Acute and Subchronic Exposure to Hemp (Cannabis sativa L.) Leaf Oil: Impacts on Vital Organs in Sprague-Dawley Rats
Abstract
1. Introduction
2. Results
2.1. Effects of HLO on Mortality, General Appearance, and Neurobehavior of Sprague-Dawley Rats
2.2. Effects of HLO on Body Weight, Food Intake and Water Consumption in Sprague-Dawley Rats
2.3. Effects of HLO on the Vital Organ Weight of Sprague-Dawley Rats
2.4. Effects of HLO on Blood Pressure and Heart Rate of Sprague-Dawley Rats
2.5. Effects of HLO on Biochemical Parameters of Sprague-Dawley Rats
2.6. Effects of HLO on Macroscopic Lesions and Histopathology of Sprague-Dawley Rats
3. Discussion
4. Materials and Methods
4.1. The Preparation Process of Hemp Leaf Oil
4.2. Experimental Animals
4.3. Treatments
4.4. General Assessments, Body Weight, Food Intake and Water Consumption Determination
4.5. Indirect Blood Pressure Measurement
4.6. Biochemical Analysis
4.7. Histological Analysis
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HLO | Hemp leaf oil |
THC | Tetrahydrocannabinol |
CBD | Cannabidiol |
BAM | Bacteriological Analytical Manual |
FDA | Food and Drug Administration |
HPLC | High Performance Liquid Chromatography |
References
- Ranalli, P.; Venturi, G. Hemp as a raw material for industrial applications. Euphytica 2004, 140, 1–6. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Davis, A.; Kumar, S.K.; Murray, B.; Zheljazkov, V.D. Industrial Hemp (Cannabis sativa subsp. sativa) as an Emerging Source for Value-Added Functional Food Ingredients and Nutraceuticals. Molecules 2020, 25, 4078. [Google Scholar] [CrossRef]
- Shin, J.; Choi, S.; Park, A.Y.; Ju, S.; Kweon, B.; Kim, D.-U.; Bae, G.-S.; Han, D.; Kwon, E.; Hong, J.; et al. In Vitro and In Vivo Anti-Inflammatory and Antidepressant-like Effects of Cannabis sativa L. Extracts. Plants 2024, 13, 1619. [Google Scholar] [CrossRef]
- Cantele, C.; Bertolino, M.; Bakro, F.; Giordano, M.; Jedryczka, M.; Cardenia, V. Antioxidant Effects of Hemp (Cannabis sativa L.) Inflorescence Extract in Stripped Linseed Oil. Antioxidants 2020, 9, 1131. [Google Scholar] [CrossRef]
- Martinez Naya, N.; Kelly, J.; Corna, G.; Golino, M.; Abbate, A.; Toldo, S. Molecular and Cellular Mechanisms of Action of Cannabidiol. Molecules 2023, 28, 5980. [Google Scholar] [CrossRef]
- Burstein, S. Cannabidiol (CBD) and its analogs: A review of their effects on inflammation. Bioorg. Med. Chem. 2015, 23, 1377–1385. [Google Scholar] [CrossRef]
- ThaiFDA; The Notification of Ministry of Public Health. Re: Prescribing the List of Category 5 Narcotics, B.E. 2565/2022. Available online: https://cannabisinfo.fda.moph.go.th/media.php?id=478547277657546752&name=6%20law_NYS5_080265.pdf (accessed on 19 July 2023).
- Tanase Apetroaei, V.; Pricop, E.M.; Istrati, D.I.; Vizireanu, C. Hemp Seeds (Cannabis sativa L.) as a Valuable Source of Natural Ingredients for Functional Foods-A Review. Molecules 2024, 29, 2097. [Google Scholar] [CrossRef]
- Xu, J.; Bai, M.; Song, H.; Yang, L.; Zhu, D.; Liu, H. Hemp (Cannabis sativa subsp. sativa) Chemical Composition and the Application of Hempseeds in Food Formulations. Plant Foods Hum. Nutr. 2022, 77, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Dai, K.; Xie, Z.; Chen, J. Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Sci. Rep. 2020, 10, 3309. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavela, R.; Lupidi, G.; Nabissi, M.; Petrelli, R.; Ngahang Kamte, S.L.; Cappellacci, L.; Fiorini, D.; Sut, S.; Dall’Acqua, S.; et al. The crop-residue of fiber hemp cv. Futura 75: From a waste product to a source of botanical insecticides. Environ. Sci. Pollut. Res. Int. 2018, 25, 10515–10525. [Google Scholar] [CrossRef]
- Semwogerere, F.; Katiyatiya, C.L.F.; Chikwanha, O.C.; Marufu, M.C.; Mapiye, C. Bioavailability and Bioefficacy of Hemp By-Products in Ruminant Meat Production and Preservation: A Review. Front. Vet. Sci. 2020, 7, 572906. [Google Scholar] [CrossRef]
- Zhu, J.; Yi, J.; Kang, Q.; Huang, J.; Cui, Y.; Zhang, G.; Wang, Z.; Zhang, L.; Zheng, Z.; Lu, J.; et al. Anti-fatigue activity of hemp leaves water extract and the related biochemical changes in mice. Food Chem. Toxicol. 2021, 150, 112054. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Makrygiannis, I.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Bioactive Compound Extraction of Hemp (Cannabis sativa L.) Leaves through Response Surface Methodology Optimization. AgriEngineering 2024, 6, 1300–1318. [Google Scholar] [CrossRef]
- Khamseekaew, J.; Duangjinda, M.; Maneesai, P.; Labjit, C.; Rattanakanokchai, S.; Rongpan, S.; Pakdeechote, P.; Potue, P. Cannabis sativa L. Leaf Oil Displays Cardiovascular Protective Effects in Hypertensive Rats. Int. J. Mol. Sci. 2025, 26, 1897. [Google Scholar] [CrossRef] [PubMed]
- Rising, R.; Lifshitz, F. Energy expenditures & physical activity in rats with chronic suboptimal nutrition. Nutr. Metab. 2006, 3, 11. [Google Scholar] [CrossRef]
- Sayed, S.; Ahmed, M.; El-Shehawi, A.; Alkafafy, M.; Al-Otaibi, S.; El-Sawy, H.; Farouk, S.; El-Shazly, S. Ginger Water Reduces Body Weight Gain and Improves Energy Expenditure in Rats. Foods 2020, 9, 38. [Google Scholar] [CrossRef]
- Dziwenka, M.; Dolan, L.C.; Rao, M. Safety of Elixinol Hemp Extract: In Vitro Genetic Toxicity and Subchronic Toxicity in Rats. J. Toxicol. 2023, 2023, 5982883. [Google Scholar] [CrossRef]
- Dziwenka, M.; Coppock, R.; Alexander, M.; Palumbo, E.; Ramirez, C.; Lermer, S. Safety Assessment of a Hemp Extract using Genotoxicity and Oral Repeat-Dose Toxicity Studies in Sprague-Dawley Rats. Toxicol. Rep. 2020, 7, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Lake, K.D.; Compton, D.R.; Varga, K.; Martin, B.R.; Kunos, G. Cannabinoid-induced hypotension and bradycardia in rats mediated by CB1-like cannabinoid receptors. J. Pharmacol. Exp. Ther. 1997, 281, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Lake, K.D.; Martin, B.R.; Kunos, G.; Varga, K. Cardiovascular Effects of Anandamide in Anesthetized and Conscious Normotensive and Hypertensive Rats. Hypertension 1997, 29, 1204–1210. [Google Scholar] [CrossRef]
- Holloway, Z.R.; Hawkey, A.B.; Pippin, E.; White, H.; Wells, C.; Kenou, B.; Rezvani, A.H.; Murphy, S.K.; Levin, E.D. Paternal factors in neurodevelopmental toxicology: THC exposure of male rats causes long-lasting neurobehavioral effects in their offspring. Neurotoxicology 2020, 78, 57–63. [Google Scholar] [CrossRef]
- Costa, A.C.; Gasparotto, A.; Garcia, A.A.K.; Pereira, C.A.C.; Lourenço, E.L.B.; Joaquim, H.P.G. Acute and prolonged toxicity assessment of Cannabis sativa extract in rodents and lagomorphs. Toxicol. Rep. 2025, 14, 101918. [Google Scholar] [CrossRef]
- Lancaster, L.E. Renal and endocrine regulation of water and electrolyte balance. Nurs. Clin. N. Am. 1987, 22, 761–772. [Google Scholar] [CrossRef]
- Zhang, Q.; Davis, K.J.; Hoffmann, D.; Vaidya, V.S.; Brown, R.P.; Goering, P.L. Urinary biomarkers track the progression of nephropathy in hypertensive and obese rats. Biomark. Med. 2014, 8, 85–94. [Google Scholar] [CrossRef]
- Fotschki, B.; Opyd, P.; Juśkiewicz, J.; Wiczkowski, W.; Jurgoński, A. Comparative Effects of Dietary Hemp and Poppy Seed Oil on Lipid Metabolism and the Antioxidant Status in Lean and Obese Zucker Rats. Molecules 2020, 25, 2921. [Google Scholar] [CrossRef] [PubMed]
- Opyd, P.M.; Jurgoński, A.; Fotschki, B.; Juśkiewicz, J. Dietary Hemp Seeds More Effectively Attenuate Disorders in Genetically Obese Rats than Their Lipid Fraction. J. Nutr. 2020, 150, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Tallon, M.J.; Child, R. Subchronic oral toxicity assessment of a cannabis extract. Regul. Toxicol. Pharmacol. RTP 2023, 144, 105496. [Google Scholar] [CrossRef]
- Bouarfa, M.; Chebaibi, M.; Ez-Zahra Amrati, F.; Souirti, Z.; Saghrouchni, H.; El atki, Y.; Bekkouche, K.; Mourabiti, H.; Bari, A.; Giesy, J.P.; et al. In vivo and in silico studies of the effects of oil extracted from Cannabis sativa L. seeds on healing of burned skin wounds in rats. Front. Chem. 2024, 12, 1381527. [Google Scholar] [CrossRef]
- Pellati, F.; Borgonetti, V.; Brighenti, V.; Biagi, M.; Benvenuti, S.; Corsi, L. Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer. BioMed Res. Int. 2018, 2018, 1691428. [Google Scholar] [CrossRef]
- Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Majewski, M.; Jurgoński, A. The Effect of Hemp (Cannabis sativa L.) Seeds and Hemp Seed Oil on Vascular Dysfunction in Obese Male Zucker Rats. Nutrients 2021, 13, 2575. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, N.; Gupta, M.; Kulshreshtha, E. Hempseed (Cannabis sativa) lipid fractions alleviate high-fat diet-induced fatty liver disease through regulation of inflammation and oxidative stress. Heliyon 2020, 6, e04422. [Google Scholar] [CrossRef] [PubMed]
- The European Commission. COMMISSION REGULATION (EU) 2022/1393 of 11 August 2022 amending Regulation (EC) No 1881/2006 as regards maximum levels of delta-9-tetrahydrocannabinol (Δ9-THC) in hemp seeds and products derived therefrom. Off. J. Eur. Union 2022, L211, 83–85. [Google Scholar]
- Johnson, R. FDA’s Oversight of Hemp-Derived Compounds; Congressional Research Service: Washington, DC, USA, 2023.
- US Congress. Agriculture Improvement Act of 2018; Public Law 115-334—Dec. 20, 2018; US Congress: Washington, DC, USA, 2018.
- AOAC. Official Methods of Analysis of AOAC INTERNATIONAL, 21st ed.; AOAC: Washington, DC, USA, 2019. [Google Scholar]
- Feng, P.; Stephen, D.W.; Michael, A.G.; Burkhardt, W. BAM Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4-enumeration-escherichia-coli-and-coliform-bacteria (accessed on 20 September 2025).
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella. Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2017.
- Tallent, S.; Hait, J.; Bennett, R.W.; Lancette, G.A. BAM Chapter 12: Staphylococcus aureus; U.S. Food and Drug Administration: Washington, DC, USA, 2016.
- AOAC. Official Methods of Analysis of AOAC INTERNATIONAL, 20th ed.; AOAC: Washington, DC, USA, 2016. [Google Scholar]
- Sheppard, B.S.; Heitkemper, D.T.; Gaston, C.M. Microwave Digestion for the Determination of Arsenic, Cadmium and Lead in Seafood Products by Inductively Coupled Plasma Atomic Emission and Mass Spectrometry. Analyst 1994, 119, 1683–1686. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC INTERNATIONAL, 17th ed.; AOAC: Washington, DC, USA, 2000. [Google Scholar]
- Heraudeau, M.; Roux, C.M.; Lahogue, C.; Largilliere, S.; Allouche, S.; Lelong-Boulouard, V.; Freret, T. Micropipette-guided Drug Administration (MDA) as a non-invasive chronic oral administration method in male rats. J. Neurosci. Methods 2023, 398, 109951. [Google Scholar] [CrossRef]
- Kongkhum, S.; Sarnkhaow, S. The reference intervals for biochemistry analytes obtained through the indirect method indicate the metabolic shifts in the Thai adult population. J. Assoc. Med. Sci. 2025, 58, 253–260. [Google Scholar] [CrossRef]
- Prasatthong, P.; Meephat, S.; Rattanakanokchai, S.; Khamseekaew, J.; Bunbupha, S.; Prachaney, P.; Maneesai, P.; Pakdeechote, P. Galangin Resolves Cardiometabolic Disorders through Modulation of AdipoR1, COX-2, and NF-kappaB Expression in Rats Fed a High-Fat Diet. Antioxidants 2021, 10, 769. [Google Scholar] [CrossRef]
Parameter | Male | Female | ||
---|---|---|---|---|
Vehicle | HLO | Vehicle | HLO | |
Acute oral administration study | ||||
Food consumption (g/rat/day) | 22.00 ± 6.63 | 24.40 ± 9.94 | 25.60 ± 4.34 | 23.20 ± 6.42 |
Water consumption (mL/rat/day) | 32.00 ± 4.47 | 28.00 ± 8.37 | 30.00 ± 10.00 | 30.00 ± 7.07 |
28-day repeat-dose oral administration study | ||||
Food consumption (g/rat/day) | 21.00 ± 4.47 | 24.20 ± 3.27 | 21.40 ± 6.19 | 21.20 ± 1.48 |
Water consumption (mL/rat/day) | 26.00 ± 4.18 | 29.00 ± 5.48 | 27.00 ± 9.75 | 29.00 ± 4.18 |
Parameter | Male | Female | ||
---|---|---|---|---|
Vehicle | HLO | Vehicle | HLO | |
Acute oral administration study | ||||
HW (g) | 1.43 ± 0.15 | 1.37 ± 0.08 | 0.97 ± 0.05 | 0.91 ± 0.05 |
LW (g) | 15.87 ± 1.63 | 16.10 ± 1.11 | 10.81 ± 0.40 | 10.92 ± 0.74 |
KW (g) | 3.20 ± 0.34 | 3.15 ± 0.10 | 2.11 ± 0.17 | 2.07 ± 0.10 |
28-day repeat-dose oral administration study | ||||
HW (g) | 1.42 ± 0.06 | 1.45 ± 0.05 | 0.99 ± 0.11 | 1.03 ± 0.11 |
LW (g) | 16.06 ± 1.36 | 16.15 ± 0.05 | 11.27 ± ± 0.23 | 11.61 ± 1.43 |
KW (g) | 3.24 ± 0.15 | 3.30 ± 0.08 | 2.13 ± 0.15 | 2.12 ± 0.15 |
Parameter (Laboratory Historical Control Values) | Vehicle | HLO |
---|---|---|
Male Sprague-Dawley rats | ||
Na+ (131–157 mmol/L) | 139.00 ± 1.73 | 137.40 ± 1.67 |
K+ (3.73–11.38 mmol/L) | 5.58 ± 2.87 | 4.70 ± 0.65 |
Cl− (93.1–112.8 mmol/L) | 101.40 ± 2.61 | 100.40 ± 0.89 |
Total protein (3.4–7.7 g/dL) | 4.68 ± 0.35 | 4.62 ± 0.04 |
Albumin (2.8–4.6 g/dL) | 3.82 ± 0.28 | 3.80 ± 0.07 |
AST (47–266 U/L) | 172.00 ± 26.12 | 221.75 ± 8.54 |
ALT (16–161 U/L) | 32.00 ± 5.79 | 34.80 ± 8.84 |
ALP (46–230 U/L) | 185.20 ± 33.86 | 172.20 ± 11.95 |
total Bilirubin (0.03–0.90 mg/dL) | <0.146 | <0.146 |
BUN (8–24 mg/dL) | 17.00 ± 3.87 | 19.00 ± 2.92 |
Creatinine (0.06–0.47 mg/dL) | 0.26 ± 0.05 | 0.26 ± 0.05 |
Uric acid (0.5–1.5 mg/dL) | 0.85 ± 0.17 | 0.88 ± 0.18 |
Cholesterol (36–163 mg/dL) | 48.00 ± 3.39 | 51.60 ± 2.70 |
Ca2+ (9.1–13.4 mg/dL) | 9.92 ± 1.00 | 9.76 ± 0.22 |
PHOS (4.6–11.7 mg/dL) | 10.65 ± 2.07 | 11.12 ± 1.20 |
Female Sprague-Dawley rats | ||
Na+ (128–159 mmol/L) | 140.20 ± 0.84 | 140.00 ± 2.83 |
K+ (3.49–12.96 mmol/L) | 4.68 ± 0.18 | 4.68 ± 0.61 |
Cl− (89.1–114.6 mmol/L) | 106.80 ± 3.27 | 105.60 ± 4.28 |
Total protein (5.1–9.0 g/dL) | 5.32 ± 0.44 | 5.28 ± 0.19 |
Albumin (2.6–6.4 g/dL) | 4.68 ± 0.36 | 4.66 ± 0.13 |
AST (42–341 U/L) | 76.20 ± 9.65 | 90.60 ± 13.18 |
ALT (13–182 U/L) | 19.80 ± 2.28 | 22.20 ± 5.17 |
ALP (15–115 U/L) | 105.4 ± 33.81 | 108.8 ± 22.29 |
total Bilirubin (0.04–0.25 mg/dL) | <0.146 | <0.146 |
BUN (8–28 mg/dL) | 18.40 ± 4.34 | 18.40 ± 2.30 |
Creatinine (0.11–0.53 mg/dL) | 0.28 ± 0.08 | 0.32 ± 0.04 |
Uric acid (0.5–1.5 mg/dL) | 0.82 ± 0.24 | 0.82 ± 0.29 |
Cholesterol (28–249 mg/dL) | 54.00 ± 5.34 | 56.60 ± 8.88 |
Ca2+ (7.7–15.5 mg/dL) | 9.88 ± 0.65 | 9.88 ± 0.44 |
PHOS (2.4–12.4 mg/dL) | 11.04 ± 0.54 | 10.92 ± 2.12 |
Parameter (Laboratory Historical Control Values) | Vehicle | HLO |
---|---|---|
Male Sprague-Dawley rats | ||
Na+ (131–157 mmol/L) | 138.60 ± 0.55 | 137.60 ± 0.89 |
K+ (3.73–11.38 mmol/L) | 4.42 ± 0.27 | 4.74 ± 0.40 |
Cl− (93.1–112.8 mmol/L) | 104.8 ± 1.30 | 104.2 ± 1.79 |
Total protein (3.4–7.7 g/dL) | 4.44 ± 0.17 | 4.48 ± 0.18 |
Albumin (2.8–4.6 g/dL) | 3.70 ± 0.14 | 3.74 ± 0.21 |
AST (47–266 U/L) | 194.20 ± 16.75 | 173.60 ± 11.70 |
ALT (16–161 U/L) | 25.60 ± 3.44 | 21.20 ± 2.86 |
ALP (46–230 U/L) | 118.20 ± 18.66 | 113.80 ± 16.30 |
total Bilirubin (0.03–0.90 mg/dL) | <0.146 | <0.146 |
BUN (8–24 mg/dL) | 15.60 ± 2.19 | 18.40 ± 2.61 |
Creatinine (0.06–0.47 mg/dL) | 0.28 ± 0.08 | 0.32 ± 0.04 |
Uric acid (0.5–1.5 mg/dL) | 1.12 ± 0.16 | 1.14 ± 0.27 |
Cholesterol (36–163 mg/dL) | 51.60 ± 6.43 | 46.40 ± 7.70 |
Ca2+ (9.1–13.4 mg/dL) | 9.82 ± 0.29 | 9.70 ± 0.35 |
PHOS (4.6–11.7 mg/dL) | 9.94 ± 0.61 | 9.06 ± 0.59 |
Testosterone (100–300 ng/dL) | 341.60 ± 90.45 | 272.75 ± 130.34 |
Female Sprague-Dawley rats | ||
Na+ (128–159 mmol/L) | 138.20 ± 2.49 | 137.20 ± 2.59 |
K+ (3.49–12.96 mmol/L) | 4.60 ± 0.85 | 4.82 ± 1.21 |
Cl− (89.1–114.6 mmol/L) | 108.80 ± 0.45 | 104.60 ± 3.85 |
Total protein (5.1–9.0 g/dL) | 5.70 ± 0.22 | 5.66 ± 0.55 |
Albumin (2.6–6.4 g/dL) | 5.05 ± 0.17 | 5.10 ± 0.50 |
AST (42–341 U/L) | 77.50 ± 10.47 | 89.25 ± 11.00 |
ALT (13–182 U/L) | 28.60 ± 14.10 | 24.00 ± 3.39 |
ALP (15–115 U/L) | 103.40 ± 23.02 | 71.20 ± 14.27 |
total Bilirubin (0.04–0.25 mg/dL) | <0.146 | <0.146 |
BUN (8–28 mg/dL) | 18.60 ± 1.82 | 21.80 ± 3.27 |
Creatinine (0.11–0.53 mg/dL) | 0.30 ± 0.00 | 0.34 ± 0.05 |
Uric acid (0.5–1.5 mg/dL) | 1.20 ± 0.22 | 1.08 ± 0.28 |
Cholesterol (28–249 mg/dL) | 60.20 ± 4.15 | 59.80 ± 6.71 |
Ca2+ (7.7–15.5 mg/dL) | 10.28 ± 0.50 | 10.66 ± 1.24 |
PHOS (2.4–12.4 mg/dL) | 8.15 ± 0.83 | 7.54 ± 0.75 |
Estrogen (10–50 pg/mL) | 27.75 ± 11.84 | 41.20 ± 18.03 |
Parameter | Specification | Testing Method |
---|---|---|
Identification | ||
Aroma and visual | Olive oil aroma | olfactory |
Clear, amber color | visual | |
Free for foreign material | visual | |
pH | 5.88 | In-house method based on AOAC (2019) 943.02 [37] |
Phytochemicals | ||
CBD | 0.40 mg/g | HPLC |
THC | 0.02 mg/g | HPLC |
Microbiology | ||
Coliforms | 2.3 MPN/mL | FDA BAM 2017 (chapter4) [38] |
Escherichia coli | <0.3 MPN/mL | FDA BAM 2017 (chapter 4) [38] |
Salmonella spp. | Not detected | ISO 6579-1:2017 [39] |
Staphylococcus aureus | Not detected | FDA BAM 2016 (chapter 12) [40] |
Total aflatoxin | Not detected | In-house method TE-CH-025 based on AOAC (2016) 991.31 and 994.08 [41] |
Heavy metals | ||
Arsenic (As) | Not detected | Analyst, August 1994 [42] |
Cadmium (Cd) | Not detected | Analyst, August 1994 [42] |
Lead (Pb) | Not detected | Analyst, August 1994 [42] |
Mercury (Hg) | Not detected | Analyst, August 1994 [42] |
Tin (Sn) | 2.453 mg/kg | In-house method based on AOAC (2000) 985.16 [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maneesai, P.; Duangjinda, M.; Labjit, C.; Khamseekaew, J.; Potue, P.; Poasakate, A.; Pakdeechote, P. Acute and Subchronic Exposure to Hemp (Cannabis sativa L.) Leaf Oil: Impacts on Vital Organs in Sprague-Dawley Rats. Pharmaceuticals 2025, 18, 1437. https://doi.org/10.3390/ph18101437
Maneesai P, Duangjinda M, Labjit C, Khamseekaew J, Potue P, Poasakate A, Pakdeechote P. Acute and Subchronic Exposure to Hemp (Cannabis sativa L.) Leaf Oil: Impacts on Vital Organs in Sprague-Dawley Rats. Pharmaceuticals. 2025; 18(10):1437. https://doi.org/10.3390/ph18101437
Chicago/Turabian StyleManeesai, Putcharawipa, Monchai Duangjinda, Chanon Labjit, Juthamas Khamseekaew, Prapassorn Potue, Anuson Poasakate, and Poungrat Pakdeechote. 2025. "Acute and Subchronic Exposure to Hemp (Cannabis sativa L.) Leaf Oil: Impacts on Vital Organs in Sprague-Dawley Rats" Pharmaceuticals 18, no. 10: 1437. https://doi.org/10.3390/ph18101437
APA StyleManeesai, P., Duangjinda, M., Labjit, C., Khamseekaew, J., Potue, P., Poasakate, A., & Pakdeechote, P. (2025). Acute and Subchronic Exposure to Hemp (Cannabis sativa L.) Leaf Oil: Impacts on Vital Organs in Sprague-Dawley Rats. Pharmaceuticals, 18(10), 1437. https://doi.org/10.3390/ph18101437