The Impact of Chemotherapy on Arterial Stiffness and Ventricular–Arterial Coupling in Women with Breast Cancer
Abstract
:1. Introduction
2. Results
2.1. General Characteristics
2.2. Follow-Up Results
2.3. Correlations
3. Discussion
4. Materials and Methods
4.1. Research Design
4.2. Participants’ Clinical Examination
4.3. Arterial-Stiffness Assessment
4.4. Global Longitudinal Stain (GLS) and Ventricular–Arterial Coupling (VAC)
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bansal, N.; Adams, M.J.; Ganatra, S.; Colan, S.D.; Aggarwal, S.; Steiner, R.; Amdani, S.; Lipshultz, E.R.; Lipshultz, S.E. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardiooncology 2019, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.M.; Mata, R.; González, I.; Del Castillo, S.; Muñiz, J.; Morales, L.J.; Espinosa, M.J.; Moreno, F.; Jiménez, R.; Cristobal, C.; et al. Early and late onset cardiotoxicity following anthracycline-based chemotherapy in breast cancer patients: Incidence and predictors. Int. J. Cardiol. 2023, 382, 52–59. [Google Scholar] [CrossRef]
- Von Minckwitz, G.; Huang, C.S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. KATHERINE Investigators. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Leszek, P.; Klotzka, A.; Bartus, S.; Burchardt, P.; Czarnecka, A.M.; Dlugosz-Danecka, M.; Gierlotka, M.; Kosela-Paterczyk, H.; Krawczyk-Ozog, A.; Kubiatowski, T.; et al. A practical approach to the 2022 ESC cardio-oncology guidelines: Comments by a team of experts—Cardiologists and oncologists. Kardiol. Pol. 2023, 81, 1047–1063. [Google Scholar] [CrossRef] [PubMed]
- Mauro, C.; Capone, V.; Cocchia, R.; Cademartiri, F.; Riccardi, F.; Arcopinto, M.; Alshahid, M.; Anwar, K.; Carafa, M.; Carbone, A.; et al. Cardiovascular Side Effects of Anthracyclines and HER2 Inhibitors among Patients with Breast Cancer: A Multidisciplinary Stepwise Approach for Prevention, Early Detection, and Treatment. J. Clin. Med. 2023, 12, 2121. [Google Scholar] [CrossRef] [PubMed]
- Goulas, K.; Farmakis, D.; Constantinidou, A.; Kadoglou, N.P.E. Cardioprotective Agents for the Primary Prevention of Trastuzumab-Associated Cardiotoxicity: A Systematic Review and Meta-Analysis. Pharmaceuticals 2023, 16, 983. [Google Scholar] [CrossRef]
- Alexandraki, A.; Papageorgiou, E.; Zacharia, M.; Keramida, K.; Papakonstantinou, A.; Cipolla, C.M.; Tsekoura, D.; Naka, K.; Mazzocco, K.; Mauri, D.; et al. New Insights in the Era of Clinical Biomarkers as Potential Predictors of Systemic Therapy-Induced Cardiotoxicity in Women with Breast Cancer: A Systematic Review. Cancers 2023, 15, 3290. [Google Scholar] [CrossRef]
- De la Brassinne Bonardeaux, O.; Born, B.; Moonen, M.; Lancellotti, P. Mild Cardiotoxicity and Continued Trastuzumab Treatment in the Context of HER2-Positive Breast Cancer. J. Clin. Med. 2023, 12, 6708. [Google Scholar] [CrossRef]
- Cronin, M.; Seher, M.; Arsang-Jang, S.; Lowery, A.; Kerin, M.; Wijns, W.; Soliman, O. Multimodal Imaging of Cancer Therapy-Related Cardiac Dysfunction in Breast Cancer—A State-of-the-Art Review. J. Clin. Med. 2023, 12, 6295. [Google Scholar] [CrossRef]
- Mozos, I.; Borzak, G.; Caraba, A.; Mihaescu, R. Arterial stiffness in hematologic malignancies. OncoTargets Ther. 2017, 10, 1381–1388. [Google Scholar] [CrossRef]
- Novo, G.; Di Lisi, D.; Manganaro, R.; Manno, G.; Lazzara, S.; Immordino, F.A.; Madaudo, C.; Carerj, S.; Russo, A.; Incorvaia, L.; et al. Arterial Stiffness: Effects of Anticancer Drugs Used for Breast Cancer Women. Front. Physiol. 2021, 12, 661464. [Google Scholar] [CrossRef] [PubMed]
- Anastasiou, M.; Oikonomou, E.; Theofilis, P.; Papamikroulis, G.A.; Gazouli, M.; Kalogeras, K.; Lygkoni, S.; Pesiridis, T.; Goliopoulou, A.; Papatheodoridi, A.; et al. Prolonged Impact of Anti-Cancer Therapy on Endothelial Function and Arterial Stiffness in Breast Cancer Patients. Vascul. Pharmacol. 2023, 152, 107195. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllias, K.; Thiele, L.E.; Cavagna, L.; Baraliakos, X.; Bertsias, G.; Schwarting, A. Arterial Stiffness as a Surrogate Marker of Cardiovascular Disease and Atherosclerosis in Patients with Arthritides and Connective Tissue Diseases: A Literature Review. Diagnostics 2023, 13, 1870. [Google Scholar] [CrossRef] [PubMed]
- Maga, M.; Wachsmann-Maga, A.; Batko, K.; Włodarczyk, A.; Kłapacz, P.; Krężel, J.; Szopa, N.; Sliwka, A. Impact of Blood-Flow-Restricted Training on Arterial Functions and Angiogenesis-A Systematic Review with Meta-Analysis. Biomedicines 2023, 11, 1601. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, N.; Blin, J.A.; Kamalul Arifin, A.S.; Abd Jalal, N.; Ismail, N.; Mohd Yusof, N.A.; Abdullah, M.S.; Husin, N.F.; Dauni, A.; Kamaruddin, M.A.; et al. Cardiovascular risk prediction with cardio-ankle vascular index in the malaysian cohort study. Curr. Probl. Cardiol. 2024, 49, 102192. [Google Scholar] [CrossRef]
- Mylonas, S.N.; Moulakakis, K.G.; Kadoglou, N.; Antonopoulos, C.; Kotsis, T.E.; Kakisis, J.; Katsenis, K.; Liapis, C. Arterial Stiffness Assessed by Cardio-Ankle Vascular Index in Patients With Abdominal Aortic Aneurysm and Its Alterations after Treatment. Vasc. Endovasc. Surg. 2021, 55, 804–810. [Google Scholar] [CrossRef]
- Kadoglou, N.; Moulakakis, K.G.; Mantas, G.; Spathis, A.; Gkougkoudi, E.; Mylonas, S.N.; Kakisis, J.; Liapis, C. Novel Biomarkers and Imaging Indices for the “Vulnerable Patient” with Carotid Stenosis: A Single-Center Study. Biomolecules 2023, 13, 1427. [Google Scholar] [CrossRef]
- Tabata, T.; Sato, S.; Ohno, R.; Iwakawa, M.; Kiyokawa, H.; Morinaga, Y.; Tanji, N.; Kinoshita, T.; Shimizu, K. Cardio-Vascular Interaction Evaluated by Speckle-Tracking Echocardiography and Cardio-Ankle Vascular Index in Hypertensive Patients. Int. J. Mol. Sci. 2022, 23, 14469. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Aboyans, V.; Blacher, J.; Brodmann, M.; Brutsaert, D.L.; Chirinos, J.A.; De Carlo, M.; Delgado, V.; Lancellotti, P.; Lekakis, J.; et al. The role of ventricular-arterial coupling in cardiac disease and heart failure: Assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur. J. Heart Fail. 2019, 21, 402–424. [Google Scholar] [CrossRef]
- Scarlatescu, A.I.; Micheu, M.M.; Petre, I.G.; Oprescu, N.; Mihail, A.M.; Cojocaru, I.D.; Vatasescu, R.G. Left Ventricular-Arterial Coupling as an Independent Predictor of Adverse Events in Young Patients with ST Elevation Myocardial Infarction-A 3D Echocardiographic Study. Biomedicines 2024, 12, 105. [Google Scholar] [CrossRef]
- Koelwyn, G.J.; Lewis, N.C.; Ellard, S.L.; Jones, L.W.; Gelinas, J.C.; Rolf, J.D.; Melzer, B.; Thomas, S.M.; Douglas, P.S.; Khouri, M.G.; et al. Ventricular-Arterial Coupling in Breast Cancer Patients After Treatment With Anthracycline-Containing Adjuvant Chemotherapy. Oncologist 2016, 21, 141–149. [Google Scholar] [CrossRef]
- Holm, H.; Kruger, R.; Jujic, A.; Lamiral, Z.; Uys, A.S.; Girerd, N.; Magnusson, M. Ventricular-arterial coupling and cardiovascular risk among young adults: The African-PREDICT study. Am. J. Physiol. Heart Circ. Physiol. 2023, 325, H362–H371. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, G.; Tsilivarakis, D.; Katogiannis, K.; Vlastos, D.; Katsanos, S.; Katsanaki, E.; Thymis, J.; Parissis, J.; Lambadiari, V.; Ikonomidis, I. Association of aortic stiffness early post myocardial infarction with left ventricular remodelling. Eur. J. Clin. Investig. 2024, 54, e14090. [Google Scholar] [CrossRef] [PubMed]
- Camilli, M.; Birritella, L.; Delogu, A.B.; Lamendola, P.; De Vita, A.; Melita, V.; Romano, A.; Ruggiero, A.; Attinà, G.; Lanza, G.A.; et al. Left Ventricular-Arterial Coupling and Vascular Function in Childhood Cancer Survivors Exposed to Anthracycline Chemotherapy. Rev. Cardiovasc. Med. 2023, 24, 124. [Google Scholar] [CrossRef] [PubMed]
- Climie, R.E.; Dillon, H.T.; Horne-Okano, Y.; Wallace, I.; Avery, S.; Kingwell, B.A.; La Gerche, A.; Howden, E.J. Vascular Aging Is Accelerated in Hematological Cancer Survivors Who Undergo Allogeneic Stem Cell Transplant. Hypertension 2023, 80, 1881–1889. [Google Scholar] [CrossRef]
- Stoichescu-Hogea, G.; Buleu, F.N.; Nicusor Pop, G.; Duda-Seiman, D.; Ember, A.; Tudor, A.; Baneu, P.; Kundnani, N.R.; Christodorescu, R.; Dragan, S. Ventricular-arterial coupling assessed by PWV/GLS ratio in hypertensive patients. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 7024–7035. [Google Scholar] [CrossRef]
- Dell’Angela, L.; Nicolosi, G.L. From ejection fraction, to myocardial strain, and myocardial work in echocardiography: Clinical impact and controversies. Echocardiography 2024, 41, e15758. [Google Scholar] [CrossRef]
- Sulaiman, L.; Hesham, D.; Abdel Hamid, M.; Youssef, G. The combined role of NT-proBNP and LV-GLS in the detection of early subtle chemotherapy-induced cardiotoxicity in breast cancer female patients. Egypt. Heart J. 2021, 73, 20. [Google Scholar] [CrossRef]
- Mele, D.; Malagutti, P.; Indelli, M.; Ferrari, L.; Casadei, F.; Da Ros, L.; Pollina, A.; Fiorencis, A.; Frassoldati, A.; Ferrari, R. Reversibility of Left Ventricle Longitudinal Strain Alterations Induced by Adjuvant Therapy in Early Breast Cancer Patients. Ultrasound Med. Biol. 2016, 42, 125–132. [Google Scholar] [CrossRef]
- Muckiene, G.; Vaitiekus, D.; Zaliaduonyte, D.; Zabiela, V.; Verseckaite-Costa, R.; Vaiciuliene, D.; Juozaityte, E.; Jurkevicius, R. Prognostic Impact of Global Longitudinal Strain and NT-proBNP on Early Development of Cardiotoxicity in Breast Cancer Patients Treated with Anthracycline-Based Chemotherapy. Medicina 2023, 59, 953. [Google Scholar] [CrossRef]
- Kerkhof, P.L.; Heyndrickx, G.R.; Li, J.K. Hemodynamic determinants and ventriculo-arterial coupling are sex-associated in heart failure patients. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 18 October 2016; Volume 2016, pp. 3286–3289. [Google Scholar] [CrossRef]
- Gasowski, J.; Piotrowicz, K.; Messerli, F.H. Arterial Hypertension after Age 65: From Epidemiology and Pathophysiology to Therapy Do We Know Where We Stand? Kardiol. Pol. 2018, 76, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Soulat, G.; Gencer, U.; Kachenoura, N.; Villemain, O.; Messas, E.; Boutouyrie, P.; Laurent, S.; Mousseaux, E. Changes in segmental pulse wave velocity of the thoracic aorta with age and left ventricular remodelling. An MRI 4D flow study. J. Hypertens. 2020, 38, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Saba, P.S.; Cameli, M.; Casalnuovo, G.; Ciccone, M.M.; Ganau, A.; Maiello, M.; Modesti, P.A.; Muiesan, M.L.; Novo, S.; Palmiero, P.; et al. Ventricular-vascular coupling in hypertension: Methodological considerations and clinical implications. J. Cardiovasc. Med. 2014, 15, 773–787. [Google Scholar] [CrossRef]
- Gallo, G.; Savoia, C. Hypertension and Heart Failure: From Pathophysiology to Treatment. Int. J. Mol. Sci. 2024, 25, 6661. [Google Scholar] [CrossRef]
- Aghezzaf, S.; Coisne, A.; Bauters, C.; Favata, F.; Delsart, P.; Coppin, A.; Seunes, C.; Schurtz, G.; Verdier, B.; Lamblin, N.; et al. Feasibility and prognostic significance of ventricular-arterial coupling after myocardial infarction: The RIGID-MI cohort. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Berthelot, E.; Bihry, N.; Brault-Melin, O.; Assayag, P.; Cohen-Solal, A.; Chemla, D.; Logeart, D. Changes in ventricular-arterial coupling during decongestive therapy in acute heart failure. Eur. J. Clin. Investig. 2014, 44, 982–988. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Dimopoulou, A.; Gkougkoudi, E.; Parperis, K. Altered Arterial Stiffness, Ventricular-Arterial Coupling and Troponin Levels in Patients with Systemic Lupus Erythematosus. Medicina 2024, 60, 821. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.; Holm, H.; Nilsson, P.M. Ventricular-arterial coupling: Definition, pathophysiology and therapeutic targets in cardiovascular disease. Expert. Rev. Cardiovasc. Ther. 2021, 19, 753–761. [Google Scholar] [CrossRef]
- Pugliese, N.R.; Balletti, A.; Armenia, S.; De Biase, N.; Faita, F.; Mengozzi, A.; Paneni, F.; Ruschitzka, F.; Virdis, A.; Ghiadoni, L.; et al. Ventricular-Arterial Coupling Derived From Proximal Aortic Stiffness and Aerobic Capacity Across the Heart Failure Spectrum. JACC Cardiovasc. Imaging 2022, 15, 1545–1559. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Katsanos, S.; Triantafyllidi, H.; Parissis, J.; Tzortzis, S.; Pavlidis, G.; Trivilou, P.; Makavos, G.; Varoudi, M.; Frogoudaki, A.; et al. Pulse wave velocity to global longitudinal strain ratio in hypertension. Eur. J. Clin. Investig. 2019, 49, e13049. [Google Scholar] [CrossRef]
- Grela-Wojewoda, A.; Niemiec, J.; Sas-Korczynska, B.; Zemelka, T.; Puskulluoglu, M.; Wysocki, W.M.; Wojewoda, T.; Pacholczak-Madej, R.; Adamczyk, A.; Mucha-Malecka, A.; et al. Adjuvant combined therapy with trastuzumab in patients with HER2-positive breast cancer and cardiac alterations: Implications for optimal cardio-oncology care. Pol. Arch. Intern. Med. 2022, 132, 16204. [Google Scholar] [CrossRef] [PubMed]
- Yersal, O.; Eryilmaz, U.; Akdam, H.; Meydan, N.; Barutca, S. Arterial Stiffness in Breast Cancer Patients Treated with Anthracycline and Trastuzumab-Based Regimens. Cardiol. Res. Pract. 2018, 2018, 5352914. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.E.; Moulakakis, K.G.; Mantas, G.; Kakisis, J.D.; Mylonas, S.N.; Valsami, G.; Liapis, C.D. The Association of Arterial Stiffness With Significant Carotid Atherosclerosis and Carotid Plaque Vulnerability. Angiology 2022, 73, 668–674. [Google Scholar] [CrossRef] [PubMed]
Variables | Chemotherapy Group (N = 78) | Control Group (N = 41) | p-Value |
---|---|---|---|
Age (years) | 53 ± 11 | 51 ± 6 | 0.121 |
Hypertension (n) | 7 (8.9%) | 0 | - |
Dyslipidemia (n) | 5 (6.4%) | 0 | - |
Diabetes (n) | 1 (1.3%) | 0 | - |
Smokers (n) | 13 (16.7%) | 6 (15%) | 0.777 |
Menopause (n) | 41 (52.6%) | 19 (46.3%) | 0.809 |
CAVI | 7.10 ± 1.25 | 6.99 ± 1.05 | 0.758 |
GLS (%) | −21.02 ± 2.09 | −21.16 ± 1.55 | 0.633 |
VAC1 | −0.36 ± 0.06 | −0.33 ± 0.05 | 0.290 |
BMI (kg/m2) | 27.51 ± 6.68 | 26.52 ± 4.65 | 0.156 |
SBP (mmHg) | 131 ± 26 | 130 ± 13 | 0.767 |
DBP (mmHg) | 83 ± 10 | 81 ± 8 | 0.204 |
LVEF (%) | 63 ± 9 | 66 ± 7 | 0.105 |
E/A ratio | 0.98 ± 0.22 | 1.00 ± 0.38 | 0.939 |
E/E’ ratio | 7.17 ± 2.75 | 6.90 ± 2.85 | 0.806 |
LAVI (ml/m2) | 29.55 ± 7.68 | 29.35 ± 5.50 | 0.944 |
TAPSE (cm) | 2.32 ± 0.32 | 2.59 ± 0.42 | 0.062 |
RVS’ (m/s) | 0.14 ± 0.04 | 0.15 ± 0.02 | 0.361 |
TRVmax (m/s) | 2.23 ± 0.38 | 2.85 ± 3.16 | 0.232 |
Pharmaceutical regimen | |||
ACEI (n) | 3 (3.9%) | 0 | |
CCB (n) | 1 (1.3%) | 0 | |
Statins (n) | 2 (2.6%) | 0 |
Variables | CTRCD Subgroup (N = 20) | CTRCD-Free Subgroup (N = 58) | p-Value | ||
---|---|---|---|---|---|
Baseline | End | Baseline | End | ||
Age (years) | 53 ± 11 | 51 ± 6 | - | ||
Hypertension (n) | 2 (10%) | 1 (5%) | 5 (8.6%) | 6 (10.3%) | - |
Dyslipidemia (n) | 1 (5%) | 1 (5%) | 4 (6.9%) | 5 (8.6%) | - |
Diabetes (n) | 0 | 1 (5%) | 0 | 1 (1.8%) | - |
Smokers (n) | 3 (15%) | 1 (5%) | 10 (17.2%) | 2 (3.2%) | - |
Menopause (n) | 10 (50%) | - | 31 (53.4%) | - | - |
CAVI | 7.22 ± 1.34 | 9.51 ± 1.24 * | 7.02 ± 0.91 | 7.51 ± 1.05 | <0.001 |
GLS (%) | −21.01 ± 2.06 | −16.43 ± 1.67 * | −21.09 ± 2.08 | −20.22 ± 1.73 | <0.001 |
VAC | −0.44 ± 0.09 | −0.58 ± 0.09 * | −0.35 ± 0.06 | −0.37 ± 0.06 | <0.001 |
BMI (kg/m2) | 27.79 ± 5.56 | 26.18 ± 6.89 * | 27.34 ± 7.05 | 26.02 ± 6.42 * | 0.887 |
SBP (mmHg) | 137 ± 15 | 137 ± 15 | 129 ± 27 | 129 ± 27 | 0.995 |
DBP (mmHg) | 86 ± 9 | 86 ± 9 | 82 ± 10 | 82 ± 10 | 0.996 |
LVEF (%) | 61 ± 4 | 52 ± 11 * | 63 ± 7 | 61 ± 7 | 0.076 |
E/A ratio | 0.98 ± 0.22 | 0.71 ± 0.31 | 0.99 ± 0.21 | 0.95 ± 0.20 | 0.101 |
E/E’ ratio | 7.33 ± 3.16 | 8.52 ± 3.59 | 7.09 ± 3.01 | 7.99 ± 4.16 | 0.101 |
LAVI (mL/m2) | 30.29 ± 9.57 | 33.13 ± 11.82 * | 27.15 ± 7.59 | 29.76 ± 8.10 | 0.554 |
TAPSE (cm) | 2.21 ± 0.32 | 2.41 ± 0.24 | 2.40 ± 0.25 | 2.31 ± 0.39 | 0.675 |
RVS’ (m/s) | 0.13 ± 0.03 | 0.16 ± 0.37 | 0.14 ± 0.05 | 0.14 ± 0.02 | 0.981 |
TRVmax (m/s) | 2.47 ± 0.52 | 2.71 ± 0.46 | 2.10 ± 0.51 | 2.28 ± 0.30 | 0.429 |
Pharmaceutical regimen | |||||
ACEI (n) | 1 | 1 | 2 | 2 | - |
CCB (n) | 0 | 0 | 1 | 1 | - |
Statins (n) | 1 | 1 | 1 | 1 | - |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
β (SE) | p | β (SE) | p | |
CAVI | 0.663 (0.099) | <0.001 | 0.268 (0.099) | 0.008 |
GLS | −0.401 (0.051) | <0.001 | 0.273 (0.043) | 0.041 |
VAC | −0.826 (0.077) | <0.001 | −0.701 (0.145) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadoglou, N.P.E.; Dimopoulou, A.; Tsappa, I.; Pilavaki, P.; Constantinidou, A. The Impact of Chemotherapy on Arterial Stiffness and Ventricular–Arterial Coupling in Women with Breast Cancer. Pharmaceuticals 2024, 17, 1115. https://doi.org/10.3390/ph17091115
Kadoglou NPE, Dimopoulou A, Tsappa I, Pilavaki P, Constantinidou A. The Impact of Chemotherapy on Arterial Stiffness and Ventricular–Arterial Coupling in Women with Breast Cancer. Pharmaceuticals. 2024; 17(9):1115. https://doi.org/10.3390/ph17091115
Chicago/Turabian StyleKadoglou, Nikolaos P. E., Alexandriani Dimopoulou, Irene Tsappa, Pampina Pilavaki, and Anastasia Constantinidou. 2024. "The Impact of Chemotherapy on Arterial Stiffness and Ventricular–Arterial Coupling in Women with Breast Cancer" Pharmaceuticals 17, no. 9: 1115. https://doi.org/10.3390/ph17091115
APA StyleKadoglou, N. P. E., Dimopoulou, A., Tsappa, I., Pilavaki, P., & Constantinidou, A. (2024). The Impact of Chemotherapy on Arterial Stiffness and Ventricular–Arterial Coupling in Women with Breast Cancer. Pharmaceuticals, 17(9), 1115. https://doi.org/10.3390/ph17091115