Multidrug-Resistant Bacteria in Immunocompromised Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Colonization and Infection with MDR Bacteria in ICU Patients
4. Colonization and Infection with MDR Bacteria in HIV-Positive Patients
5. Colonization and Infection with MDR Bacteria in Cancer Patients
6. Research Gaps, Future Directions in Research on Multidrug-Resistant Bacteria Infection versus Colonization in Immunocompromised Patients
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2020; ECDC: Stockholm, Sweden, 2022. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2021; ECDC: Stockholm, Sweden, 2022. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2022; ECDC: Stockholm, Sweden, 2023. [Google Scholar]
- Denkel, L.A.; Maechler, F.; Schwab, F.; Kola, A.; Weber, A.; Gastmeier, P.; Pfafflin, F.; Weber, S.; Werner, G.; Pfeifer, Y.; et al. Infections caused by extended-spectrum β-lactamase-producing Enterobacterales after rectal colonization with ESBL-producing Escherichia coli or Klebsiella pneumoniae. Clin. Microbiol. Infect. 2020, 26, 1046–1051. [Google Scholar] [CrossRef]
- Hilty, M.; Betsch, B.Y.; Bögli-Stuber, K.; Heiniger, N.; Stadler, M.; Kuffer, M.; Kronenberg, A.; Rohrer, C.; Aebi, S.; Endimiani, A.; et al. Transmission dynamics of extended-spectrum β-lactamase-producing Enterobacteriaceae in the tertiary care hospital and the household setting. Clin. Infect. Dis. 2012, 55, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Cataldo, M.A.; Dancer, S.J.; De Angelis, G.; Falcone, M.; Frank, U.; Kahlmeter, G.; Pan, A.; Petrosillo, N.; Rodriguez-Baño, J.; et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin. Microbiol. Infect. 2014, 20 (Suppl. S1), 1–55. [Google Scholar] [CrossRef]
- Righi, E.; Peri, A.M.; Harris, P.N.; Wailan, A.M.; Liborio, M.; Lane, S.W.; Paterson, D.L. Global prevalence of carbapenem resistance in neutropenic patients and association with mortality and carbapenem use: Systematic review and meta-analysis. J. Antimicrob. Chemother. 2017, 72, 668–677. [Google Scholar] [CrossRef]
- Biliński, J.; Grzesiowski, P.; Muszyński, J.; Wróblewska, M.; Madry, K.; Robak, K.; Dzieciątkowski, T.; Wiktor-Jedrzejczak, W.; Basak, G.W. Fecal Microbiota Transplantation Inhibits Multidrug-Resistant Gut Pathogens: Preliminary Report Performed in an Immunocompromised Host. Arch. Immunol. Ther. Exp. 2016, 64, 255–258. [Google Scholar] [CrossRef]
- Tacconelli, E.; Mazzaferri, F.; de Smet, A.M.; Bragantini, D.; Eggimann, P.; Huttner, B.D.; Kuijper, E.J.; Lucet, J.C.; Mutters, N.T.; Sanguinetti, M.; et al. ESCMID-EUCIC clinical guidelines on decolonization of multidrug-resistant Gram-negative bacteria carriers. Clin. Microbiol. Infect. 2019, 25, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA 2020, 323, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Montoya, A.; Schildhouse, R.; Goyal, A.; Mann, J.D.; Snyder, A.; Chopra, V.; Mody, L. How often are health care personnel hands colonized with multidrug- resistant organisms? A systematic review and meta-analysis. Am. J. Infect. Control 2019, 47, 693–703. [Google Scholar] [CrossRef]
- De Waele, J.J.; Boelens, J.; Leroux-Roels, I. Multidrug-resistant bacteria in ICU: Fact or myth. Curr. Opin. Anaesthesiol. 2020, 33, 156–161. [Google Scholar] [CrossRef]
- Sengupta, S.; Barman, P.; Lo, J. Opportunities to overcome implementation challenges of infection prevention and control in low-middle income countries. Curr. Treat. Options Infect. Dis. 2019, 11, 267–280. [Google Scholar] [CrossRef]
- Saha, M.; Sarkar, A. Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century. J. Xenobiot. 2021, 11, 197–214. [Google Scholar] [CrossRef] [PubMed]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef] [PubMed]
- Barbier, F.; Pommier, C.; Essaied, W.; Garrouste-Orgeas, M.; Schwebel, C.; Ruckly, S.; Dumenil, A.S.; Lemiale, V.; Mourvillier, B.; Clec’h, C.; et al. Colonization and infection with extended-spectrum β-lactamase-producing Enterobacteriaceae in ICU patients: What impact on outcomes and carbapenem exposure? J. Antimicrob. Chemother. 2016, 71, 1088–1097. [Google Scholar] [CrossRef]
- Barbier, F.; Lisboa, T.; Nseir, S. Understanding why resistant bacteria are associated with higher mortality in ICU patients. Intensive Care Med. 2016, 42, 2066–2069. [Google Scholar] [CrossRef] [PubMed]
- Zahar, J.R.; Blot, S.; Nordmann, P.; Martischang, R.; Timsit, J.F.; Harbarth, S.; Barbier, F. Screening for Intestinal Carriage of Extended-spectrum Beta-lactamase-producing Enterobacteriaceae in Critically Ill Patients: Expected Benefits and Evidence-based Controversies. Clin. Infect. Dis. 2019, 68, 2125–2130. [Google Scholar] [CrossRef]
- Fernández-Martínez, N.F.; Cárcel-Fernández, S.; De la Fuente-Martos, C.; Ruiz-Montero, R.; Guzmán-Herrador, B.R.; León-López, R.; Gómez, F.J.; Guzmán-Puche, J.; Martínez-Martínez, L.; Salcedo-Leal, I. Risk Factors for Multidrug-Resistant Gram-Negative Bacteria Carriage upon Admission to the Intensive Care Unit. Int. J. Environ. Res. Public Health 2022, 19, 1039. [Google Scholar] [CrossRef]
- Karaşin, G.; Bayram, Y.; Parlak, M.; Aypak, C.; Akgül, M.; Güdücüoğlu, H. The evaluation of vancomycin-resistant enterococci and carbapenamase producing Klebsiella colonization among ICU-Hospitalized Patients. Afr. Health Sci. 2021, 21, 1662–1668. [Google Scholar] [CrossRef]
- Routsi, C.; Gkoufa, A.; Arvaniti, K.; Kokkoris, S.; Tourtoglou, A.; Theodorou, V.; Vemvetsou, A.; Kassianidis, G.; Amerikanou, A.; Paramythiotou, E.; et al. De-escalation of antimicrobial therapy in ICU settings with high prevalence of multidrug-resistant bacteria: A multicentre prospective observational cohort study in patients with sepsis or septic shock. J. Antimicrob. Chemother. 2020, 75, 3665–3674. [Google Scholar] [CrossRef]
- Munari, M.; Franzoi, F.; Sergi, M.; De Cassai, A.; Geraldini, F.; Grandis, M.; Caravello, M.; Boscolo, A.; Navalesi, P. Extensively drug-resistant and multidrug-resistant gram-negative pathogens in the neurocritical intensive care unit. Acta Neurochir. 2022, 164, 859–865. [Google Scholar] [CrossRef]
- Ceccarelli, G.; Alessandri, F.; Moretti, S.; Borsetti, A.; Maggiorella, M.T.; Fabris, S.; Russo, A.; Ruberto, F.; De Meo, D.; Ciccozzi, M.; et al. Clinical Impact of Colonization with Carbapenem-Resistant Gram-Negative Bacteria in Critically Ill Patients Admitted for Severe Trauma. Pathogens 2022, 11, 1295. [Google Scholar] [CrossRef] [PubMed]
- Vlad, N.D.; Voidăzan, S.; Căpâlnă, A.; Cernat, R.C.; Carp, S.D.; Mitan, R.; Dumitru, A.; Rugină, S.; Nemet, C.; Dumitru, I.M. Associated factors for bacterial colonization in patients admitted to the intensive care unit of the Clinical Hospital of Infectious Diseases. Germs 2023, 13, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Wu, S.; Hao, M.; Zhu, J.; Ding, B.; Yang, Y.; Xu, X.; Wang, M.; Yang, F.; Hu, F. The Colonization of Carbapenem-Resistant Klebsiella pneumoniae: Epidemiology, Resistance Mechanisms, and Risk Factors in Patients Admitted to Intensive Care Units in China. J. Infect. Dis. 2020, 221 (Suppl. S2), S206–S214. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Hyun, J.H.; Jeong, H.S.; Lee, Y.K. Epidemiology and Risk Factors of Carbapenemase-Producing Enterobacteriaceae Acquisition and Colonization at a Korean Hospital over 1 Year. Antibiotics 2023, 12, 759. [Google Scholar] [CrossRef] [PubMed]
- Wani, F.A.; Bandy, A.; Alenzi, M.J.S.; Alzarea, A.I.; Alanazi, A.S.; Sayeed, M.U.; Thirunavukkarasu, A.; Tantry, B.; Dar, M. Resistance Patterns of Gram-Negative Bacteria Recovered from Clinical Specimens of Intensive Care Patients. Microorganisms 2021, 9, 2246. [Google Scholar] [CrossRef]
- Silago, V.; Kovacs, D.; Msanga, D.R.; Seni, J.; Matthews, L.; Oravcova, K.; Zadoks, R.N.; Lupindu, A.M.; Hoza, A.S.; Mshana, S.E. Bacteremia in critical care units at Bugando Medical Centre, Mwanza, Tanzania: The role of colonization and contaminated cots and mothers’ hands in cross-transmission of multidrug resistant Gram-negative bacteria. Antimicrob. Resist. Infect. Control 2020, 9, 58. [Google Scholar] [CrossRef]
- Manyahi, J.; Majigo, M.; Kibwana, U.; Kamori, D.; Lyamuya, E.F. Colonization of Extended-spectrum β-lactamase producing Enterobacterales and meticillin-resistant S. aureus in the intensive care unit at a tertiary hospital in Tanzania: Implications for Infection control and prevention. Infect. Prev. Pract. 2022, 4, 100212. [Google Scholar] [CrossRef]
- Maina, J.W.; Onyambu, F.G.; Kibet, P.S.; Musyoki, A.M. Multidrug-resistant Gram-negative bacterial infections and associated factors in a Kenyan intensive care unit: A cross-sectional study. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 85. [Google Scholar] [CrossRef]
- Martins, A.P.S.; da Mata, C.P.S.M.; Dos Santos, U.R.; de Araujo, C.A.; Leite, E.M.M.; de Carvalho, L.D.; Vidigal, P.G.; Vieira, C.D.; Dos Santos-Key, S.G. Association between multidrug-resistant bacteria and outcomes in intensive care unit patients: A non-interventional study. Front. Public Health 2024, 11, 1297350. [Google Scholar] [CrossRef]
- Oliveira, A.B.S.; Sacillotto, G.H.; Neves, M.F.B.; da Silva, A.H.N.; Moimaz, T.A.; Gandolfi, J.V.; Nogueira, M.C.L.; Lobo, S.M. Prevalence, outcomes, and predictors of multidrug-resistant nosocomial lower respiratory tract infections among patients in an ICU. J. Bras. Pneumol. 2023, 49, e20220235. [Google Scholar] [CrossRef]
- Uc-Cachón, A.H.; Gracida-Osorno, C.; Luna-Chi, I.G.; Jiménez-Guillermo, J.G.; Molina-Salinas, G.M. High Prevalence of Antimicrobial Resistance Among Gram-Negative Isolated Bacilli in Intensive Care Units at a Tertiary-Care Hospital in Yucatán Mexico. Medicina 2019, 55, 588. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Cardoso, F.S.; Pawlowski, A.; Wunderink, R.; Ladner, D.P.; Abraldes, J.G.; Karvellas, C.J. The impact of multidrug-resistant microorganisms on critically ill patients with cirrhosis in the intensive care unit: A cohort study. Hepatol. Commun. 2023, 7, e0038. [Google Scholar] [CrossRef] [PubMed]
- Prado, V.; Hernández-Tejero, M.; Mücke, M.M.; Marco, F.; Gu, W.; Amoros, A.; Toapanta, D.; Reverter, E.; de la Peña-Ramirez, C.; Altenpeter, L.; et al. Rectal colonization by resistant bacteria increases the risk of infection by the colonizing strain in critically ill patients with cirrhosis. J. Hepatol. 2022, 76, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- El-Sokkary, R.; Uysal, S.; Erdem, H.; Kullar, R.; Pekok, A.U.; Amer, F.; Grgić, S.; Carevic, B.; El-Kholy, A.; Liskova, A.; et al. Profiles of multidrug-resistant organisms among patients with bacteremia in intensive care units: An international ID-IRI survey. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2323–2334. [Google Scholar] [CrossRef] [PubMed]
- Gill, C.M.; Nicolau, D.P.; ERACE-PA Global Study Group. Carbapenem-resistant Pseudomonas aeruginosa: An assessment of frequency of isolation from ICU versus non-ICU, phenotypic and genotypic profiles in a multinational population of hospitalized patients. Antimicrob. Resist. Infect. Control 2022, 11, 146. [Google Scholar] [CrossRef]
- Ray, S.; Narayanan, A.; Giske, C.G.; Neogi, U.; Sönnerborg, A.; Nowak, P. Altered Gut Microbiome under Antiretroviral Therapy: Impact of Efavirenz and Zidovudine. ACS Infect. Dis. 2021, 7, 1104–1115. [Google Scholar] [CrossRef]
- Nwafia, I.N.; Ohanu, M.E.; Ebede, S.O.; Ozumba, U.C. Molecular detection and antibiotic resistance pattern of extended-spectrum beta-lactamase producing Escherichia coli in a Tertiary Hospital in Enugu, Nigeria. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 41. [Google Scholar] [CrossRef]
- Wilmore, S.M.S.; Kranzer, K.; Williams, A.; Makamure, B.; Nhidza, A.F.; Mayini, J.; Bandason, T.; Metcalfe, J.; Nicol, M.P.; Balakrishnan, I.; et al. Carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae in HIV-infected children in Zimbabwe. J. Med. Microbiol. 2017, 66, 609–615. [Google Scholar] [CrossRef]
- Hirschtick, R.E.; Glassroth, J.; Jordan, M.C.; Wilcosky, T.C.; Wallace, J.M.; Kvale, P.A.; Markowitz, N.; Rosen, M.J.; Mangura, B.T.; Hopewell, P.C. Bacterial pneumonia in persons infected with the human immunodeficiency virus. Pulmonary Complications of HIV Infection Study Group. N. Engl. J. Med. 1995, 333, 845–851. [Google Scholar] [CrossRef]
- Madhi, S.A.; Madhi, A.; Petersen, K.; Khoosal, M.; Klugman, K.P. Impact of human immunodeficiency virus type 1 infection on the epidemiology and outcome of bacterial meningitis in South African children. Int. J. Infect. Dis. 2001, 5, 119–125. [Google Scholar] [CrossRef]
- Blomberg, B.; Manji, K.P.; Urassa, W.K.; Tamim, B.S.; Mwakagile, D.S.M.; Jureen, R.; Msangi, V.; Tellevik, M.G.; Holberg-Petersen, M.; Harthug, S.; et al. Antimicrobial resistance predicts death in Tanzanian children with bloodstream infections: A prospective cohort study. BMC Infect. Dis. 2007, 7, 43. [Google Scholar] [CrossRef]
- Tellevik, M.G.; Blomberg, B.; Kommedal, Ø.; Maselle, S.Y.; Langeland, N.; Moyo, S.J. High Prevalence of Faecal Carriage of ESBL-Producing Enterobacteriaceae among Children in Dar es Salaam, Tanzania. PLoS ONE. 2016, 11, e0168024. [Google Scholar] [CrossRef]
- Manyahi, J.; Moyo, S.J.; Tellevik, M.G.; Langeland, N.; Blomberg, B. High Prevalence of Fecal Carriage of Extended Spectrum β-Lactamase-Producing Enterobacteriaceae Among Newly HIV-Diagnosed Adults in a Community Setting in Tanzania. Microb. Drug Resist. 2020, 26, 1540–1545. [Google Scholar] [CrossRef] [PubMed]
- Msanga, D.R.; Silago, V.; Massoza, T.; Kidenya, B.R.; Balandya, E.; Mirambo, M.M.; Sunguya, B.; Mmbaga, B.T.; Lyamuya, E.; Bartlet, J.; et al. High Fecal Carriage of Multidrug Resistant Bacteria in the Community among Children in Northwestern Tanzania. Pathogens 2022, 11, 379. [Google Scholar] [CrossRef]
- Dimani, B.D.; Founou, R.C.; Zemtsa, J.R.; Mbossi, A.; Koudoum, P.L.; Founou, L.L.; Kouanfack, C.; Sone, L.H.E. Faecal Carriage of Multidrug-Resistant and Extended-Spectrum β-lactamase Producing Enterobacterales in People Living with HIV in Yaoundé, Cameroon. J. Glob. Antimicrob. Resist. 2023, 35, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Zemtsa, R.J.; Noubom, M.; Founou, L.L.; Dimani, B.D.; Koudoum, P.L.; Mbossi, A.D.; Kouanfack, C.; Founou, R.C. Multidrug-Resistant and Extended-Spectrum β-Lactamase (ESBL)—Producing Enterobacterales Isolated from Carriage Samples among HIV Infected Women in Yaoundé, Cameroon. Pathogens 2022, 11, 504. [Google Scholar] [CrossRef] [PubMed]
- Marbou, W.J.T.; Kuete, V. Bacterial resistance and immunological profiles in HIV-infected and non-infected patients at Mbouda AD LUCEM Hospital in Cameroon. J. Infect. Public Health 2017, 10, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, R.; Bastola, A.; Adhikari, N.; Rijal, K.R.; Banjara, M.R.; Ghimire, P.; Shrestha, U.T. Multidrug-resistant bacteria with ESBL genes: A growing threat among people living with HIV/AIDS in Nepal. BMC Infect. Dis. 2022, 22, 526. [Google Scholar] [CrossRef]
- Regasa Dadi, B.; Solomon, Z.; Tesfaye, M. Vancomycin resistant Enterococci and its associated factors among HIV infected patients on anti-retroviral therapy in Ethiopia. PLoS ONE 2021, 16, e0251727. [Google Scholar] [CrossRef]
- Zike, M.; Ahmed, A.M.; Hailu, A.; Hussien, B. Vancomycin Resistant Enterococci Prevalence, Antibiotic Susceptibility Patterns and Colonization Risk Factors Among HIV-Positive Patients in Health-Care Facilities in Debre Berhan Town, Ethiopia. Infect. Drug Resist. 2024, 17, 17–29. [Google Scholar] [CrossRef]
- Tilahun, M.; Gedefie, A.; Sahle, Z. Asymptomatic Carriage Rate, Multidrug Resistance Level, and Associated Risk Factors of Enterococcus in Clinical Samples among HIV-Positive Patients Attending at Debre Birhan Comprehensive Specialized Hospital, North Showa, Ethiopia. Biomed. Res. Int. 2023, 2023, 7310856. [Google Scholar] [CrossRef]
- Henderson, H.I.; Napravnik, S.; Gower, E.W.; Aiello, A.E.; Kinlaw, A.C.; Williams, B.; Wohl, D.A.; van Duin, D. Resistance in Enterobacterales Is Higher Among People Living With Human Immunodeficiency Virus. Clin. Infect. Dis. 2022, 75, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Henderson, H.I.; Napravnik, S.; Kosorok, M.R.; Gower, E.W.; Kinlaw, A.C.; Aiello, A.E.; Williams, B.; Wohl, D.A.; van Duin, D. Predicting Risk of Multidrug-Resistant Enterobacterales Infections Among People With HIV. Open Forum Infect. Dis. 2022, 9, ofac487. [Google Scholar] [CrossRef]
- He, S.; Lin, J.; Li, L.; Cai, W.; Ye, J.; Li, Y.; Zhang, W.; Liu, N.; Gong, Z.; Ye, X.; et al. Multidrug-resistant Staphylococcus aureus nasal carriage among HIV-positive outpatients in Guangzhou, China: Prevalence, risk factors, phenotypic and molecular characteristics. J. Infect. Chemother. 2021, 27, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.Y.; Wu, D.; Hung, C.C.; Huang, S.S.; Yuan, F.H.; Lee, M.H.; Huang, C.T.; Shie, S.S.; Huang, P.Y.; Yang, C.C.; et al. Methicillin-resistant Staphylococcus aureus nasal colonization among HIV-infected patients in Taiwan: Prevalence, molecular characteristics and associated factors with nasal carriage. BMC Infect. Dis. 2020, 20, 254. [Google Scholar] [CrossRef]
- Kapali, S.; Pokhrel, A.; Bastola, A.; Tuladhar, R.; Joshi, D.R. Methicillin-resistant Staphylococcus aureus nasal colonization in people living with HIV and healthy people in Kathmandu, Nepal. Future Sci. OA 2021, 8, FSO769. [Google Scholar] [CrossRef] [PubMed]
- Donkor, E.S.; Kotey, F.C.N.; Dayie, N.T.K.D.; Duodu, S.; Tetteh-Quarcoo, P.B.; Osei, M.M.; Tette, E.M.A. Colonization of HIV-Infected Children with Methicillin-Resistant Staphylococcus aureus. Pathogens 2019, 8, 35. [Google Scholar] [CrossRef]
- Muhaba, H.; Fenta, G.M.; Gebretsadik, D. Methicillin resistance Staphylococcus aureus nasal carriage and its associated factors among HIV patients attending art clinic at Dessie comprehensive specialized hospital, Dessie, North East Ethiopia. PLoS Glob. Public Health 2022, 2, e0000838. [Google Scholar] [CrossRef]
- Ribeiro, A.B.D.T.M.; Heimesaat, M.M.; Bereswill, S. Changes of the Intestinal Microbiome-Host Homeostasis in HIV-Infected Individuals—A Focus on the Bacterial Gut Microbiome. Eur. J. Microbiol. Immunol. 2017, 7, 158–167. [Google Scholar] [CrossRef]
- Bandera, A.; De Benedetto, I.; Bozzi, G.; Gori, A. Altered gut microbiome composition in HIV infection: Causes, effects and potential intervention. Curr. Opin. HIV AIDS 2018, 13, 73–80. [Google Scholar] [CrossRef]
- Yang, L.; Poles, M.A.; Fisch, G.S.; Ma, Y.; Nossa, C.; Phelan, J.A.; Pei, Z. HIV-induced immunosuppression is associated with colonization of the proximal gut by environmental bacteria. AIDS 2016, 30, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Bartoletti, M.; Giannella, M.; Tedeschi, S.; Viale, P. Multidrug-Resistant Bacterial Infections in Solid Organ Transplant Candidates and Recipients. Infect. Dis. Clin. N. Am. 2018, 32, 551–580. [Google Scholar] [CrossRef] [PubMed]
- Baker, T.M.; Satlin, M.J. The growing threat of multidrug-resistant Gram-negative infections in patients with hematologic malignancies. Leuk. Lymphoma 2016, 57, 2245–2258. [Google Scholar] [CrossRef]
- Girmenia, C.; Viscoli, C.; Piciocchi, A.; Cudillo, L.; Botti, S.; Errico, A.; Sarmati, L.; Ciceri, F.; Locatelli, F.; Giannella, M.; et al. Management of carbapenem resistant Klebsiella pneumoniae infections in stem cell transplant recipients: An Italian multidisciplinary consensus statement. Haematologica 2015, 100, e373–e376. [Google Scholar] [CrossRef] [PubMed]
- Zare, D.; Fazeli, H. First prevalence of metallo beta-lactamases producing Enterobacteriacea in Iranian cancer patients. Ann. Ig. 2019, 31, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Haddad, S.; Jabbour, J.F.; Hindy, J.R.; Makki, M.; Sabbagh, A.; Nayfeh, M.; Boustany, M.; El-Zein, S.; Tamim, H.; El Zakhem, A.; et al. Bacterial bloodstream infections and patterns of resistance in patients with haematological malignancies at a tertiary centre in Lebanon over 10 years. J. Glob. Antimicrob. Resist. 2021, 27, 228–235. [Google Scholar] [CrossRef]
- Alrstom, A.; Alsuliman, T.; Daher, N.; Abouharb, R. The Impact of Modifying Empirical Antibiotic Therapy Based on Intestinal Colonization Status on Clinical Outcomes of Febrile Neutropenic Patients. Infect. Chemother. 2021, 53, 63–74. [Google Scholar] [CrossRef]
- Mechergui, A.; Achour, W.; Mathlouthi, S.; Hassen, A.B. Prevalence of infectious multi-drug resistant bacteria isolated from immunocompromised patients in Tunisia. Afr. Health Sci 2019, 19, 2021–2025. [Google Scholar] [CrossRef]
- Zhu, R.; Xu, X.; Lian, S.; Cai, M.; Zhang, H.; Chen, X.; Cao, Y. Intestinal Colonization with Carbapenem-Resistant Enterobacteriaceae in Acute Leukemia Patients: Risk Factors and Molecular Characteristics. Infect. Drug Resist. 2022, 15, 4275–4283. [Google Scholar] [CrossRef]
- Chen, X.; Wen, X.; Jiang, Z.; Yan, Q. Prevalence and factors associated with carbapenem-resistant Enterobacterales (CRE) infection among hematological malignancies patients with CRE intestinal colonization. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 3. [Google Scholar] [CrossRef]
- Perdikouri, E.I.A.; Arvaniti, K.; Lathyris, D.; Kiouti, F.A.; Siskou, E.; Haidich, A.B.; Papandreou, C. Infections Due to Multidrug-Resistant Bacteria in Oncological Patients: Insights from a Five-Year Epidemiological and Clinical Analysis. Microorganisms 2019, 7, 277. [Google Scholar] [CrossRef]
- Chhatwal, P.; Ebadi, E.; Thol, F.; Koenecke, C.; Beutel, G.; Ziesing, S.; Schlüter, D.; Bange, F.C.; Baier, C. Prospective infection surveillance and systematic screening for vancomycin-resistant enterococci in hematologic and oncologic patients—Findings of a German tertiary care center. J. Glob. Antimicrob. Resist. 2020, 22, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Stratmann, J.A.; Lacko, R.; Ballo, O.; Shaid, S.; Gleiber, W.; Vehreschild, M.J.G.T.; Wichelhaus, T.; Reinheimer, C.; Göttig, S.; Kempf, V.A.J.; et al. Colonization with multi-drug-resistant organisms negatively impacts survival in patients with non-small cell lung cancer. PLoS ONE 2020, 15, e0242544. [Google Scholar] [CrossRef] [PubMed]
- Ballo, O.; Tarazzit, I.; Stratmann, J.; Reinheimer, C.; Hogardt, M.; Wichelhaus, T.A.; Kempf, V.; Serve, H.; Finkelmeier, F.; Brandts, C. Colonization with multidrug resistant organisms determines the clinical course of patients with acute myeloid leukemia undergoing intensive induction chemotherapy. PLoS ONE 2019, 14, e0210991. [Google Scholar] [CrossRef]
- Trecarichi, E.M.; Giuliano, G.; Cattaneo, C.; Ballanti, S.; Criscuolo, M.; Candoni, A.; Marchesi, F.; Laurino, M.; Dargenio, M.; Fanci, R.; et al. Bloodstream infections due to Gram-negative bacteria in patients with hematologic malignancies: Updated epidemiology and risk factors for multidrug-resistant strains in an Italian perspective survey. Int. J. Antimicrob. Agents 2023, 61, 106806. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Jiménez, P.; López-Medrano, F.; Fernández-Ruiz, M.; Silva, J.T.; Corbella, L.; San-Juan, R.; Lizasoain, M.; Díaz-Regañón, J.; Viedma, E.; Aguado, J.M. Risk Factors and Outcomes for Multidrug Resistant Pseudomonas aeruginosa Infection in Immunocompromised Patients. Antibiotics 2022, 11, 1459. [Google Scholar] [CrossRef]
- Kömürcü, B.; Tükenmez-Tigen, E.; Toptaş, T.; Fıratlı-Tuğlular, T.; Korten, V. Rectal colonization with multidrug-resistant gram-negative bacteria in patients with hematological malignancies: A prospective study. Expert Rev. Hematol. 2020, 13, 923–927. [Google Scholar] [CrossRef]
- Junior, A.P.N.; Del Missier, G.M.; Praça, A.P.A.; Silva, I.L.A.F.E.; Caruso, P. In-hospital mortality and one-year survival of critically ill patients with cancer colonized or not with carbapenem-resistant gram-negative bacteria or vancomycin-resistant enterococci: An observational study. Antimicrob. Resist. Infect. Control 2023, 12, 8. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Moreira, F.; Guimaraes, T.; Spadão, F.; Ramos, J.F.; Batista, M.V.; Filho, J.S.; Costa, S.F.; Rocha, V. Epidemiology, risk factors and outcomes of multi-drug-resistant bloodstream infections in haematopoietic stem cell transplant recipients: Importance of previous gut colonization. J. Hosp. Infect. 2018, 100, 83–91. [Google Scholar] [CrossRef]
- Battipaglia, G.; Malard, F.; Rubio, M.T.; Ruggeri, A.; Mamez, A.C.; Brissot, E.; Giannotti, F.; Dulery, R.; Joly, A.C.; Baylatry, M.T.; et al. Fecal microbiota transplantation before or after allogeneic hematopoietic transplantation in patients with hematologic malignancies carrying multidrug-resistance bacteria. Haematologica 2019, 104, 1682–1688. [Google Scholar] [CrossRef]
- Sadowska-Klasa, A.; Piekarska, A.; Prejzner, W.; Bieniaszewska, M.; Hellmann, A. Colonization with multidrug-resistant bacteria increases the risk of complications and a fatal outcome after allogeneic hematopoietic cell transplantation. Ann. Hematol. 2018, 97, 509–517. [Google Scholar] [CrossRef] [PubMed]
Group Study | Colonization with MDR Bacteria | Infection with MDR Bacteria | Resistance Pattern | Risk Factors for Colonization/Infection | Study |
---|---|---|---|---|---|
ICU patients | E. coli (57%) K. pneumoniae (16%) C. freundii (7%) E. cloacae (6%) K. aerogenes (5%) | - | ESBL-producing E. coli and other ESBL producers (76%) Derepressed ampC producers (15%) | Liver cirrhosis Previous MDR-GNB carriage Digestive surgery in the last year Length of hospital stay | Fernandez-Martinez et al. (2022) [21] |
ICU patients | VRE (16%) K. pneumoniae (3%) | - | VanA (81%) OXA-48 NDM | - | Karașin et al. (2021) [22] |
ICU patients | - | A. baumannii (35.5%) K. pneumoniae (20.6%) Enterococcus spp. (13%) P. aeruginosa (11.5%) S. aureus (8%) E. coli (6.9%) | MDR (12.5%) XDR (49.2%) PDR (1.2%) | - | Routsi et al. (2020) [23] |
ICU patients | 39.04% colonized with Gram-negative bacteria 7.61% colonized with Gram-positive bacteria 2.61% colonized with both | 45.20% with MDR colonization developed sepsis 32.07% with XDR colonization developed an infection | MDR (43.71%) XDR (31.73%) | ICU length of stay Use of external ventricular drainage and intracerebral pressure-monitoring catheters | Munari et al. (2022) [24] |
ICU patients | 51.85% colonized by carbapenem-resistant A. baumannii and/or carbapenem-resistant K. pneumoniae | - | Carbapenem resistance | Longer ICU stay Extended periods of mechanical ventilation Strong statistical association between prior colonization and the subsequent development of infection | Ceccarelli et al. (2022) [25] |
ICU patients | 68.8% colonized with one bacterial strain—E. coli, Klebsiella spp., S. aureus and E. faecium 24.5% colonized with 2 different bacterial strains—Klebsiella spp. and E. faecium 5.7% colonized with 3 different bacterial strains | - | ESBL producers (75.5%) Carbapenemase producers (32.1%) MRSA (11.3%) VRE (3.8%) | Carmeli score = 3 Previous exposure to antibiotics and hospitalization in the past 6 months | Vlad et al. (2023) [26] |
ICU patients | 28%—carbapenem-resistant K. pneumoniae | 45.9%—subsequent infection with carbapenem-resistant K. pneumoniae | Carbapenem resistance | - | Qin et al. (2020) [27] |
ICU patients | Carbapenemase-producing Enterobacterales 66.2% were colonized upon ICU admission 33.8% acquired them during their ICU stay | - | Carbapenemase producers 89.6% KPC | ICU length of stay Open wounds The presence of catheters or tubes Antibiotic treatment | Kim et al. (2023) [28] |
ICU patients | - | K. pneumoniae (21%) P. aeruginosa (11.8%) S. aureus (13.2%) | 85.1% MDR 28.6% XDR 4.6% PDR | Advanced age (>75 years old) Male gender | Wani et al. (2021) [29] |
Neonatal ICU patients | 43% colonized with K. pneumoniae, Acinetobacter spp., E. coli and C. freundii | Bacteremia (34.5%) with GNB (85.5%) | Resistance to third-generation cephalosporins | Cyanosis, jaundice, number of invasive devices and contaminated cots were associated with GNB bacteremia | Silago et al. (2020) [30] |
ICU patients | 54.54%—fecal carriage of ESBL-producing Enterobacterales 9.32%—nasal carriage of MRSA | - | ESBL producers MRSA | Hospitalization for two or more days before ICU admission Antibiotic use prior to ICU admission (not statistically significant) | Manyahi et al. (2022) [31] |
ICU patients | - | 56%—GNB infections E. coli (33.3%) K. pneumoniae (31.1%) P. aeruginosa (14.4%) | 92% MDR Third-generation cephalosporins resistance Carbapenem resistance Colistin resistance | Previous use of antibiotics Use of nasogastric tube Respiratory and cardiovascular-associated conditions | Maina et al. (2023) [32] |
ICU patients | - | A. baumannii (25.4%) Acinetobacter spp. (14.3%) K. pneumoniae (13.2%) P. aeruginosa (9.6%) S. aureus (8.7%) | Carbapenem resistance—all strains of Acinetobacter and P. aeruginosa MRSA (100%) K. pneumoniae—76% ESBL and 22% KPC | Advanced age Use of orotracheal tube High blood pressure, cardiac and pulmonary diseases, chronic kidney disease | Martins et al. (2024) [33] |
ICU patients | - | 62% had at least one MDR isolate: carbapenem-resistant A. baumannii and P. aeruginosa, carbapenem-resistant K. pneumoniae, MRSA and other carbapenem-resistant Enterobacterales | Carbapenem resistance MRSA | - | Oliveira et al. (2023) [34] |
ICU patients | - | P. aeruginosa (30.17%) K. pneumoniae (20.12%) E. coli (16.05%) | ESBL producers Carbapenemase producers | - | Uc-Cachón et al. (2019) [35] |
ICU patients | 33% were colonized with at least one MDR bacteria: 28% were colonized with VRE 6% were colonized with MRSA 3% were colonized with ESBL-producing Enterobacterales | Infections occurred in 58% of patients, with 42% of these cases being ICU-acquired, and 12% developed infections with MDR bacteria | ESBL producers VRE MRSA | - | Kim et al. (2023) [36] |
ICU patients (Barcelona cohort + Frankfurt cohort) | Barcelona cohort—32.7% were colonized by MDR bacteria, with 64.2% at admission and 35.8% during follow-up Frankfurt cohort—47% were colonized by MDR bacteria, with 66.2% at admission and 33.8% during follow-up | - | Barcelona cohort—ESBL-producing Enterobacterales Frankfurt cohort—VRE | - | Prado et al. (2022) [37] |
ICU patients | - | 69.6%—hospital-acquired infections (bacteremia) K. pneumoniae (23.8%) coagulase-negative staphylococci (17.9%) A. baumannii (11%) S. aureus (8.9%) | 70% MDR ESBL producers (33.1%) MRSA (7%) CRE (4.2%) VRE (1.6%) | - | El-Sokkary et al. (2021) [38] |
ICU patients | - | P. aeruginosa | Carbapenemase producers (35%): VIM (54%) GES (27%) IMP (7%) NDM (5%) | - | Gill et al. (2022) [39] |
Group Study | Colonization with MDR Bacteria | Infection with MDR Bacteria | Resistance Pattern | Risk Factors for Colonization/Infection | Study |
---|---|---|---|---|---|
HIV-positive patients | 32.6% colonized with ESBL-producing Enterobacterales: E. coli (85.7%) K. pneumoniae (13.5%) E. cloacae (0.8%) | - | ESBL producers 97.5%—blaCTX-M genes (92%—blaCTX-M-15 gene) | Low CD4+ count (<350/mL) | Manyahi et al. (2020) [47] |
HIV-positive patients | 6.8% colonized with S. aureus 33.1% colonized with ESBL-producing Enterobacterales: E. coli (63.7%) K. pneumoniae (10.4%) | - | MRSA (59.5%) ESBL producers | History of antibiotic use in the last month | Msanga et al. (2022) [48] |
HIV-positive patients | 81.08% colonized with MDR Enterobacterales, of which 40.67% were colonized with two or more MDR strains E. coli (78.49%) K. pneumoniae (5.91%) | - | ESBL producers (33.26%) blaTEM (62.9%) blaCTX-M (40.86%) blaSHV (10.57%) | - | Dimani et al. (2023) [49] |
HIV-positive patients | 30.83% colonized with Enterobacterales: E. coli (56%) K. pneumoniae (20%) | - | ESBL producers (48%) blaCTX-M gene (48%) blaTEM gene (72%) | - | Zemtsa et al. (2022) [50] |
HIV-positive patients | - | Lower respiratory tract infections: K. pneumoniae (25.37%) H. influenzae (20.9%) E. coli (17.91%) | ESBL producers (43.39%) blaCTX-M gene (47.83%) blaTEM gene (8.6%) both genes (43.48%) | CD4+ count < 200 cells/μL | Maharjan et al. (2022) [52] |
HIV-positive patients | 61.5% colonized with Enterococcus spp. | - | MDR (49.59%) VRE (11.4%) | Previous exposure to antibiotics for more than two weeks Hospitalization for more than six months | Regasa et al. (2021) [53] |
HIV-positive patients | 56% colonized with Enterococcus spp. | - | MDR (87.4%) VRE (13.7%) | Previous exposure to antibiotics Previous hospitalization | Zike et al. (2024) [54] |
HIV-positive patients | 8.85% colonized with Enterococcus spp. | - | MDR (82.35%) VRE (47.05%) | Previous exposure to antibiotics Previous hospitalization | Tilahun et al. (2023) [55] |
HIV-positive patients | - | The prevalence of MDR bacteria was higher in HIV-positive patients (21.5%) compared to HIV-negative patients (16.5%). The most common species isolated were E. coli (58.5%), K. pneumoniae (15.7%) and P. mirabilis (7.5%) | MDR (16.6%) Increased rate of resistance to penicillins, combinations of penicillins with beta-lactamase inhibitors and sulfonamides | - | Henderson et al. (2022) [56] |
HIV-positive patients | - | 1.6%—infections with MDR Enterobacterales | MDR | Nadir CD4 cell count ≤ 200 cells/mm3 A history of an AIDS-defining clinical condition Hospital admission in the prior 12 months | Henderson et al. (2022) [57] |
HIV-positive patients | S. aureus nasal carriage was 15.18% with 60.08% of the S. aureus isolates exhibiting multidrug resistance | - | MRSA | A history of respiratory tract infections | He et al. (2021) [58] |
HIV-positive patients | 3.4% colonized with MRSA | - | MRSA | Cancer Antibiotic use within the past year | Hsu et al. (2020) [59] |
HIV-positive patients | Lower prevalence of MRSA nasal colonization—3.5% (7 out of 200) of the HIV-positive cohort and 5% (10 out of 200) of the control cohort | - | MRSA | No significant difference in MRSA nasal colonization between HIV-positive people and healthy controls | Kapali et al. (2021) [60] |
HIV-positive patients | Prevalence of S. aureus and MRSA carriage among children with HIV was 44.9% and 5.6%, respectively, compared to 23.4% and 0.9% in the control group | - | MRSA | HIV infection is a risk factor for S. aureus colonization among children, though it may not be a risk factor for MRSA colonization The absence of colonization with coagulase-negative staphylococci is a risk factor for S. aureus colonization | Donkor et al. (2019) [61] |
HIV-positive patients | Colonization rates for S. aureus and MRSA were 61.7% and 28.2%, respectively | - | MRSA | CD4 count below 200 Being on HAART for 5 years or less | Muhaba et al. (2022) [62] |
Group Study | Colonization with MDR Bacteria | Infection with MDR Bacteria | Resistance Pattern | Risk Factors for Colonization/Infection | Study |
---|---|---|---|---|---|
Cancer patients | - | E. coli (71.8%) Klebsiella spp. (22.3%) Proteus spp. (2.9%) | All isolates were MDR and 60% of them were carbapenem-resistant 31.7% were MBL-positive | - | Zare et al. (2019) [69] |
Cancer patients | - | 65% invasive infections with GNB E. coli (45.6%) P. aeruginosa (7.5%) A. baumannii (4%) | ESBL producers (79.6%) | - | Haddad et al. (2021) [70] |
Cancer patients | 18.9% were colonized with ESBL-producing Enterobacterales 14.92% were colonized with carbapenem-resistant Enterobacterales | Bloodstream infections occurred in 29 cases (14.42%) GNB bacteremia was observed in 8 of the 38 (21.05%) patients colonized with ESBL-producing Enterobacterales and 4 of the 30 (13.33%) patients colonized with carbapenem-resistant Enterobacterales | ESBL producers Carbapenem resistance | Previous use of quinolones was identified as the only independent risk factor for intestinal colonization with MDR Enterobacterales | Alrstom et al. (2021) [71] |
Cancer patients | - | 34.5%—K. pneumoniae ESBL producers 11.46%—E. coli ESBL producers 32.8%—P. aeruginosa resistant to imipenem and/or ceftazidime 20.75%—MRSA | ESBL producers MRSA Carbapenem resistance | - | Mechergui et al. (2019) [72] |
Cancer patients | 6.56%—intestinal colonization with carbapenem-resistant Enterobacterales 71.43%—K. pneumoniae 28.57%—E. coli | 14.29% developed invasive infections with carbapenem-resistant Enterobacterales | Carbapenem resistance | Age Use of cephalosporins, penicillins, tigecyclines Hematopoietic stem cell transplantation status | Zhu et al. (2022) [73] |
Cancer patients | 10.3% were colonized with carbapenem-resistant Enterobacterales 50%—K. pneumoniae 27.8%—E. coli 9.3%—E. cloacae | 18.4% developed subsequent infections 55.6%—K. pneumoniae 33.3%—E. coli 11.2%—other species | Carbapenem resistance | Use of proton-pump inhibitors and admission to the ICU increased the risk of subsequent CRE infection in patients colonized with CRE with hematologic malignancies | Chen et al. (2023) [74] |
Cancer patients | 14% of patients were colonized with MDR bacteria before infection 20% were colonized upon hospital admission | K. pneumoniae (37%) MRSA (24%) A. baumannii (21%) P. aeruginosa (5%) E. coli (4%) VRE (3%) | ESBL producers Carbapenem resistance MRSA VRE | - | Perdikouri et al. (2019) [75] |
Cancer patients | 23.8% were colonized with VRE | 3% of those with intestinal VRE colonization developed an infection caused by VRE | VRE | - | Chhatwal et al. (2020) [76] |
Cancer patients | 8.1% were colonized with MDR bacteria 79.2% Enterobacterales 16.7% VRE | - | ESBL producers VRE | MDR bacterial colonization is considered an independent risk factor for impaired overall survival of patients with NSCLC | Stratmann et al. (2020) [77] |
Cancer patients | 74.4%—VRE 20%—ESBL-producing Enterobacterales 13.3%—Carbapenem-resistant Enterobacterales 2.2%—MRSA | - | ESBL producers Carbapenem resistance VRE MRSA | Colonized patients experienced significantly more days with fever, spent more time in the intensive care unit and had higher median C-reactive protein levels during their hospital stay | Ballo et al. (2019) [78] |
Cancer patients | - | Bloodstream infections with GNB E. coli (52.7%) K. pneumoniae (19.2%) P. aeruginosa (14.6%) E. cloacae (3.7%) A. baumannii (1.7%) Stenotrophomonas maltophilia (1.7%) | 30.7% MDR | MDR GNB bloodstream infections and chronic renal failure were identified as independent risk factors for 30-day mortality | Trecarichi et al. (2023) [79] |
Cancer patients | P. aeruginosa | P. aeruginosa | MDR | Diabetes mellitus Previous colonization with MDR P. aeruginosa Prior receipt of antibiotics Septic shock These acted as risk factors for developing infections with MDR P. aeruginosa | Hernández-Jiménez et al. (2022) [80] |
Cancer patients | 40.4% were colonized with ESBL-producing Enterobacterales 8.8% were colonized with CRE | Bacteremia with ESBL-producing Enterobacterales occurred in 2 (8.6%) of the patients colonized with ESBL-producing Enterobacterales, and CRE bacteremia was detected in 1 (20%) of the patients colonized with CRE | ESBL producers Carbapenem resistance | Underlying acute myeloid leukemia Prior chemotherapy Use of beta-lactam antibiotics, quinolones or other antibiotics within the last three months Recent hospitalization history | Kömürcü et al. (2020) [81] |
Cancer patients | 19.6% were colonized with carbapenem-resistant GNB or VRE | - | Carbapenem resistance VRE | - | Junior et al. (2023) [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duhaniuc, A.; Păduraru, D.; Nastase, E.-V.; Trofin, F.; Iancu, L.-S.; Sima, C.-M.; Dorneanu, O.-S. Multidrug-Resistant Bacteria in Immunocompromised Patients. Pharmaceuticals 2024, 17, 1151. https://doi.org/10.3390/ph17091151
Duhaniuc A, Păduraru D, Nastase E-V, Trofin F, Iancu L-S, Sima C-M, Dorneanu O-S. Multidrug-Resistant Bacteria in Immunocompromised Patients. Pharmaceuticals. 2024; 17(9):1151. https://doi.org/10.3390/ph17091151
Chicago/Turabian StyleDuhaniuc, Alexandru, Diana Păduraru, Eduard-Vasile Nastase, Felicia Trofin, Luminița-Smaranda Iancu, Cristina-Mihaela Sima, and Olivia-Simona Dorneanu. 2024. "Multidrug-Resistant Bacteria in Immunocompromised Patients" Pharmaceuticals 17, no. 9: 1151. https://doi.org/10.3390/ph17091151
APA StyleDuhaniuc, A., Păduraru, D., Nastase, E. -V., Trofin, F., Iancu, L. -S., Sima, C. -M., & Dorneanu, O. -S. (2024). Multidrug-Resistant Bacteria in Immunocompromised Patients. Pharmaceuticals, 17(9), 1151. https://doi.org/10.3390/ph17091151