Review: Neuroprotective Nanocarriers in Glaucoma
Abstract
:1. Introduction
Neuroprotectant Class | Drug (Mode of Delivery) | Mechanism |
---|---|---|
α2-adrenoceptor agonists | Brimonidine [60] (topical, SC) | It decreases the production of aqueous humor and increases uveoscleral outflow, meaning it is commonly used to manage glaucoma due to these hypotensive properties. Alpha2-adrenoceptors have been found in the retinal ganglion layer and inner nuclear layer, indicating potential neuroprotective advantages. They can upregulate retinal expression of anti-apoptotic proteins, including bcl-2 and bcl-x, thereby protecting the RGCs. |
N-methyl-D-aspartate (NMDA) receptor antagonists | Memantine [61] (oral) | A non-competitive NMDA receptor antagonist that specifically targets activated glutamatergic receptors, reducing toxic calcium influx and excessive glutamatergic activity, while preserving normal neurotransmission. It has demonstrated protective effects on RGCs in rat models. |
Calcium channel blockers | Brovincamine [62] (topical) Flunarizine [63] Nilvadipine [64] | Prevent calcium-mediated apoptosis and increase ocular blood flow by inhibiting calcium influx into vascular smooth muscle cells. This leads to peripheral vasodilation, reduced vascular resistance, and increased blood flow to the optic nerve. |
Metabolic-targeting compounds | Metformin [65] (oral) | Reduces oxidative stress by targeting fibrotic signaling, oxidation of nicotinamide adenine dinucleotide (NAD), and mitochondrial energetics. |
Insulin (SC) [66] | A peptide hormone with receptors distributed throughout the central nervous system, including the retina, which operates through the PI3K/Akt signaling pathway to protect retinal neurons, glial cells, and vasculature from excessive glucose flux and apoptosis. | |
Neurotrophins | NGF [67] (topical, IVT) | Neurotrophins are transported to the retina in a retrograde manner and regulate neuronal growth, function, and survival. Elevated IOP in glaucomatous conditions obstructs this retrograde transport. NGF is expressed in both the retina and target brain cells. In the retina, NGF binds to Tyrosine kinase receptor A (TrkA) on RGCs to promote neural differentiation and prevent apoptosis. |
BDNF [68] | BDNF, through its receptor TrkB, demonstrates strong neuroprotective effects by reducing dendritic degeneration in mouse models. | |
Dietary supplements | Nicotinamide (oral) [69] | A dietary supplement and redox reaction coenzyme which increases extracellular NAD+ levels, thereby increasing mitochondrial NAD+ concentration. Animal glaucoma models have demonstrated a declining capacity to retain NAD during early disease. |
Citicoline [70] (oral, IM, topical) | A structural and functional precursor for essential components cell membranes, which also reduces oxidative stress in the central nervous system through the promotion of glutathione production. | |
Phosphoserine [71] | A structural matrix of cellular membranes which plays a fundamental role in the synthesis of neurotransmitters. | |
Anti-inflammatory therapies | Anti-complement: ANX005 [72] (IV) ANX007 [73] (IVT) | A recombinant antibody humanized against complement C1q. C1q, along with C1s2 and C1r2, constitutes the C1 complex, which helps initiate the complement pathway. In glaucoma animal models, C1q is upregulated in the retina. It contributes to the formation of the membrane attack complex, which phagocytoses weakened synapses and RGCs. |
Anti-fas–ONL1204 [74] (IVT) | Fas ligand (fragment apoptosis stimulator), a member of the TNF family, exhibits distinct properties in ocular inflammation. Soluble FasL does not trigger inflammation in the eye, whereas membrane-bound FasL induces potent inflammation. Additionally, soluble FasL inhibits corneal inflammation, which is exacerbated by the pro-inflammatory effects of membrane-bound FasL in mice models. | |
MicroRNA-124 [75] | Regulates target genes expression through post-transcriptional regulation. |
Method of Delivery | Advantages | Disadvantages |
---|---|---|
Topical eye drops [76] | Non-invasive. | Ocular surface side effects. Low bioavailability especially for posterior segment tissues. |
Subconjunctival injections [27] | Bypasses ocular surface. | Invasive. Limited for anterior segment pathologies. |
Intracameral injections [27] | Commonly for delivering antibiotics post-operatively, especially cataract surgery, to reduce endophthalmitis rates. | Invasive. Risk of toxic anterior segment syndrome, toxic endothelial cell destruction syndrome. |
Intra-vitreal injections [76] | Higher bioavailability. Relatively less technically demanding compared to other delivery methods of posterior segment pathologies. | Invasive. Risk of endophthalmitis, hemorrhage, retinal detachment. |
Subretinal injections [27] | Higher bioavailability. Targeted treatment for RPE and outer retina, especially useful in gene therapy. | Invasive, requires vitrectomy. Technically challenging. Effects confined to site of injection with limited distribution. |
Suprachoroidal injections [77] | Higher bioavailability. Targeted treatment for choroid, RPE, outer retina. | Technically challenging. |
Systemic [27] | Non-invasive for oral administration. | Higher risk of systemic side effects. Low bioavailability. |
Neuroprotective Strategy | Year | Nanocarrier | Neuroprotective Agent | Administration | Size | PDI | Zeta | EE | Subject | Assesment | Outcome |
---|---|---|---|---|---|---|---|---|---|---|---|
Antioxident | 2024 | GelCA, a gelatin-modified hydrogel (Cur@PDA NPs) | Curcumin | Intravitreal | 328.6 nm | less than 0.3 | −26.7 ± 1.1 mV | 70.5 ± 10% | ONC ICR mice, RGC-5 (H2O2 induced) | Vitro: AmplexTM Red reagent (10-acetyl-3,7-dihydroxyphenoxazine), Vivo: H&E staining (Bio-Compatibility), tissue staining (Antioxidative Performance) | Cur@PDA@GelCA shows strong biocompatibility, protects retinal tissue from oxidative stress, and offers lasting adhesion. |
Antioxident, anti-inflammation | 2023 | chitosan-hyaluronic acid (CS/HA) | EPOβ | Topical | 330 ± 15 nm | 0.174 ± 0.016 | +28 ± 1 mV | 38.4 ± 0.3% | Wistar Hannover Rat (cauterizing three episcleral veins) | ERG, IOP, Histologic Evaluation | The nanoparticle reaches the retina through topical use, significantly improving ERG and retinal thickness earlier in treated animals. |
Antioxident | 2023 | hydroxyl PAMAM dendrimers | N-acetylcysteine (NAC) (D-NAC) | intravitreal, intravenous | 5.8 nm | NA | +6.5 mV | NA | Wistar rat model of laser-induced, Translimbal laser (TLL) | IOP, Immunostaining, transcriptomic studies were performed on RNA isolated from retina | Hydroxyl PAMAM dendrimers target activated microglia/macrophages quickly post-injury and remain for 28 days, while NAC conjugation offers neuroprotection. |
Antioxident, anti-inflammation | 2022 | chitosan-hyaluronic acid nanoparticles (CS/HA) | epoetin beta (EPOβ) | Subconjunctival | 289 ± 3 nm | 0.126 ± 0.085 | 39 ± 1 mV | 38.4 ± 0.3% | Wistar Hannover rat | IOP, ERG and microhematocrit evaluations; histological evaluation (immunofluorescence and HE) | CS/HA nanoparticles enhance mucoadhesion and retention on the ocular surface, safely delivering EPOβ to the retina. |
Antioxident | 2018 | Pluronic-F127 stabilised TPGS | Curcumin | Topical | 17.9 nm | 0.002 | +18.69 mV | 94.20% | R28 cell line, DA rat (OHT, pONT) | IOP, Immunostaining | Boosts the drug’s solubility by nearly 400,000 times, significantly preserving RGC density. |
a2-adrenergic agonist | 2022 | Polydopamine (PDA) | brimonidine | Intravitreal | 223.9 ± 4.7 nm | NA | −28.5 ± 0.58 mV | 20% | vitro: Human umbilical vein endothelial cells (HUVECs), Raw 264.7, N2a, 661W and ARPE-19; vivo: C57BL/6 mice (ONC) | Nissl staining, Propidium iodide (PI) uptake and cell death analysis, RT-PCR, transcriptome analysis, Immunostaining, vivo: Optomotor Test; Light/Dark Transition Test | PDA nanoparticles effectively eliminate reactive species and reduce cellular ROS. Brimonidine-loaded PDA (Br@PDA) offers superior protection against RGC loss and visual impairment. |
a2-adrenergic agonist | 2016 | Alkoxylphenacyl-based polycarbonates | Brimonidine tartrate (BRT) | Intravitreal | 189.9–199.8 nm | NA | around −0.2 mV | less than 20% | human trabecular meshwork (HTM) cell, Wistar rats | Immunostaining, cytotoxicity studies | AP-PCL microfilms sustained BRT release for over 90 days due to slow degradation and microporous formation, showing good biocompatibility in cell studies and rat models. |
a2-adrenergic agonist, IOP lowering | 2015 | nanosponge (NS) | Brimonidine, Travoprost, Bimatoprost | Intravitreal, Topical | Bimatoprost: 400 nm and 700 nm; Brimonidine, Travoprost: 50 nm | NA | NA | NA | C57BL/6 (C57) mice | IOP, qualification of Neuro-DiO | A single NS injection delivers ocular hypotensive drugs continuously for up to 32 days and may effectively target RGCs. |
a2-adrenergic agonist | 2015 | human serum albumin nanoparticle (HSA-NP) | Brimonidine | Intravitreal | 152.8 ± 51.1 nm | NA | −29.7 ± 7.5 mV | NA | RGC-5 cells; Sprague–Dawley (SD) rat (ONC) | Immunostaining | Br-loaded HSA-NPs provide a prolonged therapeutic effect and enhanced neuroprotection synergistically. |
Neurotrophic factors | 2023 | Cell adhesion peptide (CAP)-gemini surfactants (18-7N(p1-5)-18) | BDNF | Intravitreal | 180–320 nm | 0.2–0.5 | +53.7 ± 1.15 or 13.1 ± 0.5 mV | NA | CD1 mice, Rat A7 astrocyte, 3D retinal neurosphere model from CD 1–4 multipotent retinal stem cells (MRSC) | Vitro: Flow cytometry (Transfection efficiency and viability studies), Transfection study, Vivo: stained with Syto™ 13 nucleic acid stain observed CLSM, BDNF-ELISA (for BDNF expression) | IgSF CAPs were successfully used to improve the adhesion and delivery of gemini NPXs to retinal cells through conjugation with gemini surfactant gene vectors. |
Neurotrophic factors | 2016 | K2® nanoparticle gene delivery system (K2-NPs) | BDNF | NA | 83.9 ± 0.4 nm | 0.17 ± 0.01 | +57.3 ± 2.8 mV | NA | two-layer contact-independent 3D neuronal co-culture model | flow cytometry, and enzyme-linked immunosorbent assay (ELISA) | Quantifying neurite growth in astrocyte-SH-SY5Y cell co-cultures serves as an effective bioassay model for evaluating non-viral gene delivery systems. |
NMDA receptor antagonists | 2018 | memantine-loaded PLGA-PEG nanoparticles (MEM-NP) | Memantine | Topical | 141.8 nm | 0.078 ± 0.018 | −26.5 mV | 80.60% | retinoblastoma (Y-79) and keratinocytes (HaCaT) cells. Dark Agouti rat (OHT). New Zealand rabbits. (DA) rats | IOP, Immunostaining, Corneal and scleral permeation | In vitro epithelial and neuronal cell cultures, this formulation was better tolerated than free memantine and effectively preserved RGC density. |
blockade of glutamate transmission | 2022 | PLGA nanoparticles in situ gelling system (NPs-Gel) | Riluzole | Topical | below 200 nm | below 0.2 | −30.0 mV | 94% | C57BL6 mice | Immunostaining | Optimized PLGA nanoparticles penetrate the blood-retinal barrier, delivering RLZ for 24 h, while RLZ NP gels enhance retention, clear vision, and comfort for glaucoma and dry eye patients. |
IOP lowering/antioxidant | 2020 | Soluplus | Melatonin/Agomelatine | Topical | 61.78 ± 1.61 nm | 0.068 ± 0.022 | NA | NA | Vivo: Sprague–Dawley RAT (Methylcellulose (MCE) model) | IOP, ERG, Western Blot Analysis, Immunostaining | In the MCE model, melatonin/agomelatine significantly reduced IOP elevation more effectively than timolol or brimonidine. |
IOP lowering, anti-inflammatory | 2020 | The diblock poly ethylene glycol-co-polysebacic acid (PSA-PEG) | brinzolamide and mi-RNA-124 | Intravitreal | 250–400 nm | NA | 0.015–0.020 mV | 90% | dutch-belted rabbits and 69 C57/BL6 mice | IOP, Immunostaining, real time PCR | The miRNA/NP-BRZ system is safe, non-toxic, and effectively reduces IOP while providing neuroprotection. The novel nanoparticles offer a slow release and accurately deliver BRZ to the target site, ensuring a long-lasting effect. |
2. Therapeutic Agents
2.1. Brimonidine
2.2. Brain-Derived Neurotrophic Factor (BDNF)
2.3. Memantine
2.4. Riluzole (RLZ)
2.5. Curcumin
2.6. Epoetin Beta (EPOβ)
2.7. N-Acetylcysteine (NAC)
2.8. Melatonin
2.9. MicroRNA (miRNA)
3. Limitations
4. Future Work
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e1221–e1234. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.E.; Jang, I.; Moon, H.; Kim, Y.J.; Jeoung, J.W.; Park, K.H.; Kim, H. Neuroprotective Effects of Human Serum Albumin Nanoparticles Loaded with Brimonidine on Retinal Ganglion Cells in Optic Nerve Crush Model. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5641–5649. [Google Scholar] [CrossRef] [PubMed]
- Ramulu, P.Y.; Hochberg, C.; Maul, E.A.; Chan, E.S.; Ferrucci, L.; Friedman, D.S. Glaucomatous visual field loss associated with less travel from home. Optom. Vis. Sci. 2014, 91, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Rein, D.B.; Zhang, P.; Wirth, K.E.; Lee, P.P.; Hoerger, T.J.; McCall, N.; Klein, R.; Tielsch, J.M.; Vijan, S.; Saaddine, J. The economic burden of major adult visual disorders in the United States. Arch. Ophthalmol. 2006, 124, 1754–1760. [Google Scholar] [CrossRef]
- Jayaram, H.; Kolko, M.; Friedman, D.S.; Gazzard, G. Glaucoma: Now and beyond. Lancet 2023, 402, 1788–1801. [Google Scholar] [CrossRef]
- Coleman, A.L.; Miglior, S. Risk factors for glaucoma onset and progression. Surv. Ophthalmol. 2008, 53 (Suppl. S1), S3–S10. [Google Scholar] [CrossRef]
- Belamkar, A.; Harris, A.; Zukerman, R.; Siesky, B.; Oddone, F.; Verticchio Vercellin, A.; Ciulla, T.A. Sustained release glaucoma therapies: Novel modalities for overcoming key treatment barriers associated with topical medications. Ann. Med. 2022, 54, 343–358. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, J.; Sun, X. Intraocular nano-microscale drug delivery systems for glaucoma treatment: Design strategies and recent progress. J. Nanobiotechnology 2023, 21, 84. [Google Scholar] [CrossRef]
- Masland, R.H. The neuronal organization of the retina. Neuron 2012, 76, 266–280. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Zhou, H.; Nathans, J. Molecular biology of retinal ganglion cells. Proc. Natl. Acad. Sci. USA 1996, 93, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.S.; Mahroo, O.A.; Mollon, J.D.; Yu-Wai-Man, P. Retinal Ganglion Cells-Diversity of Cell Types and Clinical Relevance. Front. Neurol. 2021, 12, 661938. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.K.; Perkins, G.A.; Kim, K.Y.; Bastola, T.; Choi, W.Y.; Choi, S.H. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog. Retin. Eye Res. 2023, 95, 101136. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.M.; Tsung, T.H.; Chen, Y.H.; Lu, D.W. The Role of Retinal Ganglion Cell Structure and Function in Glaucoma. Cells 2023, 12, 2797. [Google Scholar] [CrossRef]
- Shiga, Y.; Kunikata, H.; Aizawa, N.; Kiyota, N.; Maiya, Y.; Yokoyama, Y.; Omodaka, K.; Takahashi, H.; Yasui, T.; Kato, K.; et al. Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, Is Significantly Reduced in Preperimetric Glaucoma. Curr. Eye Res. 2016, 41, 1447–1453. [Google Scholar] [CrossRef]
- Tezel, G. Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells 2021, 10, 1372. [Google Scholar] [CrossRef]
- Halliwell, B. Oxidative stress and neurodegeneration: Where are we now? J. Neurochem. 2006, 97, 1634–1658. [Google Scholar] [CrossRef]
- Kimura, A.; Namekata, K.; Guo, X.; Harada, C.; Harada, T. Neuroprotection, Growth Factors and BDNF-TrkB Signalling in Retinal Degeneration. Int. J. Mol. Sci. 2016, 17, 1584. [Google Scholar] [CrossRef]
- Baltmr, A.; Duggan, J.; Nizari, S.; Salt, T.E.; Cordeiro, M.F. Neuroprotection in glaucoma—Is there a future role? Exp. Eye Res. 2010, 91, 554–566. [Google Scholar] [CrossRef]
- Russo, R.; Varano, G.P.; Adornetto, A.; Nucci, C.; Corasaniti, M.T.; Bagetta, G.; Morrone, L.A. Retinal ganglion cell death in glaucoma: Exploring the role of neuroinflammation. Eur. J. Pharmacol. 2016, 787, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Downs, J.C.; Roberts, M.D.; Burgoyne, C.F. Mechanical environment of the optic nerve head in glaucoma. Optom. Vis. Sci. 2008, 85, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Burgoyne, C.F.; Downs, J.C.; Bellezza, A.J.; Suh, J.K.; Hart, R.T. The optic nerve head as a biomechanical structure: A new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 2005, 24, 39–73. [Google Scholar] [CrossRef] [PubMed]
- Boccaccini, A.; Cavaterra, D.; Carnevale, C.; Tanga, L.; Marini, S.; Bocedi, A.; Lacal, P.M.; Manni, G.; Graziani, G.; Sbardella, D.; et al. Novel frontiers in neuroprotective therapies in glaucoma: Molecular and clinical aspects. Mol. Aspects Med. 2023, 94, 101225. [Google Scholar] [CrossRef]
- Cantor, L. Achieving low target pressures with today’s glaucoma medications. Surv. Ophthalmol. 2003, 48 (Suppl. S1), S8–S16. [Google Scholar] [CrossRef]
- Akopian, A.; Kumar, S.; Ramakrishnan, H.; Roy, K.; Viswanathan, S.; Bloomfield, S.A. Targeting neuronal gap junctions in mouse retina offers neuroprotection in glaucoma. J. Clin. Investig. 2017, 127, 2647–2661. [Google Scholar] [CrossRef]
- Naik, S.; Pandey, A.; Lewis, S.A.; Rao, B.S.S.; Mutalik, S. Neuroprotection: A versatile approach to combat glaucoma. Eur. J. Pharmacol. 2020, 881, 173208. [Google Scholar] [CrossRef]
- Schober, M.S.; Chidlow, G.; Wood, J.P.; Casson, R.J. Bioenergetic-based neuroprotection and glaucoma. Clin. Exp. Ophthalmol. 2008, 36, 377–385. [Google Scholar] [CrossRef]
- Teng, K.K.; Hempstead, B.L. Neurotrophins and their receptors: Signaling trios in complex biological systems. Cell. Mol. Life Sci. 2004, 61, 35–48. [Google Scholar] [CrossRef]
- Nucci, C.; Tartaglione, R.; Cerulli, A.; Mancino, R.; Spanò, A.; Cavaliere, F.; Rombolà, L.; Bagetta, G.; Corasaniti, M.T.; Morrone, L.A. Retinal damage caused by high intraocular pressure-induced transient ischemia is prevented by coenzyme Q10 in rat. Int. Rev. Neurobiol. 2007, 82, 397–406. [Google Scholar] [CrossRef]
- Cheung, Z.H.; So, K.F.; Lu, Q.; Yip, H.K.; Wu, W.; Shan, J.J.; Pang, P.K.; Chen, C.F. Enhanced survival and regeneration of axotomized retinal ganglion cells by a mixture of herbal extracts. J. Neurotrauma 2002, 19, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Dunkelberger, J.R.; Song, W.C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010, 20, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Wallach, D. The Tumor Necrosis Factor Family: Family Conventions and Private Idiosyncrasies. Cold Spring Harb. Perspect. Biol. 2018, 10, a028431. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, L.; WoldeMussie, E.; Lai, R. Role of alpha-2 agonists in neuroprotection. Surv. Ophthalmol. 2003, 48 (Suppl. S1), S47–S51. [Google Scholar] [CrossRef]
- Murtas, G.; Marcone, G.L.; Sacchi, S.; Pollegioni, L. L-serine synthesis via the phosphorylated pathway in humans. Cell. Mol. Life Sci. 2020, 77, 5131–5148. [Google Scholar] [CrossRef]
- Hill, D.; Compagnoni, C.; Cordeiro, M.F. Investigational neuroprotective compounds in clinical trials for retinal disease. Expert. Opin. Investig. Drugs 2021, 30, 571–577. [Google Scholar] [CrossRef]
- Lusthaus, J.; Goldberg, I. Current management of glaucoma. Med. J. Aust. 2019, 210, 180–187. [Google Scholar] [CrossRef]
- O’Leary, F.; Campbell, M. The blood-retina barrier in health and disease. FEBS J. 2023, 290, 878–891. [Google Scholar] [CrossRef]
- Guymer, R.H.; Bird, A.C.; Hageman, G.S. Cytoarchitecture of choroidal capillary endothelial cells. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1660–1666. [Google Scholar] [CrossRef]
- Booij, J.C.; Baas, D.C.; Beisekeeva, J.; Gorgels, T.G.; Bergen, A.A. The dynamic nature of Bruch’s membrane. Prog. Retin. Eye Res. 2010, 29, 1–18. [Google Scholar] [CrossRef]
- Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J. 2010, 12, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Akhter, M.H.; Ahmad, I.; Alshahrani, M.Y.; Al-Harbi, A.I.; Khalilullah, H.; Afzal, O.; Altamimi, A.S.A.; Najib Ullah, S.N.M.; Ojha, A.; Karim, S. Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System. Gels 2022, 8, 82. [Google Scholar] [CrossRef] [PubMed]
- Kang-Mieler, J.J.; Rudeen, K.M.; Liu, W.; Mieler, W.F. Advances in ocular drug delivery systems. Eye 2020, 34, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, L.; Fu, Y. Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects. J. Nanobiotechnology 2023, 21, 232. [Google Scholar] [CrossRef]
- Srinivasarao, D.A.; Lohiya, G.; Katti, D.S. Fundamentals, challenges, and nanomedicine-based solutions for ocular diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 2019, 11, e1548. [Google Scholar] [CrossRef]
- Palmerston Mendes, L.; Pan, J.; Torchilin, V.P. Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy. Molecules 2017, 22, 1401. [Google Scholar] [CrossRef]
- Mittal, P.; Saharan, A.; Verma, R.; Altalbawy, F.M.A.; Alfaidi, M.A.; Batiha, G.E.; Akter, W.; Gautam, R.K.; Uddin, M.S.; Rahman, M.S. Dendrimers: A New Race of Pharmaceutical Nanocarriers. Biomed. Res. Int. 2021, 2021, 8844030. [Google Scholar] [CrossRef]
- Chis, A.A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Vonica-Tincu, A.L.; Cormos, G.; et al. Applications and Limitations of Dendrimers in Biomedicine. Molecules 2020, 25, 3982. [Google Scholar] [CrossRef]
- Wu, P.T.; Lin, C.L.; Lin, C.W.; Chang, N.C.; Tsai, W.B.; Yu, J. Methylene-Blue-Encapsulated Liposomes as Photodynamic Therapy Nano Agents for Breast Cancer Cells. Nanomaterials 2018, 9, 14. [Google Scholar] [CrossRef]
- Sousa, I.; Rodrigues, F.; Prazeres, H.; Lima, R.T.; Soares, P. Liposomal therapies in oncology: Does one size fit all? Cancer Chemother. Pharmacol. 2018, 82, 741–755. [Google Scholar] [CrossRef]
- Kube, S.; Hersch, N.; Naumovska, E.; Gensch, T.; Hendriks, J.; Franzen, A.; Landvogt, L.; Siebrasse, J.P.; Kubitscheck, U.; Hoffmann, B.; et al. Fusogenic Liposomes as Nanocarriers for the Delivery of Intracellular Proteins. Langmuir 2017, 33, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Kuang, L.; Zhao, J.; Ross, A.E.; Wang, Z.; Ciolino, J.B. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. J. Control Release 2022, 345, 625–645. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zheng, S.; Hu, X.; Li, L.; Li, W.; Parungao, R.; Wang, Y.; Nie, Y.; Liu, T.; Song, K. Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting. Polymers 2020, 12, 1237. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef]
- Akhter, S.; Anwar, M.; Siddiqui, M.A.; Ahmad, I.; Ahmad, J.; Ahmad, M.Z.; Bhatnagar, A.; Ahmad, F.J. Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: Formulation development, in-vitro and in-vivo studies. Colloids Surf. B Biointerfaces 2016, 148, 19–29. [Google Scholar] [CrossRef]
- Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020, 25, 2193. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Espina, M.; Doktorovova, S.; Souto, E.B.; García, M.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye—Part I—Barriers and determining factors in ocular delivery. Eur. J. Pharm. Biopharm. 2017, 110, 70–75. [Google Scholar] [CrossRef]
- Meng, T.; Kulkarni, V.; Simmers, R.; Brar, V.; Xu, Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov. Today 2019, 24, 1524–1538. [Google Scholar] [CrossRef]
- Gorantla, S.; Rapalli, V.K.; Waghule, T.; Singh, P.P.; Dubey, S.K.; Saha, R.N.; Singhvi, G. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Adv. 2020, 10, 27835–27855. [Google Scholar] [CrossRef]
- Scuteri, D.; Bagetta, G.; Nucci, C.; Aiello, F.; Cesareo, M.; Tonin, P.; Corasaniti, M.T. Evidence on the neuroprotective properties of brimonidine in glaucoma. Prog. Brain Res. 2020, 257, 155–166. [Google Scholar] [CrossRef]
- Vorwerk, C.K.; Lipton, S.A.; Zurakowski, D.; Hyman, B.T.; Sabel, B.A.; Dreyer, E.B. Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Investig. Ophthalmol. Vis. Sci. 1996, 37, 1618–1624. [Google Scholar]
- Sawada, A.; Kitazawa, Y.; Yamamoto, T.; Okabe, I.; Ichien, K. Prevention of visual field defect progression with brovincamine in eyes with normal-tension glaucoma. Ophthalmology 1996, 103, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, K.; Silva, S.E.; Shaarawy, T. Efficacy and tolerability of topical 0.05% flunarizine in patients with open-angle glaucoma or ocular hypertension-a pilot study. J. Glaucoma 2011, 20, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Tsuruga, H.; Murata, H.; Araie, M.; Aihara, M. Neuroprotective effect of the calcium channel blocker nilvadipine on retinal ganglion cell death in a mouse ocular hypertension model. Heliyon 2023, 9, e13812. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N. Commentary—Association of metformin use among diabetics and the incidence of primary open-angle glaucoma—The Chennai Eye Disease Incidence Study. Indian. J. Ophthalmol. 2021, 69, 3339–3340. [Google Scholar] [CrossRef]
- Faiq, M.A.; Sengupta, T.; Nath, M.; Velpandian, T.; Saluja, D.; Dada, R.; Dada, T.; Chan, K.C. Ocular manifestations of central insulin resistance. Neural Regen. Res. 2023, 18, 1139–1146. [Google Scholar] [CrossRef]
- Johnson, T.V.; Bull, N.D.; Martin, K.R. Neurotrophic factor delivery as a protective treatment for glaucoma. Exp. Eye Res. 2011, 93, 196–203. [Google Scholar] [CrossRef]
- Binley, K.E.; Ng, W.S.; Barde, Y.A.; Song, B.; Morgan, J.E. Brain-derived neurotrophic factor prevents dendritic retraction of adult mouse retinal ganglion cells. Eur. J. Neurosci. 2016, 44, 2028–2039. [Google Scholar] [CrossRef]
- Hui, F.; Tang, J.; Williams, P.A.; McGuinness, M.B.; Hadoux, X.; Casson, R.J.; Coote, M.; Trounce, I.A.; Martin, K.R.; van Wijngaarden, P.; et al. Improvement in inner retinal function in glaucoma with nicotinamide (vitamin B3) supplementation: A crossover randomized clinical trial. Clin. Exp. Ophthalmol. 2020, 48, 903–914. [Google Scholar] [CrossRef]
- Anton, A.; Garcia, V.; Muñoz, M.; Gonzales, K.; Ayala, E.; Del Mar Sanchez, E.; Morilla-Grasa, A. The Effect of Oral Citicoline and Docosahexaenoic Acid on the Visual Field of Patients with Glaucoma: A Randomized Trial. Life 2022, 12, 1481. [Google Scholar] [CrossRef]
- Scalinci, S.Z.; Lugaresi, M.; Scorolli, L.; Ralli, M.; Greco, A.; Pantaleone, V.; Taurone, S.; Franzone, F. Neuroprotective role of phosphoserine in primary open-angle glaucoma patients. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9780–9786. [Google Scholar] [CrossRef] [PubMed]
- Lansita, J.A.; Mease, K.M.; Qiu, H.; Yednock, T.; Sankaranarayanan, S.; Kramer, S. Nonclinical Development of ANX005: A Humanized Anti-C1q Antibody for Treatment of Autoimmune and Neurodegenerative Diseases. Int. J. Toxicol. 2017, 36, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wirta, D.; Murahashi, W.; Mathur, V.; Sankaranarayanan, S.; Taylor, L.K.; Yednock, T.; Fong, D.S.; Goldberg, J.L. Safety and Target Engagement of Complement C1q Inhibitor ANX007 in Neurodegenerative Eye Disease: Results from Phase I Studies in Glaucoma. Ophthalmol. Sci. 2023, 3, 100290. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Kocab, A.J.; Zacks, D.N.; Marshak-Rothstein, A.; Gregory-Ksander, M. A small peptide antagonist of the Fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in an inducible mouse model of glaucoma. J. Neuroinflammation 2019, 16, 184. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, H.; Fu, L. MicroRNA-124 ameliorates autophagic dysregulation in glaucoma via regulation of P2X7-mediated Akt/mTOR signaling. Cutan. Ocul. Toxicol. 2022, 41, 43–48. [Google Scholar] [CrossRef]
- Ghate, D.; Edelhauser, H.F. Ocular drug delivery. Expert. Opin. Drug Deliv. 2006, 3, 275–287. [Google Scholar] [CrossRef]
- Wu, K.Y.; Fujioka, J.K.; Gholamian, T.; Zaharia, M.; Tran, S.D. Suprachoroidal Injection: A Novel Approach for Targeted Drug Delivery. Pharmaceuticals 2023, 16, 1241. [Google Scholar] [CrossRef]
- Barnes, S.D.; Campagna, J.A.; Dirks, M.S.; Doe, E.A. Control of intraocular pressure elevations after argon laser trabeculoplasty: Comparison of brimonidine 0.2% to apraclonidine 1.0%. Ophthalmology 1999, 106, 2033–2037. [Google Scholar] [CrossRef]
- Shih, G.C.; Calkins, D.J. Secondary neuroprotective effects of hypotensive drugs and potential mechanisms of action. Expert. Rev. Ophthalmol. 2012, 7, 161–175. [Google Scholar] [CrossRef]
- Gao, H.; Qiao, X.; Cantor, L.B.; WuDunn, D. Up-regulation of brain-derived neurotrophic factor expression by brimonidine in rat retinal ganglion cells. Arch. Ophthalmol. 2002, 120, 797–803. [Google Scholar] [CrossRef]
- Lai, R.K.; Chun, T.; Hasson, D.; Lee, S.; Mehrbod, F.; Wheeler, L. Alpha-2 adrenoceptor agonist protects retinal function after acute retinal ischemic injury in the rat. Vis. Neurosci. 2002, 19, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Manickavasagam, D.; Wehrung, D.; Chamsaz, E.A.; Sanders, M.; Bouhenni, R.; Crish, S.D.; Joy, A.; Oyewumi, M.O. Assessment of alkoxylphenacyl-based polycarbonates as a potential platform for controlled delivery of a model anti-glaucoma drug. Eur. J. Pharm. Biopharm. 2016, 107, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Hu, Y.; Zhang, H.; Liu, J.; Zhao, Y. Polydopamine nanoparticles attenuate retina ganglion cell degeneration and restore visual function after optic nerve injury. J. Nanobiotechnology 2021, 19, 436. [Google Scholar] [CrossRef]
- Stanyon, H.F.; Viles, J.H. Human serum albumin can regulate amyloid-β peptide fiber growth in the brain interstitium: Implications for Alzheimer disease. J. Biol. Chem. 2012, 287, 28163–28168. [Google Scholar] [CrossRef] [PubMed]
- Lambert, W.S.; Carlson, B.J.; van der Ende, A.E.; Shih, G.; Dobish, J.N.; Calkins, D.J.; Harth, E. Nanosponge-Mediated Drug Delivery Lowers Intraocular Pressure. Transl. Vis. Sci. Technol. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Lambuk, L.; Mohd Lazaldin, M.A.; Ahmad, S.; Iezhitsa, I.; Agarwal, R.; Uskoković, V.; Mohamud, R. Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in Glaucoma: A Review of Current State of the Art. Front. Pharmacol. 2022, 13, 875662. [Google Scholar] [CrossRef]
- Martin, K.R.; Quigley, H.A.; Zack, D.J.; Levkovitch-Verbin, H.; Kielczewski, J.; Valenta, D.; Baumrind, L.; Pease, M.E.; Klein, R.L.; Hauswirth, W.W. Gene therapy with brain-derived neurotrophic factor as a protection: Retinal ganglion cells in a rat glaucoma model. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4357–4365. [Google Scholar] [CrossRef]
- Chen, D.W.; Foldvari, M. In vitro bioassay model for screening non-viral neurotrophic factor gene delivery systems for glaucoma treatment. Drug Deliv. Transl. Res. 2016, 6, 676–685. [Google Scholar] [CrossRef]
- Narsineni, L.; Chen, D.W.; Foldvari, M. BDNF gene delivery to the retina by cell adhesion peptide-conjugated gemini nanoplexes in vivo. J. Control Release 2023, 359, 244–256. [Google Scholar] [CrossRef]
- Khatib, T.Z.; Osborne, A.; Yang, S.; Ali, Z.; Jia, W.; Manyakin, I.; Hall, K.; Watt, R.; Widdowson, P.S.; Martin, K.R. Receptor-ligand supplementation via a self-cleaving 2A peptide-based gene therapy promotes CNS axonal transport with functional recovery. Sci. Adv. 2021, 7, eabd2590. [Google Scholar] [CrossRef]
- Wang, T.; Li, Y.; Guo, M.; Dong, X.; Liao, M.; Du, M.; Wang, X.; Yin, H.; Yan, H. Exosome-Mediated Delivery of the Neuroprotective Peptide PACAP38 Promotes Retinal Ganglion Cell Survival and Axon Regeneration in Rats with Traumatic Optic Neuropathy. Front. Cell Dev. Biol. 2021, 9, 659783. [Google Scholar] [CrossRef] [PubMed]
- Giannaccini, M.; Usai, A.; Chiellini, F.; Guadagni, V.; Andreazzoli, M.; Ori, M.; Pasqualetti, M.; Dente, L.; Raffa, V. Neurotrophin-conjugated nanoparticles prevent retina damage induced by oxidative stress. Cell. Mol. Life Sci. 2018, 75, 1255–1267. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wang, Y.; Yao, K. Protection of retinal ganglion cells in glaucoma: Current status and future. Exp. Eye Res. 2021, 205, 108506. [Google Scholar] [CrossRef] [PubMed]
- Hare, W.; WoldeMussie, E.; Lai, R.; Ton, H.; Ruiz, G.; Feldmann, B.; Wijono, M.; Chun, T.; Wheeler, L. Efficacy and safety of memantine, an NMDA-type open-channel blocker, for reduction of retinal injury associated with experimental glaucoma in rat and monkey. Surv. Ophthalmol. 2001, 45 (Suppl. S3), S284–S289, discussion S295–S286. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Egea, M.A.; Davis, B.M.; Guo, L.; Espina, M.; Silva, A.M.; Calpena, A.C.; Souto, E.M.B.; Ravindran, N.; Ettcheto, M.; et al. Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. Small 2018, 14, 1701808. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Tatebe, T.; Suzuki, K.; Hirayama, T.; Hayakawa, M.; Kubo, H.; Tomita, T.; Makino, M. Memantine reduces the production of amyloid-β peptides through modulation of amyloid precursor protein trafficking. Eur. J. Pharmacol. 2017, 798, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Nizari, S.; Guo, L.; Davis, B.M.; Normando, E.M.; Galvao, J.; Turner, L.A.; Bizrah, M.; Dehabadi, M.; Tian, K.; Cordeiro, M.F. Non-amyloidogenic effects of α2 adrenergic agonists: Implications for brimonidine-mediated neuroprotection. Cell Death Dis. 2016, 7, e2514. [Google Scholar] [CrossRef]
- Reuben, D.B.; Kremen, S.; Maust, D.T. Dementia Prevention and Treatment: A Narrative Review. JAMA Intern. Med. 2024, 184, 563–572. [Google Scholar] [CrossRef]
- Bou Ghanem, G.O.; Wareham, L.K.; Calkins, D.J. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog. Retin. Eye Res. 2024, 100, 101261. [Google Scholar] [CrossRef]
- Esteruelas, G.; Halbaut, L.; García-Torra, V.; Espina, M.; Cano, A.; Ettcheto, M.; Camins, A.; Souto, E.B.; Luisa García, M.; Sánchez-López, E. Development and optimization of Riluzole-loaded biodegradable nanoparticles incorporated in a mucoadhesive in situ gel for the posterior eye segment. Int. J. Pharm. 2022, 612, 121379. [Google Scholar] [CrossRef]
- López-Malo, D.; Villarón-Casares, C.A.; Alarcón-Jiménez, J.; Miranda, M.; Díaz-Llopis, M.; Romero, F.J.; Villar, V.M. Curcumin as a Therapeutic Option in Retinal Diseases. Antioxidants 2020, 9, 48. [Google Scholar] [CrossRef]
- Davis, B.M.; Pahlitzsch, M.; Guo, L.; Balendra, S.; Shah, P.; Ravindran, N.; Malaguarnera, G.; Sisa, C.; Shamsher, E.; Hamze, H.; et al. Topical Curcumin Nanocarriers are Neuroprotective in Eye Disease. Sci. Rep. 2018, 8, 11066. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Lin, Y.K.; Lin, Y.T.; Lin, C.W.; Lan, G.Y.; Su, Y.C.; Hu, F.R.; Chang, K.H.; Chen, V.; Yeh, Y.C.; et al. Injectable, Antioxidative, and Tissue-Adhesive Nanocomposite Hydrogel as a Potential Treatment for Inner Retina Injuries. Adv. Sci. 2024, 11, e2308635. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.M.; Tian, K.; Pahlitzsch, M.; Brenton, J.; Ravindran, N.; Butt, G.; Malaguarnera, G.; Normando, E.M.; Guo, L.; Cordeiro, M.F. Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension. Mitochondrion 2017, 36, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Koury, S.T.; Bohrer, M.; Salceda, S.; Caro, J. Cellular sites of extrarenal and renal erythropoietin production in anaemic rats. Br. J. Haematol. 1992, 81, 153–159. [Google Scholar] [CrossRef]
- Luo, W.; Hu, L.; Wang, F. The protective effect of erythropoietin on the retina. Ophthalmic Res. 2015, 53, 74–81. [Google Scholar] [CrossRef]
- Silva, B.; Gonçalves, L.M.; Braz, B.S.; Delgado, E. Topical Administration of a Nanoformulation of Chitosan-Hyaluronic Acid-Epoetin Beta in a Rat Model of Glaucoma. Pharmaceuticals 2023, 16, 164. [Google Scholar] [CrossRef]
- Brar, S.K.; Perveen, S.; Chaudhry, M.R.; AlBabtain, S.; Amreen, S.; Khan, S. Erythropoietin-Induced Hypertension: A Review of Pathogenesis, Treatment, and Role of Blood Viscosity. Cureus 2021, 13, e12804. [Google Scholar] [CrossRef]
- Silva, B.; Gonçalves, L.M.; Braz, B.S.; Delgado, E. Chitosan and Hyaluronic Acid Nanoparticles as Vehicles of Epoetin Beta for Subconjunctival Ocular Delivery. Mar. Drugs 2022, 20, 151. [Google Scholar] [CrossRef]
- Abbott, C.J.; Choe, T.E.; Lusardi, T.A.; Burgoyne, C.F.; Wang, L.; Fortune, B. Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats. Investig. Ophthalmol. Vis. Sci. 2014, 55, 674–687. [Google Scholar] [CrossRef]
- Wadhwa, S.; Paliwal, R.; Paliwal, S.R.; Vyas, S.P. Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: Development, characterization, and evaluation. J. Drug Target. 2010, 18, 292–302. [Google Scholar] [CrossRef]
- Lillibridge, C.B.; Docter, J.M.; Eidelman, S. Oral administration of n-acetyl cysteine in the prophylaxis of “meconium ileus equivalent”. J. Pediatr. 1967, 71, 887–889. [Google Scholar] [CrossRef] [PubMed]
- Schwalfenberg, G.K. N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks). J. Nutr. Metab. 2021, 2021, 9949453. [Google Scholar] [CrossRef] [PubMed]
- Deepmala; Slattery, J.; Kumar, N.; Delhey, L.; Berk, M.; Dean, O.; Spielholz, C.; Frye, R. Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci. Biobehav. Rev. 2015, 55, 294–321. [Google Scholar] [CrossRef] [PubMed]
- Pitha, I.; Kambhampati, S.; Sharma, A.; Sharma, R.; McCrea, L.; Mozzer, A.; Kannan, R.M. Targeted Microglial Attenuation through Dendrimer-Drug Conjugates Improves Glaucoma Neuroprotection. Biomacromolecules 2023, 24, 1355–1365. [Google Scholar] [CrossRef] [PubMed]
- Belforte, N.A.; Moreno, M.C.; de Zavalía, N.; Sande, P.H.; Chianelli, M.S.; Keller Sarmiento, M.I.; Rosenstein, R.E. Melatonin: A novel neuroprotectant for the treatment of glaucoma. J. Pineal Res. 2010, 48, 353–364. [Google Scholar] [CrossRef]
- Monteiro, K.; Shiroma, M.E.; Damous, L.L.; Simões, M.J.; Simões, R.D.S.; Cipolla-Neto, J.; Baracat, E.C.; Soares-Jr., J.M. Antioxidant Actions of Melatonin: A Systematic Review of Animal Studies. Antioxidants 2024, 13, 439. [Google Scholar] [CrossRef]
- Dal Monte, M.; Cammalleri, M.; Amato, R.; Pezzino, S.; Corsaro, R.; Bagnoli, P.; Rusciano, D. A Topical Formulation of Melatoninergic Compounds Exerts Strong Hypotensive and Neuroprotective Effects in a Rat Model of Hypertensive Glaucoma. Int. J. Mol. Sci. 2020, 21, 9267. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, Z.M.; Guo, X.M.; Su, D.F.; Liu, X. An updated role of microRNA-124 in central nervous system disorders: A review. Front. Cell Neurosci. 2015, 9, 193. [Google Scholar] [CrossRef]
- Wang, P.; Chen, L.; Zhang, J.; Chen, H.; Fan, J.; Wang, K.; Luo, J.; Chen, Z.; Meng, Z.; Liu, L. Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene 2014, 33, 514–524. [Google Scholar] [CrossRef]
- Dobrzycka, M.; Sulewska, A.; Biecek, P.; Charkiewicz, R.; Karabowicz, P.; Charkiewicz, A.; Golaszewska, K.; Milewska, P.; Michalska-Falkowska, A.; Nowak, K.; et al. miRNA Studies in Glaucoma: A Comprehensive Review of Current Knowledge and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 4699. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Chen, J.; Gao, X.; Pan, S.; Su, Y.; Zhou, X. Co-delivery of brinzolamide and miRNA-124 by biodegradable nanoparticles as a strategy for glaucoma therapy. Drug Deliv. 2020, 27, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Iester, M. Brinzolamide ophthalmic suspension: A review of its pharmacology and use in the treatment of open angle glaucoma and ocular hypertension. Clin. Ophthalmol. 2008, 2, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Pang, I.H.; Clark, A.F. Inducible rodent models of glaucoma. Prog. Retin. Eye Res. 2020, 75, 100799. [Google Scholar] [CrossRef] [PubMed]
- Perlman, I. Testing retinal toxicity of drugs in animal models using electrophysiological and morphological techniques. Doc. Ophthalmol. 2009, 118, 3–28. [Google Scholar] [CrossRef] [PubMed]
- Fiore, T.; Iaccheri, B.; Pietrolucci, F.; Giansanti, F.; Cavaliere, A.; Coltella, R.; Mameli, M.G.; Androudi, S.; Brazitikos, P.; Cagini, C. Retinal toxicity of intravitreal genistein in a rabbit model. Retina 2010, 30, 1536–1541. [Google Scholar] [CrossRef] [PubMed]
- Bill, A.; Stjernschantz, J. Cholinergic vasoconstrictor effects in the rabbit eye: Vasomotor effects of pentobarbital anesthesia. Acta Physiol. Scand. 1980, 108, 419–424. [Google Scholar] [CrossRef]
- Werner, L.; Chew, J.; Mamalis, N. Experimental evaluation of ophthalmic devices and solutions using rabbit models. Vet. Ophthalmol. 2006, 9, 281–291. [Google Scholar] [CrossRef]
- Ruiz-Ederra, J.; García, M.; Hicks, D.; Vecino, E. Comparative study of the three neurofilament subunits within pig and human retinal ganglion cells. Mol. Vis. 2004, 10, 83–92. [Google Scholar]
- Ruiz-Ederra, J.; García, M.; Hernández, M.; Urcola, H.; Hernández-Barbáchano, E.; Araiz, J.; Vecino, E. The pig eye as a novel model of glaucoma. Exp. Eye Res. 2005, 81, 561–569. [Google Scholar] [CrossRef]
- Patel, C.; Pande, S.; Sagathia, V.; Ranch, K.; Beladiya, J.; Boddu, S.H.S.; Jacob, S.; Al-Tabakha, M.M.; Hassan, N.; Shahwan, M. Nanocarriers for the Delivery of Neuroprotective Agents in the Treatment of Ocular Neurodegenerative Diseases. Pharmaceutics 2023, 15, 837. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.R.; Clark, A.F.; Daudt, D.; Vishwanatha, J.K.; Yorio, T. A forensic path to RGC-5 cell line identification: Lessons learned. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5712–5719. [Google Scholar] [CrossRef] [PubMed]
- Wilsey, L.J.; Fortune, B. Electroretinography in glaucoma diagnosis. Curr. Opin. Ophthalmol. 2016, 27, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, M.F.; Hill, D.; Patel, R.; Corazza, P.; Maddison, J.; Younis, S. Detecting retinal cell stress and apoptosis with DARC: Progression from lab to clinic. Prog. Retin. Eye Res. 2022, 86, 100976. [Google Scholar] [CrossRef] [PubMed]
- Albarqi, H.A.; Garg, A.; Ahmad, M.Z.; Alqahtani, A.A.; Walbi, I.A.; Ahmad, J. Recent Progress in Chitosan-Based Nanomedicine for Its Ocular Application in Glaucoma. Pharmaceutics 2023, 15, 681. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.S.; Dine, K.; Bauman, B.; Lorentsen, M.; Lin, L.; Brown, H.; Hanson, L.R.; Svitak, A.L.; Wessel, H.; Brown, L.; et al. Intranasal Delivery of a Novel Amnion Cell Secretome Prevents Neuronal Damage and Preserves Function in a Mouse Multiple Sclerosis Model. Sci. Rep. 2017, 7, 41768. [Google Scholar] [CrossRef]
- Keller, L.A.; Merkel, O.; Popp, A. Intranasal drug delivery: Opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res. 2022, 12, 735–757. [Google Scholar] [CrossRef]
- Osborne, A.; Khatib, T.Z.; Songra, L.; Barber, A.C.; Hall, K.; Kong, G.Y.X.; Widdowson, P.S.; Martin, K.R. Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis. 2018, 9, 1007. [Google Scholar] [CrossRef]
- Dal Monte, M.; Cammalleri, M.; Pezzino, S.; Corsaro, R.; Pescosolido, N.; Bagnoli, P.; Rusciano, D. Hypotensive Effect of Nanomicellar Formulation of Melatonin and Agomelatine in a Rat Model: Significance for Glaucoma Therapy. Diagnostics 2020, 10, 138. [Google Scholar] [CrossRef]
- Moritera, T.; Ogura, Y.; Honda, Y.; Wada, R.; Hyon, S.H.; Ikada, Y. Microspheres of biodegradable polymers as a drug-delivery system in the vitreous. Investig. Ophthalmol. Vis. Sci. 1991, 32, 1785–1790. [Google Scholar]
Neuroprotective Drug | Nanocarrier | Efficacy | Safety | Key Findings |
---|---|---|---|---|
Brimonidine | Standard eye drops–Topical concentrations: 0.1%, 0.15%, 0.2% | Limited bioavailability (1–7%) and rapid clearance necessitate frequent dosing. | Common side effects include asthenia; drowsiness; eye discomfort (dry eye, eye inflammation); hyperemia; hypersensitivity; sensation of foreign body; taste altered. | Limited by frequent administration needs due to low bioavailability. |
Polydopamine (PDA) | Enhances RGC protection and significantly boosts axon regeneration compared to brimonidine alone; superior efficacy in reducing microglial activation and increasing visual function. | Demonstrates good ocular biocompatibility; intravitreal injections show no adverse effects. | PDA nanoparticles provide a synergistic neuroprotective effect, improve RGC density, and boost visual outcomes. | |
Brimonidine with human serum albumin (HSA) nanoparticles | Prolongs RGC survival, extending treatment efficacy compared to brimonidine alone. | High biocompatibility: no toxic effects reported. | HSA improves brimonidine’s duration of action, suggesting potential for more sustained neuroprotection. | |
alkoxylphenacyl-based polycarbonates copolymerized with polycaprolactone (AP-PCL) | Sustained release up to 90 days with consistent therapeutic levels; effective long-term IOP management. | Well tolerated; no retinal detachment observed in vivo; no toxic effects on human trabecular meshwork cells. | Demonstrates potential for extended-release formulations, reducing dosing frequency. | |
Brimonidine with nanosponges | Effective IOP reduction sustained for up to 3 weeks, depending on nanoparticle size; promising for long-term management. | No major adverse effects reported in animal studies. | Enhanced IOP control with longer-lasting effects compared to standard formulations, though further testing is needed for functional RGC protection assessment. |
Neuroprotective Drug | Formulation/Approach | Efficacy | Safety | Key Findings | References |
---|---|---|---|---|---|
Brain-Derived Neurotrophic Factor (BDNF) | BDNF (Standard Injections) | Provides neuroprotection to RGCs by acting directly through TrkB receptors or indirectly via glial cells. Effective in improving RGC survival. | Generally safe, but repeated injections are needed due to the transient nature of BDNF, which can raise safety concerns over time. | Challenges include rapid degradation, limited nuclear translocation, and difficulty sustaining therapeutic levels. | [68] |
K2® Nanoparticle-Based BDNF Gene Delivery | Superior retinal transfection and increased gene expression levels compared to conventional methods; 3.4× higher BDNF levels in animal models. | Good biocompatibility: no major adverse reactions noted in studies. | Effective BDNF gene delivery via nanoparticles demonstrated in co-culture models; promising for sustained gene therapy. | [70] | |
Combined BDNF and TrkB Gene Therapy | Provides superior neuroprotection and axonal transport compared to individual therapies; prevents receptor downregulation, ensuring sustained activation. | Safe in experimental settings. | Synergistic effects improve therapeutic outcomes, offering enhanced and prolonged RGC protection. | [72] | |
PACAP38-Linked Exosomes (Non-Glaucoma Model) | Markedly improves survival rates, nerve layer thickness, and visual recovery in traumatic optic neuropathy models. | High biocompatibility observed; no significant adverse effects reported. | Demonstrates the effectiveness of neurotrophic factor delivery via exosomes for enhanced neuroprotection. | [73] |
Agents | IOP Reduction | Photopic Negative Response | Pattern ERG | Gliosis-Related Inflammation | RGC Density (% of Healthy Control) |
---|---|---|---|---|---|
MelAgo | 60% | PhNR amplitude close to normal. | Reduced MCE-induced prolonged implicit time. | Reduced Iba1 and GFAP by 2.3- and 3.2-fold. Reduced levels of TNF-α, IL-1β and IL-6 (by 2.0-, 2.1-, and 2.3-fold). Increased levels of IL-4 and IL-10 (by about 2.0- and 2.5-fold). | Central 92 ± 5 Middle 94 ± 5 Peripheral 94 ± 5 |
Timolol | 32% | No effects. | No effects. | No effects. | Central 78 ± 4 Middle 83 ± 3 Peripheral 81 ± 4 |
Brimonidine | 34% | PhNR amplitude close to normal. | Reduced MCE-induced prolonged implicit time. | Reduced GFAP by 1.6-fold. | Central 88 ± 3 Middle 91 ± 6 Peripheral 91 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, K.; Georgi, M.; Hill, D.; Lam, C.F.J.; Wei, W.; Cordeiro, M.F. Review: Neuroprotective Nanocarriers in Glaucoma. Pharmaceuticals 2024, 17, 1190. https://doi.org/10.3390/ph17091190
Pei K, Georgi M, Hill D, Lam CFJ, Wei W, Cordeiro MF. Review: Neuroprotective Nanocarriers in Glaucoma. Pharmaceuticals. 2024; 17(9):1190. https://doi.org/10.3390/ph17091190
Chicago/Turabian StylePei, Kun, Maria Georgi, Daniel Hill, Chun Fung Jeffrey Lam, Wei Wei, and Maria Francesca Cordeiro. 2024. "Review: Neuroprotective Nanocarriers in Glaucoma" Pharmaceuticals 17, no. 9: 1190. https://doi.org/10.3390/ph17091190
APA StylePei, K., Georgi, M., Hill, D., Lam, C. F. J., Wei, W., & Cordeiro, M. F. (2024). Review: Neuroprotective Nanocarriers in Glaucoma. Pharmaceuticals, 17(9), 1190. https://doi.org/10.3390/ph17091190