Neuroprotective Effect of Codonopsis pilosula Polysaccharide on Aβ25-35-Induced Damage in PC12 Cells via the p38MAPK Signaling Pathways
Abstract
:1. Introduction
2. Results
2.1. Effect of CPP on Aβ25-35-Induced Cell Viability
2.2. Effects of CPP on the Oxidative Stress in Aβ25-35-Induced Cells
2.3. Effects of CPP on Apoptosis in Aβ25-35-Induced Cells
2.4. CPP Regulates mRNA Levels of Apoptotic Factors in Aβ25-35-Induced Cells through the p38MAPK Signaling Pathway
2.5. CPP Regulates Protein Levels of Apoptotic Factors in Aβ25-35-Induced Cells through the p38MAPK Signaling Pathway
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cell Culture and Experimental Design
4.3. Cell Viability Assay
4.4. Detection of Intracellular ROS Levels
4.5. Detection of Intracellular SOD, GSH, CAT, and MDA Productions
4.6. Cell Apoptosis Detection
4.7. Nuclear Staining with Hoechst 33258
4.8. RT-PCR Analysis
4.9. Western Blot Analysis
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 2023 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2023, 19, 1598–1695. [CrossRef] [PubMed]
- Revi, M. Alzheimer’s Disease Therapeutic Approaches. Adv. Exp. Med. Biol. 2020, 1195, 105–116. [Google Scholar] [PubMed]
- Xia, Z.-D.; Ma, R.-X.; Wen, J.-F.; Zhai, Y.-F.; Wang, Y.-Q.; Wang, F.-Y.; Liu, D.; Zhao, X.-L.; Sun, B.; Jia, P.; et al. Pathogenesis, Animal Models, and Drug Discovery of Alzheimer’s Disease. J. Alzheimers Dis. 2023, 94, 1265–1301. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, J.; Ding, L.; Wang, F.; Lin, L. A Review of the Pathogenesis and Chinese Medicine Intervention of Alzheimer’s Disease. J. Integr. Neurosci. 2022, 22, 2. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, A.A. Pathogenesis of Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 24, 107. [Google Scholar] [CrossRef]
- Hampel, H.; Mesulam, M.-M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef]
- Adachi, N.; Numakawa, T.; Richards, M.; Nakajima, S.; Kunugi, H. New Insight in Expression, Transport, and Secretion of Brain-Derived Neurotrophic Factor: Implications in Brain-Related Diseases. World J. Biol. Chem. 2014, 5, 409–428. [Google Scholar] [CrossRef]
- Imbrici, P.; Camerino, D.C.; Tricarico, D. Major Channels Involved in Neuropsychiatric Disorders and Therapeutic Perspectives. Front. Genet. 2013, 4, 76. [Google Scholar] [CrossRef]
- Um, J.W.; Kaufman, A.C.; Kostylev, M.; Heiss, J.K.; Stagi, M.; Takahashi, H.; Kerrisk, M.E.; Vortmeyer, A.; Wisniewski, T.; Koleske, A.J.; et al. Metabotropic Glutamate Receptor 5 Is a Coreceptor for Alzheimer Aβ Oligomer Bound to Cellular Prion Protein. Neuron 2013, 79, 887–902. [Google Scholar] [CrossRef]
- Jaganjac, M.; Milkovic, L.; Zarkovic, N.; Zarkovic, K. Oxidative Stress and Regeneration. Free Radic. Biol. Med. 2022, 181, 154–165. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Halliwell, B. Oxidative Stress, Dysfunctional Glucose Metabolism and Alzheimer Disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Dang, J.; Lv, Y.; Fang, Y.; Ma, C.; Wang, Q.; Li, G. The Isolation and Preparation of Samwinol from Dracocephalum Heterophyllum and Prevention on Aβ25-35-Induced Neuroinflammation in PC-12 Cells. Int. J. Mol. Sci. 2022, 23, 11572. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, A.; Reynolds, R. Diverse Pathways to Neuronal Necroptosis in Alzheimer’s Disease. Eur. J. Neurosci. 2022, 56, 5428–5441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-L.; Lei, B.-X.; Wu, G.-Y.; Wang, Y.-Y.; Huang, Q.-H. Protective Effects of Berberine against β-Amyloid-Induced Neurotoxicity in HT22 Cells via the Nrf2/HO-1 Pathway. Bioorg. Chem. 2023, 133, 106210. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, L.; Liu, C.; Song, L. Berberine Attenuates Aβ-Induced Neuronal Damage through Regulating miR-188/NOS1 in Alzheimer’s Disease. Mol. Cell. Biochem. 2020, 474, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Sadeghnia, H.R.; Kolangikhah, M.; Asadpour, E.; Forouzanfar, F.; Hosseinzadeh, H. Berberine Protects against Glutamate-Induced Oxidative Stress and Apoptosis in PC12 and N2a Cells. Iran. J. Basic Med. Sci. 2017, 20, 594–603. [Google Scholar]
- Liang, Y.; Huang, M.; Jiang, X.; Liu, Q.; Chang, X.; Guo, Y. The Neuroprotective Effects of Berberine against Amyloid β-Protein-Induced Apoptosis in Primary Cultured Hippocampal Neurons via Mitochondria-Related Caspase Pathway. Neurosci. Lett. 2017, 655, 46–53. [Google Scholar] [CrossRef]
- Kritsilis, M.; Rizou, S.V.; Koutsoudaki, P.N.; Evangelou, K.; Gorgoulis, V.G.; Papadopoulos, D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int. J. Mol. Sci. 2018, 19, 2937. [Google Scholar] [CrossRef]
- Lana, A.; Zolla, L. Proteolysis in Meat Tenderization from the Point of View of Each Single Protein: A Proteomic Perspective. J. Proteom. 2016, 147, 85–97. [Google Scholar] [CrossRef]
- Rao, C.V.; Asch, A.S.; Carr, D.J.J.; Yamada, H.Y. “Amyloid-beta Accumulation Cycle” as a Prevention and/or Therapy Target for Alzheimer’s Disease. Aging Cell 2020, 19, e13109. [Google Scholar] [CrossRef]
- Burns, L.H.; Pei, Z.; Wang, H.-Y. Targeting A7 Nicotinic Acetylcholine Receptors and Their Protein Interactions in Alzheimer’s Disease Drug Development. Drug Dev. Res. 2023, 84, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J. Anti-Amyloid Monoclonal Antibodies Are Transformative Treatments That Redefine Alzheimer’s Disease Therapeutics. Drugs 2023, 83, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Weon, J.B.; Eom, M.R.; Jung, Y.S.; Hong, E.-H.; Ko, H.-J.; Lee, H.Y.; Park, D.-S.; Ma, C.J. Steamed and Fermented Ethanolic Extract from Codonopsis Lanceolata Attenuates Amyloid-β-Induced Memory Impairment in Mice. Evid.-Based Complement. Altern. Med. 2016, 2016, 1473801. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Zhang, Q.; Luo, H.; Xu, Z.; Huang, S.; Yang, F.; Liu, Y.; Mahaman, Y.A.R.; Ke, D.; Wang, Q.; et al. Codonopsis Pilosula Polysaccharide Attenuates Aβ Toxicity and Cognitive Defects in APP/PS1 Mice. Aging 2020, 12, 13422–13436. [Google Scholar] [CrossRef]
- Zhang, Q.; Xia, Y.; Luo, H.; Huang, S.; Wang, Y.; Shentu, Y.; Mahaman, Y.A.R.; Huang, F.; Ke, D.; Wang, Q.; et al. Codonopsis Pilosula Polysaccharide Attenuates Tau Hyperphosphorylation and Cognitive Impairments in hTau Infected Mice. Front. Mol. Neurosci. 2018, 11, 437. [Google Scholar] [CrossRef]
- Ding, K.; Guo, S.; Rong, W.; Li, Q.; Liu, R.; Xu, H.; Yin, Y.; Bi, K. A New Oleanane Type Pentacyclic Triterpenoid Saponin from the Husks of Xanthoceras Sorbifolium Bunge and Its Neuroprotection on PC12 Cells Injury Induced by Aβ25-35. Nat. Prod. Res. 2020, 34, 3212–3218. [Google Scholar] [CrossRef]
- Khodarahmi, R.; Ashrafi-Kooshk, M.R. Is There Correlation between Aβ-Heme Peroxidase Activity and the Peptide Aggregation State? A Literature Review Combined with Hypothesis. Int. J. Biol. Macromol. 2017, 100, 18–36. [Google Scholar] [CrossRef]
- Zhang, X. Cholinergic Activity and Amyloid Precursor Protein Processing in Aging and Alzheimer’s Disease. Curr. Drug Targets-CNS Neurol. Disord. 2004, 3, 137–152. [Google Scholar] [CrossRef]
- Tönnies, E.; Trushina, E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimers Dis. 2017, 57, 1105–1121. [Google Scholar] [CrossRef]
- Mirzadeh, M.; Keshavarz Lelekami, A.; Khedmat, L. Plant/Algal Polysaccharides Extracted by Microwave: A Review on Hypoglycemic, Hypolipidemic, Prebiotic, and Immune-Stimulatory Effect. Carbohydr. Polym. 2021, 266, 118134. [Google Scholar] [CrossRef]
- Qin, T.; Ren, Z.; Liu, X.; Luo, Y.; Long, Y.; Peng, S.; Chen, S.; Zhang, J.; Ma, Y.; Li, J.; et al. Study of the Selenizing Codonopsis Pilosula Polysaccharides Protects RAW264.7 Cells from Hydrogen Peroxide-Induced Injury. Int. J. Biol. Macromol. 2019, 125, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Dhapola, R.; Reddy, D.H. Apoptosis in Alzheimer’s Disease: Insight into the Signaling Pathways and Therapeutic Avenues. Apoptosis 2023, 28, 943–957. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, M.; Maezawa, I.; Itoh, A.; Wakayama, K.; Jin, L.-W.; Itoh, T.; Decarli, C. Amyloid Β1-42 Oligomer Inhibits Myelin Sheet Formation in Vitro. Neurobiol. Aging 2012, 33, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Czabotar, P.E.; Garcia-Saez, A.J. Mechanisms of BCL-2 Family Proteins in Mitochondrial Apoptosis. Nat. Rev. Mol. Cell Biol. 2023, 24, 732–748. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, A.; Matsunaga, Y.; Yamada, T. Amyloid-Beta Causes Apoptosis of Neuronal Cells via Caspase Cascade, Which Can Be Prevented by Amyloid-Beta-Derived Short Peptides. Exp. Neurol. 2005, 196, 282–289. [Google Scholar] [CrossRef]
- Fan, T.-J.; Han, L.-H.; Cong, R.-S.; Liang, J. Caspase Family Proteases and Apoptosis. Acta Biochim. Biophys. Sin. 2005, 37, 719–727. [Google Scholar] [CrossRef]
- Xiao, Z.; Huang, C.; Wu, J.; Sun, L.; Hao, W.; Leung, L.K.; Huang, J. The Neuroprotective Effects of Ipriflavone against H2O2 and Amyloid Beta Induced Toxicity in Human Neuroblastoma SH-SY5Y Cells. Eur. J. Pharmacol. 2013, 721, 286–293. [Google Scholar] [CrossRef]
- Tajes, M.; Eraso-Pichot, A.; Rubio-Moscardó, F.; Guivernau, B.; Bosch-Morató, M.; Valls-Comamala, V.; Muñoz, F.J. Methylglyoxal Reduces Mitochondrial Potential and Activates Bax and Caspase-3 in Neurons: Implications for Alzheimer’s Disease. Neurosci. Lett. 2014, 580, 78–82. [Google Scholar] [CrossRef]
- Sasaki, K.; El Omri, A.; Kondo, S.; Han, J.; Isoda, H. Rosmarinus Officinalis Polyphenols Produce Anti-Depressant like Effect through Monoaminergic and Cholinergic Functions Modulation. Behav. Brain Res. 2013, 238, 86–94. [Google Scholar] [CrossRef]
- Cavallucci, V.; D’Amelio, M.; Cecconi, F. Aβ Toxicity in Alzheimer’s Disease. Mol. Neurobiol. 2012, 45, 366–378. [Google Scholar] [CrossRef]
- Song, L.L.; Qu, Y.Q.; Tang, Y.P.; Chen, X.; Lo, H.H.; Qu, L.Q.; Yun, Y.X.; Wong, V.K.W.; Zhang, R.L.; Wang, H.M.; et al. Hyperoside alleviates toxicity of β-amyloid via endoplasmic reticulum-mitochondrial calcium signal transduction cascade in APP/PS1 double transgenic Alzheimer’s disease mice. Redox Biol. 2023, 61, 102637. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.K.; Choi, E.-J. Pathological Roles of MAPK Signaling Pathways in Human Diseases. Biochim. Biophys. Acta 2010, 1802, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Sanit, J.; Prompunt, E.; Adulyaritthikul, P.; Nokkaew, N.; Mongkolpathumrat, P.; Kongpol, K.; Kijtawornrat, A.; Petchdee, S.; Barrre-Lemaire, S.; Kumphune, S. Combination of Metformin and P38 MAPK Inhibitor, SB203580, Reduced Myocardial Ischemia/Reperfusion Injury in Non-obese Type 2 Diabetic Goto-Kakizaki Rats. Exp. Ther. Med. 2019, 18, 1701–1714. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, T.; Deng, Y.; Hou, L.; Fan, X.; Lin, L.; Zhao, W.; Jiang, K.; Sun, C. Genipin Ameliorates Carbon Tetrachloride-Induced Liver Injury in Mice via the Concomitant Inhibition of Inflammation and Induction of Autophagy. Oxidative Med. Cell. Longev. 2019, 2019, 3729051. [Google Scholar] [CrossRef] [PubMed]
- Abusaliya, A.; Jeong, S.H.; Bhosale, P.B.; Kim, H.H.; Park, M.Y.; Kim, E.; Won, C.K.; Park, K.I.; Heo, J.D.; Kim, H.W.; et al. Mechanistic Action of Cell Cycle Arrest and Intrinsic Apoptosis via Inhibiting Akt/mTOR and Activation of P38-MAPK Signaling Pathways in Hep3B Liver Cancer Cells by Prunetrin-A Flavonoid with Therapeutic Potential. Nutrients 2023, 15, 3407. [Google Scholar] [CrossRef]
- Sun, A.; Liu, M.; Nguyen, X.V.; Bing, G. P38 MAP Kinase Is Activated at Early Stages in Alzheimer’s Disease Brain. Exp. Neurol. 2003, 183, 394–405. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, C.; Sheng, X.; Zhang, X.; Wang, B.; Zhang, G. Peripheral Expression of MAPK Pathways in Alzheimer’s and Parkinson’s Diseases. J. Clin. Neurosci. 2014, 21, 810–814. [Google Scholar] [CrossRef]
- Yu, Q.; Du, F.; Douglas, J.T.; Yu, H.; Yan, S.S.; Yan, S.F. Mitochondrial Dysfunction Triggers Synaptic Deficits via Activation of P38 MAP Kinase Signaling in Differentiated Alzheimer’s Disease Trans-Mitochondrial Cybrid Cells. J. Alzheimers Dis. 2017, 59, 223–239. [Google Scholar] [CrossRef]
- Kwon, O.Y.; Lee, S.H. Ameliorating Activity of Ishige Okamurae on the Amyloid Beta-Induced Cognitive Deficits and Neurotoxicity through Regulating ERK, P38 MAPK, and JNK Signaling in Alzheimer’s Disease-Like Mice Model. Mol. Nutr. Food Res. 2020, 64, e1901220. [Google Scholar] [CrossRef]
- Zhang, N.; Xu, H.; Wang, Y.; Yao, Y.; Liu, G.; Lei, X.; Sun, H.; Wu, X.; Li, J. Protective Mechanism of Kaempferol against Aβ25-35-Mediated Apoptosis of Pheochromocytoma (PC-12) Cells through the ER/ERK/MAPK Signalling Pathway. Arch. Med. Sci. 2021, 17, 406–416. [Google Scholar] [CrossRef]
Groups | Concentration (ng/μL) | Absorbance Value OD (260/280) |
---|---|---|
Control | 282.181 ± 6.321 | 1.9221 ± 0.0241 |
Aβ25-35 | 240.011 ± 3.549 ## | 1.8687 ± 0.0403 ## |
Aβ25-35 + CPP | 261.056 ± 4.543 ** | 1.8920 ± 0.0124 ** |
Aβ25-35 + donepezil | 262.326 ± 3.432 ** | 1.9032 ± 0.0333 ** |
SB203580 + Aβ25-35 | 244.153 ± 3.654 && | 1.8942 ± 0.0264 && |
SB203580 + Aβ25-35 + CPP | 253.246 ± 7.422 && | 1.9824 ± 0.0502 && |
Primer Name | Primer Sequence—Forward (5′–3′) | Primer Sequence—Reverse (5′–3′) | Length (bp) |
---|---|---|---|
β-actin | GACTTAGTTGCGTTACACCCTTTC | GCTGTCACCTTCACCGTTCC | 160 |
Caspase-3 | CCAAAGATCATACATGGAAGCG | CTGAATGTTTCCCTGAGGTTTG | 185 |
Bax | CGAACTGGACAGTAACATGGAG | CAGTTTGCTGGCAAAGTAGAAA | 157 |
Bcl-2 | GACTTCGCCGAGATGTCCAG | GAACTCAAAGAAGGCCACAATC | 129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Song, S.; Li, X.; Wang, J.; Bao, Y.; Wang, X.; Lian, L.; Liu, X.; Ma, W. Neuroprotective Effect of Codonopsis pilosula Polysaccharide on Aβ25-35-Induced Damage in PC12 Cells via the p38MAPK Signaling Pathways. Pharmaceuticals 2024, 17, 1231. https://doi.org/10.3390/ph17091231
Yang L, Song S, Li X, Wang J, Bao Y, Wang X, Lian L, Liu X, Ma W. Neuroprotective Effect of Codonopsis pilosula Polysaccharide on Aβ25-35-Induced Damage in PC12 Cells via the p38MAPK Signaling Pathways. Pharmaceuticals. 2024; 17(9):1231. https://doi.org/10.3390/ph17091231
Chicago/Turabian StyleYang, Liu, Shiyi Song, Xinlu Li, Jinquan Wang, Yanan Bao, Xinxin Wang, Liwei Lian, Xiubo Liu, and Wei Ma. 2024. "Neuroprotective Effect of Codonopsis pilosula Polysaccharide on Aβ25-35-Induced Damage in PC12 Cells via the p38MAPK Signaling Pathways" Pharmaceuticals 17, no. 9: 1231. https://doi.org/10.3390/ph17091231
APA StyleYang, L., Song, S., Li, X., Wang, J., Bao, Y., Wang, X., Lian, L., Liu, X., & Ma, W. (2024). Neuroprotective Effect of Codonopsis pilosula Polysaccharide on Aβ25-35-Induced Damage in PC12 Cells via the p38MAPK Signaling Pathways. Pharmaceuticals, 17(9), 1231. https://doi.org/10.3390/ph17091231