi.org/10.3390/ph18101489